Mortero geopolimérico para uso potencial como recubrimiento en concreto
Se sintetizaron dos morteros geopoliméricos basados en Metacaolín y residuo de ladrillo, modificados con adiciones orgánicas e inorgánicas para ser utilizados como potenciales recubrimientos sobre concretos. Se evaluaron sus propiedades en estado fresco (fluidez, tiempo de fraguado) y en estado end...
- Autores:
-
Oviedo-Sánchez, Katherine
Mejía de Gutiérrez, Ruby
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Universidad EIA .
- Repositorio:
- Repositorio EIA .
- Idioma:
- spa
- OAI Identifier:
- oai:repository.eia.edu.co:11190/5046
- Acceso en línea:
- https://repository.eia.edu.co/handle/11190/5046
https://doi.org/10.24050/reia.v16i31.1243
- Palabra clave:
- Geopolímeros
Metacaolín
Polvo de Ladrillo
Recubrimientos
Materiales de Construcción
- Rights
- openAccess
- License
- Revista EIA - 2019
id |
REIA2_d090a97762519e4ec2608f105b35eca8 |
---|---|
oai_identifier_str |
oai:repository.eia.edu.co:11190/5046 |
network_acronym_str |
REIA2 |
network_name_str |
Repositorio EIA . |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Mortero geopolimérico para uso potencial como recubrimiento en concreto |
dc.title.translated.eng.fl_str_mv |
Mortero geopolimérico para uso potencial como recubrimiento en concreto |
title |
Mortero geopolimérico para uso potencial como recubrimiento en concreto |
spellingShingle |
Mortero geopolimérico para uso potencial como recubrimiento en concreto Geopolímeros Metacaolín Polvo de Ladrillo Recubrimientos Materiales de Construcción |
title_short |
Mortero geopolimérico para uso potencial como recubrimiento en concreto |
title_full |
Mortero geopolimérico para uso potencial como recubrimiento en concreto |
title_fullStr |
Mortero geopolimérico para uso potencial como recubrimiento en concreto |
title_full_unstemmed |
Mortero geopolimérico para uso potencial como recubrimiento en concreto |
title_sort |
Mortero geopolimérico para uso potencial como recubrimiento en concreto |
dc.creator.fl_str_mv |
Oviedo-Sánchez, Katherine Mejía de Gutiérrez, Ruby |
dc.contributor.author.spa.fl_str_mv |
Oviedo-Sánchez, Katherine Mejía de Gutiérrez, Ruby |
dc.subject.spa.fl_str_mv |
Geopolímeros Metacaolín Polvo de Ladrillo Recubrimientos Materiales de Construcción |
topic |
Geopolímeros Metacaolín Polvo de Ladrillo Recubrimientos Materiales de Construcción |
description |
Se sintetizaron dos morteros geopoliméricos basados en Metacaolín y residuo de ladrillo, modificados con adiciones orgánicas e inorgánicas para ser utilizados como potenciales recubrimientos sobre concretos. Se evaluaron sus propiedades en estado fresco (fluidez, tiempo de fraguado) y en estado endurecido (resistencia a la compresión y tracción, absorción, porosidad y conductividad térmica). Los resultados muestran la viabilidad de producir morteros Clase R1 y R2 en concordancia con la Norma EN 1504-3 en cuanto a las propiedades mecánicas y se evidencia que los sistemas geopoliméricos producidos presentan menor conductividad térmica comparada a los morteros basados en OPC sugiriendo comportamiento tipo aislante. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2019-01-20 00:00:00 2022-06-17T20:19:55Z |
dc.date.available.none.fl_str_mv |
2019-01-20 00:00:00 2022-06-17T20:19:55Z |
dc.date.issued.none.fl_str_mv |
2019-01-20 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.eng.fl_str_mv |
Journal article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_6501 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ARTREF |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
1794-1237 |
dc.identifier.uri.none.fl_str_mv |
https://repository.eia.edu.co/handle/11190/5046 |
dc.identifier.doi.none.fl_str_mv |
10.24050/reia.v16i31.1243 |
dc.identifier.eissn.none.fl_str_mv |
2463-0950 |
dc.identifier.url.none.fl_str_mv |
https://doi.org/10.24050/reia.v16i31.1243 |
identifier_str_mv |
1794-1237 10.24050/reia.v16i31.1243 2463-0950 |
url |
https://repository.eia.edu.co/handle/11190/5046 https://doi.org/10.24050/reia.v16i31.1243 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Duan, P.; Yan, C.; Luo, W.; Zhou, W. (2016). Effects of adding nano-TiO2 on compressive strength, drying shrinkage, carbonation and microstructure of fluidized bed fly ash based geopolymer paste. Constr. Build. Mater., 106, pp. 115-125. doi: 10.1016/j.conbuildmat.2015.12.095. Irfan Khan, M.; Azizli, K.; Sufian, S.;Man, Z. (2014). Effect of Na/Al and Si/Al Ratios on Adhesion Strength of Geopolymers as Coating Material. Appl. Mech. Mater., 625, pp. 85-89. doi: 10.4028/www.scientific.net/AMM.625.85. Irfan Khan, M.; Azizli, K.; Sufian, S.;Man, Z. (2015). Sodium silicate-free geopolymers as coating materials: Effects of Na/Al and water/solid ratios on adhesion strength. Ceram. Int., 41(2), pp. 2794-2805. doi: 10.4028/www.scientific.net/AMM.625.85. Krivenko, P.V.; Guzii, S.G.; Bodnarova, L.; Valek, J.; Hela, R.; Zach, J. (2016). Effect of thickness of the intumescent alkali aluminosilicate coating on temperature distribution in reinforced concrete. J. Build. Eng., 8, pp. 14-19. doi: 10.1016/j.jobe.2016.09.003. Lee, N.K.; Kim, E.M.; Lee, H.K. (2016). Mechanical properties and setting characteristics of geopolymer mortar using styrene-butadiene (SB) latex. Constr. Build. Mater., 113, pp. 264-272. doi: 10.1016/j.conbuildmat.2016.03.055. Liew, Y.M.; Heah, C.Y; Mohd Mustafa, A.B.; Kamarudin, H. (2016). Structure and properties of clay-based geopolymer cements: A review. Prog. Mater. Sci., 83, pp. 595-629. doi: 10.1016/j.pmatsci.2016.08.002. Mermerdaş, K.; Manguri, S.; Nassani, D.E.; Oleiwi, S.M. (2017). Effect of aggregate properties on the mechanical and absorption characteristics of geopolymer mortar.Eng. Sci. Technol. an Int. J., 20(6), pp. 1642-1652. doi: 10.1016/j.jestch.2017.11.009. Mu, S.; Liu, J.; Lin, W.; Wang, Y.; Liu, J.; Shi, L.; Jiang, Q. (2017). Property and microstructure of aluminosilicate inorganic coating for concrete: Role of water to solid ratio. Constr. Build. Mater., 148, pp. 846-856. doi: 10.1016/j.conbuildmat.2017.05.070. Pacheco-Torgal, F.; Abdollahnejad, Z.; Miraldo, S.; Baklouti, S.; Ding, Y. (2012). An overview on the potential of geopolymers for concrete infrastructure rehabilitation. Constr. Build. Mater., 36, pp. 1053-1058. doi: 10.1016/j.conbuildmat.2012.07.003. Robayo, R.A.; Mulford, A.; Munera, J.; and Mejía de Gutiérrez, R. (2016). Alternative cements based on alkali-activated red clay brick waste. Constr. Build. Mater., 128, pp. 163-169. doi: 10.1016/j.conbuildmat.2016.10.023. Tamburini, S.; Natali, M.; Garbin, E.; Panizza, M.; Favaro, M.; Valluzzi, M.R. (2017). Geopolymer matrix for fibre reinforced composites aimed at strengthening masonry structures. Constr. Build. Mater., 141, pp. 542-552. doi: 10.1016/j.conbuildmat.2017.03.017. Vejmelková, E.; Koňáková, D.; Čáchová, M.; Keppert, M.; Černý, R. (2012). Effect of hydrophobization on the properties of lime–metakaolin plasters. Constr. Build. Mater., 37, pp. 556-561. doi: 10.1016/j.conbuildmat.2012.07.097. Villaquirán-Caicedo, M.A.; M. de Gutiérrez, R.; Sulekar, S.; Davis, C.; Nino, J.C. (2015). Thermal properties of novel binary geopolymers based on metakaolin and alternative silica sources. Appl. Clay Sci., 118, pp. 276-282. doi: 10.1016/j.clay.2015.10.005. Wiyono, D.; Antoni; Hardjito, D. (2015). Improving the Durability of Pozzolan Concrete Using Alkaline Solution and Geopolymer Coating. Procedia Eng., 125, pp. 747-753. doi: 10.1016/j.proeng.2015.11.121. Xu, H.; Van Deventer, J.S J. (2000). The geopolymerisation of alumino-silicate minerals. Int. J. Miner. Process., 59(3), pp. 247-266. doi: 10.1016/S0301-7516(99)00074-5. Zhang, Z.; Wang, K.; Mo, B.; Li, X.; Cui, X.(2015). Preparation and characterization of a reflective and heat insulative coating based on geopolymers. Energy Build., 87, pp. 220-225. doi: 10.1016/j.enbuild.2014.11.028. Zhuang, X.Y.; Chen, L.; Komarneni, S.; Zhou, C.H.; Tong, D.S.; Yang, H.M.; Yu, W H.; Wang, H. (2016). Fly ash-based geopolymer: clean production, properties and applications. J. Clean. Prod., 125, pp. 253-267. doi: 10.1016/j.jclepro.2016.03.019. |
dc.relation.bitstream.none.fl_str_mv |
https://revistas.eia.edu.co/index.php/reveia/article/download/1243/1227 |
dc.relation.citationedition.spa.fl_str_mv |
Núm. 31 , Año 2019 |
dc.relation.citationendpage.none.fl_str_mv |
170 |
dc.relation.citationissue.spa.fl_str_mv |
31 |
dc.relation.citationstartpage.none.fl_str_mv |
159 |
dc.relation.citationvolume.spa.fl_str_mv |
16 |
dc.relation.ispartofjournal.spa.fl_str_mv |
Revista EIA |
dc.rights.spa.fl_str_mv |
Revista EIA - 2019 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Revista EIA - 2019 https://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Fondo Editorial EIA - Universidad EIA |
dc.source.spa.fl_str_mv |
https://revistas.eia.edu.co/index.php/reveia/article/view/1243 |
institution |
Universidad EIA . |
bitstream.url.fl_str_mv |
https://repository.eia.edu.co/bitstreams/4d3f6603-73e5-40f8-bd02-a7e129508fe5/download |
bitstream.checksum.fl_str_mv |
ae351f1bcf11707c63331952d9a8c9a6 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EIA |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814100902866321408 |
spelling |
Oviedo-Sánchez, Katherine0be14712d5f5756439c5c9acc3893f14300Mejía de Gutiérrez, Ruby9b3c54fb16571bdf9cbf0af25bca34d33002019-01-20 00:00:002022-06-17T20:19:55Z2019-01-20 00:00:002022-06-17T20:19:55Z2019-01-201794-1237https://repository.eia.edu.co/handle/11190/504610.24050/reia.v16i31.12432463-0950https://doi.org/10.24050/reia.v16i31.1243Se sintetizaron dos morteros geopoliméricos basados en Metacaolín y residuo de ladrillo, modificados con adiciones orgánicas e inorgánicas para ser utilizados como potenciales recubrimientos sobre concretos. Se evaluaron sus propiedades en estado fresco (fluidez, tiempo de fraguado) y en estado endurecido (resistencia a la compresión y tracción, absorción, porosidad y conductividad térmica). Los resultados muestran la viabilidad de producir morteros Clase R1 y R2 en concordancia con la Norma EN 1504-3 en cuanto a las propiedades mecánicas y se evidencia que los sistemas geopoliméricos producidos presentan menor conductividad térmica comparada a los morteros basados en OPC sugiriendo comportamiento tipo aislante. Se sintetizaron dos morteros geopoliméricos basados en Metacaolín y residuo de ladrillo, modificados con adiciones orgánicas e inorgánicas para ser utilizados como potenciales recubrimientos sobre concretos. Se evaluaron sus propiedades en estado fresco (fluidez, tiempo de fraguado) y en estado endurecido (resistencia a la compresión y tracción, absorción, porosidad y conductividad térmica). Los resultados muestran la viabilidad de producir morteros Clase R1 y R2 en concordancia con la Norma EN 1504-3 en cuanto a las propiedades mecánicas y se evidencia que los sistemas geopoliméricos producidos presentan menor conductividad térmica comparada a los morteros basados en OPC sugiriendo comportamiento tipo aislante. application/pdfspaFondo Editorial EIA - Universidad EIARevista EIA - 2019https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://revistas.eia.edu.co/index.php/reveia/article/view/1243GeopolímerosMetacaolínPolvo de LadrilloRecubrimientosMateriales de ConstrucciónMortero geopolimérico para uso potencial como recubrimiento en concretoMortero geopolimérico para uso potencial como recubrimiento en concretoArtículo de revistaJournal articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionTexthttp://purl.org/redcol/resource_type/ARTREFhttp://purl.org/coar/version/c_970fb48d4fbd8a85Duan, P.; Yan, C.; Luo, W.; Zhou, W. (2016). Effects of adding nano-TiO2 on compressive strength, drying shrinkage, carbonation and microstructure of fluidized bed fly ash based geopolymer paste. Constr. Build. Mater., 106, pp. 115-125. doi: 10.1016/j.conbuildmat.2015.12.095.Irfan Khan, M.; Azizli, K.; Sufian, S.;Man, Z. (2014). Effect of Na/Al and Si/Al Ratios on Adhesion Strength of Geopolymers as Coating Material. Appl. Mech. Mater., 625, pp. 85-89. doi: 10.4028/www.scientific.net/AMM.625.85.Irfan Khan, M.; Azizli, K.; Sufian, S.;Man, Z. (2015). Sodium silicate-free geopolymers as coating materials: Effects of Na/Al and water/solid ratios on adhesion strength. Ceram. Int., 41(2), pp. 2794-2805. doi: 10.4028/www.scientific.net/AMM.625.85.Krivenko, P.V.; Guzii, S.G.; Bodnarova, L.; Valek, J.; Hela, R.; Zach, J. (2016). Effect of thickness of the intumescent alkali aluminosilicate coating on temperature distribution in reinforced concrete. J. Build. Eng., 8, pp. 14-19. doi: 10.1016/j.jobe.2016.09.003.Lee, N.K.; Kim, E.M.; Lee, H.K. (2016). Mechanical properties and setting characteristics of geopolymer mortar using styrene-butadiene (SB) latex. Constr. Build. Mater., 113, pp. 264-272. doi: 10.1016/j.conbuildmat.2016.03.055.Liew, Y.M.; Heah, C.Y; Mohd Mustafa, A.B.; Kamarudin, H. (2016). Structure and properties of clay-based geopolymer cements: A review. Prog. Mater. Sci., 83, pp. 595-629. doi: 10.1016/j.pmatsci.2016.08.002.Mermerdaş, K.; Manguri, S.; Nassani, D.E.; Oleiwi, S.M. (2017). Effect of aggregate properties on the mechanical and absorption characteristics of geopolymer mortar.Eng. Sci. Technol. an Int. J., 20(6), pp. 1642-1652. doi: 10.1016/j.jestch.2017.11.009.Mu, S.; Liu, J.; Lin, W.; Wang, Y.; Liu, J.; Shi, L.; Jiang, Q. (2017). Property and microstructure of aluminosilicate inorganic coating for concrete: Role of water to solid ratio. Constr. Build. Mater., 148, pp. 846-856. doi: 10.1016/j.conbuildmat.2017.05.070.Pacheco-Torgal, F.; Abdollahnejad, Z.; Miraldo, S.; Baklouti, S.; Ding, Y. (2012). An overview on the potential of geopolymers for concrete infrastructure rehabilitation. Constr. Build. Mater., 36, pp. 1053-1058. doi: 10.1016/j.conbuildmat.2012.07.003.Robayo, R.A.; Mulford, A.; Munera, J.; and Mejía de Gutiérrez, R. (2016). Alternative cements based on alkali-activated red clay brick waste. Constr. Build. Mater., 128, pp. 163-169. doi: 10.1016/j.conbuildmat.2016.10.023.Tamburini, S.; Natali, M.; Garbin, E.; Panizza, M.; Favaro, M.; Valluzzi, M.R. (2017). Geopolymer matrix for fibre reinforced composites aimed at strengthening masonry structures. Constr. Build. Mater., 141, pp. 542-552. doi: 10.1016/j.conbuildmat.2017.03.017.Vejmelková, E.; Koňáková, D.; Čáchová, M.; Keppert, M.; Černý, R. (2012). Effect of hydrophobization on the properties of lime–metakaolin plasters. Constr. Build. Mater., 37, pp. 556-561. doi: 10.1016/j.conbuildmat.2012.07.097.Villaquirán-Caicedo, M.A.; M. de Gutiérrez, R.; Sulekar, S.; Davis, C.; Nino, J.C. (2015). Thermal properties of novel binary geopolymers based on metakaolin and alternative silica sources. Appl. Clay Sci., 118, pp. 276-282. doi: 10.1016/j.clay.2015.10.005.Wiyono, D.; Antoni; Hardjito, D. (2015). Improving the Durability of Pozzolan Concrete Using Alkaline Solution and Geopolymer Coating. Procedia Eng., 125, pp. 747-753. doi: 10.1016/j.proeng.2015.11.121.Xu, H.; Van Deventer, J.S J. (2000). The geopolymerisation of alumino-silicate minerals. Int. J. Miner. Process., 59(3), pp. 247-266. doi: 10.1016/S0301-7516(99)00074-5.Zhang, Z.; Wang, K.; Mo, B.; Li, X.; Cui, X.(2015). Preparation and characterization of a reflective and heat insulative coating based on geopolymers. Energy Build., 87, pp. 220-225. doi: 10.1016/j.enbuild.2014.11.028.Zhuang, X.Y.; Chen, L.; Komarneni, S.; Zhou, C.H.; Tong, D.S.; Yang, H.M.; Yu, W H.; Wang, H. (2016). Fly ash-based geopolymer: clean production, properties and applications. J. Clean. Prod., 125, pp. 253-267. doi: 10.1016/j.jclepro.2016.03.019.https://revistas.eia.edu.co/index.php/reveia/article/download/1243/1227Núm. 31 , Año 20191703115916Revista EIAPublicationOREORE.xmltext/xml2566https://repository.eia.edu.co/bitstreams/4d3f6603-73e5-40f8-bd02-a7e129508fe5/downloadae351f1bcf11707c63331952d9a8c9a6MD5111190/5046oai:repository.eia.edu.co:11190/50462023-07-25 17:09:38.974https://creativecommons.org/licenses/by-nc-sa/4.0/Revista EIA - 2019metadata.onlyhttps://repository.eia.edu.coRepositorio Institucional Universidad EIAbdigital@metabiblioteca.com |