Análisis de la infraestructura de transporte aplicando redes complejas: red de avenidas de la ciudad de Celaya, Guanajuato

La infraestructura de los países y las ciudades la forman sistemas de redes; en el caso del transporte terrestre, la infraestructura está formada por redes de carreteras, avenidas y calles. Las medidas de centralidad de las redes complejas permiten cuantificar el desempeño de cada intersección de av...

Full description

Autores:
Hernández Torres, José Eduardo
Hernández-González, Salvador
Jiménez-García, José Alfredo
Figueroa-Fernández, Vicente
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Universidad EIA .
Repositorio:
Repositorio EIA .
Idioma:
spa
OAI Identifier:
oai:repository.eia.edu.co:11190/5078
Acceso en línea:
https://repository.eia.edu.co/handle/11190/5078
https://doi.org/10.24050/reia.v17i33.1305
Palabra clave:
Red de transporte
redes complejas
intermediación
cercanía
Transport network
complex networks
betweenness centrality
Closeness centrality
Rights
openAccess
License
Revista EIA - 2020
id REIA2_cbadd873459aa9a1025ffe11fe2e983f
oai_identifier_str oai:repository.eia.edu.co:11190/5078
network_acronym_str REIA2
network_name_str Repositorio EIA .
repository_id_str
dc.title.spa.fl_str_mv Análisis de la infraestructura de transporte aplicando redes complejas: red de avenidas de la ciudad de Celaya, Guanajuato
dc.title.translated.eng.fl_str_mv Application of complex networks theory for transportation infrastructure analysis: Celaya’s city avenue network
title Análisis de la infraestructura de transporte aplicando redes complejas: red de avenidas de la ciudad de Celaya, Guanajuato
spellingShingle Análisis de la infraestructura de transporte aplicando redes complejas: red de avenidas de la ciudad de Celaya, Guanajuato
Red de transporte
redes complejas
intermediación
cercanía
Transport network
complex networks
betweenness centrality
Closeness centrality
title_short Análisis de la infraestructura de transporte aplicando redes complejas: red de avenidas de la ciudad de Celaya, Guanajuato
title_full Análisis de la infraestructura de transporte aplicando redes complejas: red de avenidas de la ciudad de Celaya, Guanajuato
title_fullStr Análisis de la infraestructura de transporte aplicando redes complejas: red de avenidas de la ciudad de Celaya, Guanajuato
title_full_unstemmed Análisis de la infraestructura de transporte aplicando redes complejas: red de avenidas de la ciudad de Celaya, Guanajuato
title_sort Análisis de la infraestructura de transporte aplicando redes complejas: red de avenidas de la ciudad de Celaya, Guanajuato
dc.creator.fl_str_mv Hernández Torres, José Eduardo
Hernández-González, Salvador
Jiménez-García, José Alfredo
Figueroa-Fernández, Vicente
dc.contributor.author.spa.fl_str_mv Hernández Torres, José Eduardo
Hernández-González, Salvador
Jiménez-García, José Alfredo
Figueroa-Fernández, Vicente
dc.subject.spa.fl_str_mv Red de transporte
redes complejas
intermediación
cercanía
topic Red de transporte
redes complejas
intermediación
cercanía
Transport network
complex networks
betweenness centrality
Closeness centrality
dc.subject.eng.fl_str_mv Transport network
complex networks
betweenness centrality
Closeness centrality
description La infraestructura de los países y las ciudades la forman sistemas de redes; en el caso del transporte terrestre, la infraestructura está formada por redes de carreteras, avenidas y calles. Las medidas de centralidad de las redes complejas permiten cuantificar el desempeño de cada intersección de avenidas o calles en la red. En este artículo, se analizó la red de avenidas principales de la ciudad de Celaya, Guanajuato empleando el enfoque de redes complejas. De la centralidad de intermediación, centralidad de la cercanía, diámetro y el grado promedio, se identificaron las 5 intersecciones con un papel fundamental en la red de vialidades de la ciudad. Los resultados son de interés para profesionales dedicados al diseño de sistemas logísticos y transporte.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-02-03 00:00:00
2022-06-17T20:20:18Z
dc.date.available.none.fl_str_mv 2020-02-03 00:00:00
2022-06-17T20:20:18Z
dc.date.issued.none.fl_str_mv 2020-02-03
dc.type.spa.fl_str_mv Artículo de revista
dc.type.eng.fl_str_mv Journal article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_6501
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 1794-1237
dc.identifier.uri.none.fl_str_mv https://repository.eia.edu.co/handle/11190/5078
dc.identifier.doi.none.fl_str_mv 10.24050/reia.v17i33.1305
dc.identifier.eissn.none.fl_str_mv 2463-0950
dc.identifier.url.none.fl_str_mv https://doi.org/10.24050/reia.v17i33.1305
identifier_str_mv 1794-1237
10.24050/reia.v17i33.1305
2463-0950
url https://repository.eia.edu.co/handle/11190/5078
https://doi.org/10.24050/reia.v17i33.1305
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Barabási, A. L. (2016). Network Science by Albert-László Barabási. https://doi.org/10.2172/881797
Boeing, G. (2018). A Multi-Scale Analysis of 27,000 Urban Street Networks: Every US City, Town, Urbanized Area, and Zillow Neighborhood. Environmental and Planning B: Urban Analytics and City Science, 1-18. https://doi.org/10.31235/osf.io/hmhts
Borgatti, S. P. (2005). Centrality and network flow. Social Networks, 27(1), 55-71. https://doi:10.1016/j.socnet.2004.11.008
Cardillo, A., Scellato, S., Latora, V., & Porta, S. (2006). Structural Properties of Planar Graphs of Urban Street Patterns. Physical Review E, 73(6), 1-7. https://doi.org/10.1103/physreve.73.066107
Cats, O. (2017). Topological evolution of a metropolitan rail transport network: The case of Stockholm. Journal of Transport Geography, 62(June), 172-183. https://doi.org/10.1016/j.jtrangeo.2017.06.002
Cheng, Y.-Y., Roy, L., Lim, E.-p., & Zhu, F. (2015). Measuring centralities for transportation networks beyond structures. In P. Kazienko, & N. Chawla , Applications of Social Mediaand Social Network Analysis (pp. 23-39). New York: Springer. https://doi.org/10.1007/978-3-319-19003-7_2
Crucitti, P., Latora, V., & Porta, S. (2006). Centrality measures in spatial networks of urban streets. Physical Review E, 73(3), 1-4. doi:10.1103/PhysRevE.73.036125 https://doi.org/10.1103/physreve.73.036125
de-la-Peña, J. (2012). Sistemas de Transporte en México: un análisis de centralidad en teoría de redes. Revista Internacional de Estadística y Geografía, 3(3), 72-91. https://doi.org/10.5565/rev/redes.438
Derrible, S. (2012). Network Centrality of Metro Systems. PlosOne, 2012, 1-10. https://doi:10.1371/journal.pone.0040575
Derrible, S., & Kennedy, C. (2011). Applications of Graph Theory and Network Science to Transit Network Design. Transport Reviews, 31(4), 495-519. https://doi.org/10.1080/01441647.2010.543709
Freeman, L. C. (1977). A set of measures of centrality based on betweenness. Sociometry, 40(1), 35-41. https://doi.org/10.2307/3033543
Fruchterman, T., & Reingold, E. (1991). Graph drawing by Force-directed Placement. Software—Practice and Experience, 21(11), 1129-1164. https://doi.org/10.1002/spe.4380211102
Gephi.org. (2017). Gephi: The Open Graph Viz Platform. From https://gephi.org/
Huang, L., Zhu, X., Ye, X., Guo, W., & Wang, J. (2015). Characterizing streethierarchies through networkanalysis and large-scale taxitraffic flow: a case studyof Wuhan, China. Environment and Planning B:Planning and Design, 43(2), 276-296. https://doi.org/10.1177/0265813515614456
Jian, D., Zhao, Y., & Lu, Q.-C. (2015). Vulnerability Analysis of Urban Rail Transit Networks: A Case Study of Shanghai, China. Sustainability, 7(6), 6919-6936. https://doi.org/10.3390/su7066919
Lotero, R. G. (2014). Vulnerabilidad de redes complejas y aplicaciones al transporte urbano: una revision a la literatura. Revista EIA, 11(21), 67-78. https://doi:10.14508/reia.2014.11.21.67-78
Newman, M. (2005). A measure of betweenness centrality based on random walks. Social Networks, 27(1), 39-54. https://doi.org/10.1016/j.socnet.2004.11.009
Newman, M. (2010). Networks: An Introduction. New York, USA: Oxford University Press.
Rodrigue, J.-P., Slack, B., & Comtois, C. (2017). Green Logistics, in Ann M. Brewer , Kenneth J. Button , David A. Hensher. In Handbook of Logistics and Supply-Chain Management (Vol. 2, pp. 339-350). Handbooks in Transport. https://doi.org/10.1108/9780080435930-021
Rui, J., Ban, Y., Wang, J., & Haas, J. (2013). Exploring the patterns and evolution of self-organized urban street networks through modeling. The European Physical Journal E, 86(3), 86-74. https://doi.org/10.1140/epjb/e2012-30235-7
Saberi, M., Mahmassani, H., Brockmann, D., & Hosseini, A. (2016). A complex network perspective for characterizing urbantravel demand patterns: graph theoretical analysisof large-scale origin–destination demand networks. Transportation, 44(6), 1383-1402. https://doi.org/10.1007/s11116-016-9706-6
Strano, E., Viana, M., da-Fontoura-Costa, L., Cardillo, A., Porta, S., & Latora, V. (2013). Urban street networks, a comparative analysis of ten European cities. Environment and Planning B: Planning and Design, 40, 1071-1086. https://doi.org/10.1068/b38216
Sun, J., & Tang, J. (2011). A Survey of Models and Algorithms for Social Influence Analysis. In C. Agarwal, Social Network Data Analytics (pp. 177-214). Nueva York: Springer Science. https://doi.org/10.1007/978-1-4419-8462-3_7
Wang, H., Martin-Hernandez, J., & van Mieghem, P. (2008). Betweenness centrality in a weighted network. Physical Review E, 77, 1-10. https://doi.org/10.1103/physreve.77.046105
dc.relation.bitstream.none.fl_str_mv https://revistas.eia.edu.co/index.php/reveia/article/download/1305/1272
dc.relation.citationedition.spa.fl_str_mv Núm. 33 , Año 2020
dc.relation.citationendpage.none.fl_str_mv 13
dc.relation.citationissue.spa.fl_str_mv 33
dc.relation.citationstartpage.none.fl_str_mv 33004 pp 1
dc.relation.citationvolume.spa.fl_str_mv 17
dc.relation.ispartofjournal.spa.fl_str_mv Revista EIA
dc.rights.spa.fl_str_mv Revista EIA - 2020
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Revista EIA - 2020
https://creativecommons.org/licenses/by-nc-nd/4.0
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Fondo Editorial EIA - Universidad EIA
dc.source.spa.fl_str_mv https://revistas.eia.edu.co/index.php/reveia/article/view/1305
institution Universidad EIA .
bitstream.url.fl_str_mv https://repository.eia.edu.co/bitstreams/53daf9c9-3438-44c2-9b04-820a1af9beb8/download
bitstream.checksum.fl_str_mv a555262d1005cdc8bb0633b30368ed6f
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EIA
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814100926035656704
spelling Hernández Torres, José Eduardoa0d3d271a2f5915d1fee02cbcc65afcc300Hernández-González, Salvadoraaa5e7c02f7bb1389e10fc617be37994300Jiménez-García, José Alfredo72ae1493e26737166b233db04e9f6a3c300Figueroa-Fernández, Vicente338a5fff729253793b2a67c5fc78a81a3002020-02-03 00:00:002022-06-17T20:20:18Z2020-02-03 00:00:002022-06-17T20:20:18Z2020-02-031794-1237https://repository.eia.edu.co/handle/11190/507810.24050/reia.v17i33.13052463-0950https://doi.org/10.24050/reia.v17i33.1305La infraestructura de los países y las ciudades la forman sistemas de redes; en el caso del transporte terrestre, la infraestructura está formada por redes de carreteras, avenidas y calles. Las medidas de centralidad de las redes complejas permiten cuantificar el desempeño de cada intersección de avenidas o calles en la red. En este artículo, se analizó la red de avenidas principales de la ciudad de Celaya, Guanajuato empleando el enfoque de redes complejas. De la centralidad de intermediación, centralidad de la cercanía, diámetro y el grado promedio, se identificaron las 5 intersecciones con un papel fundamental en la red de vialidades de la ciudad. Los resultados son de interés para profesionales dedicados al diseño de sistemas logísticos y transporte.The streets and avenues networks of a city form the infrastructure of land transport systems. The measures of centrality of complex networks allow to quantify the performance of each intersection of avenues or streets in the network. In this article, Celaya’s city network avenues, was analyzed using the complex networks approach. From betweenness centrality, closeness centrality, diameter and average degree; we identify 5 intersections which play a fundamental role in the city's avenue network as well as its location within the city. The results are of interest for professionals dedicated to the design of logistics systems and transportation.application/pdfspaFondo Editorial EIA - Universidad EIARevista EIA - 2020https://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.http://purl.org/coar/access_right/c_abf2https://revistas.eia.edu.co/index.php/reveia/article/view/1305Red de transporteredes complejasintermediacióncercaníaTransport networkcomplex networksbetweenness centralityCloseness centralityAnálisis de la infraestructura de transporte aplicando redes complejas: red de avenidas de la ciudad de Celaya, GuanajuatoApplication of complex networks theory for transportation infrastructure analysis: Celaya’s city avenue networkArtículo de revistaJournal articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionTexthttp://purl.org/redcol/resource_type/ARTREFhttp://purl.org/coar/version/c_970fb48d4fbd8a85Barabási, A. L. (2016). Network Science by Albert-László Barabási. https://doi.org/10.2172/881797Boeing, G. (2018). A Multi-Scale Analysis of 27,000 Urban Street Networks: Every US City, Town, Urbanized Area, and Zillow Neighborhood. Environmental and Planning B: Urban Analytics and City Science, 1-18. https://doi.org/10.31235/osf.io/hmhtsBorgatti, S. P. (2005). Centrality and network flow. Social Networks, 27(1), 55-71. https://doi:10.1016/j.socnet.2004.11.008Cardillo, A., Scellato, S., Latora, V., & Porta, S. (2006). Structural Properties of Planar Graphs of Urban Street Patterns. Physical Review E, 73(6), 1-7. https://doi.org/10.1103/physreve.73.066107Cats, O. (2017). Topological evolution of a metropolitan rail transport network: The case of Stockholm. Journal of Transport Geography, 62(June), 172-183. https://doi.org/10.1016/j.jtrangeo.2017.06.002Cheng, Y.-Y., Roy, L., Lim, E.-p., & Zhu, F. (2015). Measuring centralities for transportation networks beyond structures. In P. Kazienko, & N. Chawla , Applications of Social Mediaand Social Network Analysis (pp. 23-39). New York: Springer. https://doi.org/10.1007/978-3-319-19003-7_2Crucitti, P., Latora, V., & Porta, S. (2006). Centrality measures in spatial networks of urban streets. Physical Review E, 73(3), 1-4. doi:10.1103/PhysRevE.73.036125 https://doi.org/10.1103/physreve.73.036125de-la-Peña, J. (2012). Sistemas de Transporte en México: un análisis de centralidad en teoría de redes. Revista Internacional de Estadística y Geografía, 3(3), 72-91. https://doi.org/10.5565/rev/redes.438Derrible, S. (2012). Network Centrality of Metro Systems. PlosOne, 2012, 1-10. https://doi:10.1371/journal.pone.0040575Derrible, S., & Kennedy, C. (2011). Applications of Graph Theory and Network Science to Transit Network Design. Transport Reviews, 31(4), 495-519. https://doi.org/10.1080/01441647.2010.543709Freeman, L. C. (1977). A set of measures of centrality based on betweenness. Sociometry, 40(1), 35-41. https://doi.org/10.2307/3033543Fruchterman, T., & Reingold, E. (1991). Graph drawing by Force-directed Placement. Software—Practice and Experience, 21(11), 1129-1164. https://doi.org/10.1002/spe.4380211102Gephi.org. (2017). Gephi: The Open Graph Viz Platform. From https://gephi.org/Huang, L., Zhu, X., Ye, X., Guo, W., & Wang, J. (2015). Characterizing streethierarchies through networkanalysis and large-scale taxitraffic flow: a case studyof Wuhan, China. Environment and Planning B:Planning and Design, 43(2), 276-296. https://doi.org/10.1177/0265813515614456Jian, D., Zhao, Y., & Lu, Q.-C. (2015). Vulnerability Analysis of Urban Rail Transit Networks: A Case Study of Shanghai, China. Sustainability, 7(6), 6919-6936. https://doi.org/10.3390/su7066919Lotero, R. G. (2014). Vulnerabilidad de redes complejas y aplicaciones al transporte urbano: una revision a la literatura. Revista EIA, 11(21), 67-78. https://doi:10.14508/reia.2014.11.21.67-78Newman, M. (2005). A measure of betweenness centrality based on random walks. Social Networks, 27(1), 39-54. https://doi.org/10.1016/j.socnet.2004.11.009Newman, M. (2010). Networks: An Introduction. New York, USA: Oxford University Press.Rodrigue, J.-P., Slack, B., & Comtois, C. (2017). Green Logistics, in Ann M. Brewer , Kenneth J. Button , David A. Hensher. In Handbook of Logistics and Supply-Chain Management (Vol. 2, pp. 339-350). Handbooks in Transport. https://doi.org/10.1108/9780080435930-021Rui, J., Ban, Y., Wang, J., & Haas, J. (2013). Exploring the patterns and evolution of self-organized urban street networks through modeling. The European Physical Journal E, 86(3), 86-74. https://doi.org/10.1140/epjb/e2012-30235-7Saberi, M., Mahmassani, H., Brockmann, D., & Hosseini, A. (2016). A complex network perspective for characterizing urbantravel demand patterns: graph theoretical analysisof large-scale origin–destination demand networks. Transportation, 44(6), 1383-1402. https://doi.org/10.1007/s11116-016-9706-6Strano, E., Viana, M., da-Fontoura-Costa, L., Cardillo, A., Porta, S., & Latora, V. (2013). Urban street networks, a comparative analysis of ten European cities. Environment and Planning B: Planning and Design, 40, 1071-1086. https://doi.org/10.1068/b38216Sun, J., & Tang, J. (2011). A Survey of Models and Algorithms for Social Influence Analysis. In C. Agarwal, Social Network Data Analytics (pp. 177-214). Nueva York: Springer Science. https://doi.org/10.1007/978-1-4419-8462-3_7Wang, H., Martin-Hernandez, J., & van Mieghem, P. (2008). Betweenness centrality in a weighted network. Physical Review E, 77, 1-10. https://doi.org/10.1103/physreve.77.046105https://revistas.eia.edu.co/index.php/reveia/article/download/1305/1272Núm. 33 , Año 2020133333004 pp 117Revista EIAPublicationOREORE.xmltext/xml2802https://repository.eia.edu.co/bitstreams/53daf9c9-3438-44c2-9b04-820a1af9beb8/downloada555262d1005cdc8bb0633b30368ed6fMD5111190/5078oai:repository.eia.edu.co:11190/50782023-07-25 17:25:39.315https://creativecommons.org/licenses/by-nc-nd/4.0Revista EIA - 2020metadata.onlyhttps://repository.eia.edu.coRepositorio Institucional Universidad EIAbdigital@metabiblioteca.com