Aplicación de redes neuronales para la reconstrucción de series de tiempo de precipitación y temperatura utilizando información satelital
Las técnicas de inteligencia artificial como las redes neuronales artificiales (RNA) permiten resolver una gran variedad de problemas relacionados con diferentes áreas del conocimiento tales como la medicina, la Bioinformática e incluso las telecomunicaciones. En muchos casos, las redes neuronales s...
- Autores:
-
Muñoz Herrera, Wilmer
Bedoya, Oscar Fernando
Rincón, Mauricio Edilberto
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Universidad EIA .
- Repositorio:
- Repositorio EIA .
- Idioma:
- spa
- OAI Identifier:
- oai:repository.eia.edu.co:11190/5075
- Acceso en línea:
- https://repository.eia.edu.co/handle/11190/5075
https://doi.org/10.24050/reia.v17i34.1292
- Palabra clave:
- Redes Neuronales
Llenado de Datos Faltantes
Sensores Remotos
Series de Tiempo.
Neural Networks
Data Filling
Remote Sensors
Time Series
- Rights
- openAccess
- License
- Revista EIA - 2020
Summary: | Las técnicas de inteligencia artificial como las redes neuronales artificiales (RNA) permiten resolver una gran variedad de problemas relacionados con diferentes áreas del conocimiento tales como la medicina, la Bioinformática e incluso las telecomunicaciones. En muchos casos, las redes neuronales se utilizan para predecir el comportamiento de una variable con base en datos históricos previos y en un conjunto de variables predictoras. En este artículo se aborda el problema particular de la reconstrucción de información faltante de las estaciones meteorológicas utilizando RNAs. La falta de este tipo de información afecta principalmente los estudios climáticos en los que se utiliza información meteorológica. Estos estudios pueden permitir evitar las amenazas significativas en el desarrollo sustentable de nuestra sociedad, los recursos naturales, especies y la misma vida del ser humano. En este artículo se proponen modelos basados en redes neuronales artificiales e información satelital para el llenado de datos faltantes en las estaciones meteorológicas y reconstrucción espacial de las variables de precipitación y temperatura para la región de Departamento de Valle del Cauca, Colombia. Los resultados obtenidos alcanzan los coeficientes de correlación de alrededor de 0.9, con errores más pronunciados en cerca de 50 mm/mes en precipitación y 2 °C en temperatura. |
---|