Eliminación de fluoxetina presente en aguas contaminadas usando procesos fotoquímicos de oxidación avanzada y luz solar
Se estudió comparativamente la degradación de la fluoxetina por medio de tres procesos fotoquímicos de oxidación avanzada: foto Fenton (FFS), foto electro Fenton (FEFS) y fotocatálisis con TiO2 (FCS), mediados por radiación solar. Los experimentos se desarrollaron con soluciones de 100 mL en un vaso...
- Autores:
-
Manrique Losada, Lis
Quimbaya Ñañez, Carolina
Torres Palma, Ricardo Antonio
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Universidad EIA .
- Repositorio:
- Repositorio EIA .
- Idioma:
- spa
- OAI Identifier:
- oai:repository.eia.edu.co:11190/5004
- Acceso en línea:
- https://repository.eia.edu.co/handle/11190/5004
https://doi.org/10.24050/reia.v16i32.1081
- Palabra clave:
- Fluoxetina
Foto Fenton solar
Foto electro Fenton
Fotocatálisis con TiO2
Radiación solar.
Fisicoquímica
Diseño de reactores
Química Ambiental
- Rights
- openAccess
- License
- Revista EIA - 2019
id |
REIA2_b97f2a24e47afdec460d140eb3fd0b61 |
---|---|
oai_identifier_str |
oai:repository.eia.edu.co:11190/5004 |
network_acronym_str |
REIA2 |
network_name_str |
Repositorio EIA . |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Eliminación de fluoxetina presente en aguas contaminadas usando procesos fotoquímicos de oxidación avanzada y luz solar |
dc.title.translated.eng.fl_str_mv |
Eliminación de fluoxetina presente en aguas contaminadas usando procesos fotoquímicos de oxidación avanzada y luz solar |
title |
Eliminación de fluoxetina presente en aguas contaminadas usando procesos fotoquímicos de oxidación avanzada y luz solar |
spellingShingle |
Eliminación de fluoxetina presente en aguas contaminadas usando procesos fotoquímicos de oxidación avanzada y luz solar Fluoxetina Foto Fenton solar Foto electro Fenton Fotocatálisis con TiO2 Radiación solar. Fisicoquímica Diseño de reactores Química Ambiental |
title_short |
Eliminación de fluoxetina presente en aguas contaminadas usando procesos fotoquímicos de oxidación avanzada y luz solar |
title_full |
Eliminación de fluoxetina presente en aguas contaminadas usando procesos fotoquímicos de oxidación avanzada y luz solar |
title_fullStr |
Eliminación de fluoxetina presente en aguas contaminadas usando procesos fotoquímicos de oxidación avanzada y luz solar |
title_full_unstemmed |
Eliminación de fluoxetina presente en aguas contaminadas usando procesos fotoquímicos de oxidación avanzada y luz solar |
title_sort |
Eliminación de fluoxetina presente en aguas contaminadas usando procesos fotoquímicos de oxidación avanzada y luz solar |
dc.creator.fl_str_mv |
Manrique Losada, Lis Quimbaya Ñañez, Carolina Torres Palma, Ricardo Antonio |
dc.contributor.author.spa.fl_str_mv |
Manrique Losada, Lis Quimbaya Ñañez, Carolina Torres Palma, Ricardo Antonio |
dc.subject.spa.fl_str_mv |
Fluoxetina Foto Fenton solar Foto electro Fenton Fotocatálisis con TiO2 Radiación solar. Fisicoquímica Diseño de reactores Química Ambiental |
topic |
Fluoxetina Foto Fenton solar Foto electro Fenton Fotocatálisis con TiO2 Radiación solar. Fisicoquímica Diseño de reactores Química Ambiental |
description |
Se estudió comparativamente la degradación de la fluoxetina por medio de tres procesos fotoquímicos de oxidación avanzada: foto Fenton (FFS), foto electro Fenton (FEFS) y fotocatálisis con TiO2 (FCS), mediados por radiación solar. Los experimentos se desarrollaron con soluciones de 100 mL en un vaso de reacción y para el caso de FEFS, se equipó el reactor con un ánodo de IrO2/RuO2 y un cátodo de grafito de difusión de aire para producción continua de peróxido. En todos los casos se hizo seguimiento de la degradación, la mineralización de la fluoxetina y la toxicidad. El proceso FFS presentó la mayor velocidad de degradación y mineralización, así como las mayores eficiencias en la degradación y mineralización. El pH en el proceso FFS definió el alcance de la mineralización, evidenciando que a pH ácido se logra mayor mineralización pues se evita la formación de complejos e hidróxidos típicos de un pH mayor. El proceso FCS presenta alta eficiencia, pero cinéticas lentas. La toxicidad ante levadura de cerveza disminuye a medida que se generan subproductos de degradación en todos los procesos evaluados. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2019-06-06 00:00:00 2022-06-17T20:19:29Z |
dc.date.available.none.fl_str_mv |
2019-06-06 00:00:00 2022-06-17T20:19:29Z |
dc.date.issued.none.fl_str_mv |
2019-06-06 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.eng.fl_str_mv |
Journal article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_6501 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ARTREF |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
1794-1237 |
dc.identifier.uri.none.fl_str_mv |
https://repository.eia.edu.co/handle/11190/5004 |
dc.identifier.doi.none.fl_str_mv |
10.24050/reia.v16i32.1081 |
dc.identifier.eissn.none.fl_str_mv |
2463-0950 |
dc.identifier.url.none.fl_str_mv |
https://doi.org/10.24050/reia.v16i32.1081 |
identifier_str_mv |
1794-1237 10.24050/reia.v16i32.1081 2463-0950 |
url |
https://repository.eia.edu.co/handle/11190/5004 https://doi.org/10.24050/reia.v16i32.1081 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Affam, A. C., Chaudhuri, M., Kutty, S. R. M., & Muda, K. (2014). UV Fenton and sequencing batch reactor treatment of chlorpyrifos, cypermethrin and chlorothalonil pesticide wastewater. International Biodeterioration & Biodegradation, 93, 195–201. https://doi.org/10.1016/j.ibiod.2014.06.002 Bandala, V. E. E. R., Bautista, P., Mohedano, A. F., Casas, J. A., Zazo, J. A., Rodriguez, J. J., … Wang, Y. (2010). Degradation of fifteen emerging contaminants at microg L(-1) initial concentrations by mild solar photo-Fenton in MWTP effluents. Water Research, 44(2), 545–54. https://doi.org/10.1016/j.watres.2009.09.059 Castro, A. De, Concheiro, M., Quintela, Ó., & Cruz, A. (2005). Detección de fluoxetina y su metabolito activo norfluoxetina mediante LC-MS en plasma y saliva . Revista de Toxicología, 22(Su1), 142–149. De la Cruz, N., Giménez, J., Esplugas, S., Grandjean, D., de Alencastro, L. F., & Pulgarín, C. (2012). Degradation of 32 emergent contaminants by UV and neutral photo-fenton in domestic wastewater effluent previously treated by activated sludge. Water Research, 46(6), 1947–57. https://doi.org/10.1016/j.watres.2012.01.014 Feng, H. E., & Le-cheng, L. E. I. (2004). Degradation kinetics and mechanisms of phenol in photo-Fenton process *, 5(2), 198–205. Flores, N., Sirés, I., Garrido, J. A., Centellas, F., Rodríguez, R. M., Cabot, P. L., & Brillas, E. (2015). Degradation of trans-ferulic acid in acidic aqueous medium by anodic oxidation, electro-Fenton and photoelectro-Fenton. Journal of Hazardous Materials, 1–10. https://doi.org/10.1016/j.jhazmat.2015.11.040 Giraldo-Aguirre, A. L., Erazo-Erazo, E. D., Flórez-Acosta, O. A., Serna-Galvis, E. A., & Torres-Palma, R. A. (2015). TiO2 photocatalysis applied to the degradation and antimicrobial activity removal of oxacillin: Evaluation of matrix components, experimental parameters, degradation pathways and identification of organics by-products. Journal of Photochemistry and Photobiology A: Chemistry, 311, 95–103. https://doi.org/10.1016/j.jphotochem.2015.06.021 Giraldo, A. L., Peñuela, G. a., Torres-Palma, R. a., Pino, N. J., Palominos, R. a., & Mansilla, H. D. (2010). Degradation of the antibiotic oxolinic acid by photocatalysis with TiO2 in suspension. Water Research, 44(18), 5158–5167. https://doi.org/10.1016/j.watres.2010.05.011 Guzmán, J., Mosteo, R., Sarasa, J., Alba, J. A., & Ovelleiro, J. L. (2016). Evaluation of solar photo-Fenton and ozone based processes as citrus wastewater pre-treatments. Separation and Purification Technology, 164, 155–162. https://doi.org/10.1016/j.seppur.2016.03.025 Honda, V., Silva, O., Paula, A., Silva, A. C., Teixeira, C., Borrely, S. I., … Costa, S. (2016). Degradation and acute toxicity removal of the antidepressant Fluoxetine ( Prozac ® ) in aqueous systems by electron beam irradiation. Environmental Science and Pollution Research, 11927–11936. https://doi.org/10.1007/s11356-016-6410-1 Klamerth, N., Malato, S., Agüera, A., & Fernández-Alba, A. (2013). Photo-Fenton and modified photo-Fenton at neutral pH for the treatment of emerging contaminants in wastewater treatment plant effluents: A comparison. Water Research, 47(2), 833–840. https://doi.org/10.1016/j.watres.2012.11.008 Klamerth, N., Rizzo, L., Malato, S., Maldonado, M. I., Agüera, A., & Fernández-Alba, A. R. (2010). Degradation of fifteen emerging contaminants at µg L-1 initial concentrations by mild solar photo-Fenton in MWTP effluents. Water Research, 44(2), 545–554. https://doi.org/10.1016/j.watres.2009.09.059 Li, W., Nanaboina, V., Zhou, Q., & Korshin, G. V. (2011). Effects of Fenton treatment on the properties of effluent organic matter and their relationships with the degradation of pharmaceuticals and personal care products. Water Research, 46(2), 403–412. https://doi.org/10.1016/j.watres.2011.11.002 Luna, R. A., Zermeño, B. B., Moctezuma, E., Contreras, R. E., Leyva, E., & López B, M. A. (2013). FOTODEGRADACIÓN DE OMEPRAZOL EN SOLUCIÓN ACUOSA UTILIZANDO TiO2 COMO CATALIZADOR. Revista Mexicana de Ingeniería Química, 12(1), 85–95. Méndez-Arriaga, F., Otsu, T., Oyama, T., Gimenez, J., Esplugas, S., Hidaka, H., & Serpone, N. (2011). Photooxidation of the antidepressant drug Fluoxetine ( Prozac ® ) in aqueous media by hybrid catalytic / ozonation processes. Water Research, 45, 2782–2794. https://doi.org/10.1016/j.watres.2011.02.030 Perini, J. A. D. L., Costa, B., Tonetti, A. L., & Nogueira, R. F. P. (2016). Photo-Fenton degradation of the pharmaceuticals ciprofloxacin and fluoxetine after anaerobic pre-treatment of hospital effluent. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-016-7416-4 Pimentel, M., Oturan, N., Dezotti, M., & Oturan, M. A. (2008). Phenol degradation by advanced electrochemical oxidation process electro-Fenton using a carbon felt cathode, 83, 140–149. https://doi.org/10.1016/j.apcatb.2008.02.011 Salazar, C., Ridruejo, C., Brillas, E., Yáñez, J., Mansilla, H. D., & Sirés, I. (2016). Abatement of the fluorinated antidepressant fluoxetine ( Prozac ) and its reaction by electrochemical advanced methods. “Applied Catalysis B, Environmental.” https://doi.org/10.1016/j.apcatb.2016.10.026 Serna-galvis, E. A., Silva-agredo, J., Giraldo, A. L., Flórez-acosta, O. A., & Torres-palma, R. A. (2016). Comparative study of the effect of pharmaceutical additives on the elimination of antibiotic activity during the treatment of oxacillin in water by the photo-Fenton , TiO 2 -photocatalysis and electrochemical processes. Science of the Total Environment, The, 541, 1431–1438. https://doi.org/10.1016/j.scitotenv.2015.10.029 Su, C., Bellotindos, L. M., Chang, A., & Lu, M. (2013). Degradation of acetaminophen in an aerated Fenton reactor. Journal of the Taiwan Institute of Chemical Engineers, 44(2), 309–315. https://doi.org/10.1016/j.jtice.2012.11.009 Su, C. C., Chang, A. T., Bellotindos, L. M., & Lu, M. C. (2012). Degradation of acetaminophen by Fenton and electro-Fenton processes in aerator reactor. Separation and Purification Technology. https://doi.org/10.1016/j.seppur.2012.07.004 Villegas-Guzman, P., Silva-Agredo, J., González-Gómez, D., Giraldo-Aguirre, A. L., Flórez-Acosta, O., & Torres-Palma, R. a. (2015). Evaluation of water matrix effects, experimental parameters, and the degradation pathway during the TiO2 photocatalytical treatment of the antibiotic dicloxacillin. Journal of Environmental Science and Health. Part A, Toxic/hazardous Substances & Environmental Engineering, 50(1), 40–8. https://doi.org/10.1080/10934529.2015.964606 Zayat, M., Garcia-parejo, P., & Levy, D. (2007). Preventing UV-light damage of light sensitive materials using a highly protective UV-absorbing coating, 1270–1281. https://doi.org/10.1039/b608888k Zhao, Y., Yu, G., Chen, S., Zhang, S., Wang, B., Huang, J., & Wang, Y. (2017). Ozonation of antidepressant fluoxetine and its metabolite product norfluoxitine : Kinetics , intermediates and toxicity. Chemical Engineering Journal. https://doi.org/10.1016/j.cej.2017.02.032 |
dc.relation.bitstream.none.fl_str_mv |
https://revistas.eia.edu.co/index.php/reveia/article/download/1081/1244 |
dc.relation.citationedition.spa.fl_str_mv |
Núm. 32 , Año 2019 |
dc.relation.citationendpage.none.fl_str_mv |
42 |
dc.relation.citationissue.spa.fl_str_mv |
32 |
dc.relation.citationstartpage.none.fl_str_mv |
27 |
dc.relation.citationvolume.spa.fl_str_mv |
16 |
dc.relation.ispartofjournal.spa.fl_str_mv |
Revista EIA |
dc.rights.spa.fl_str_mv |
Revista EIA - 2019 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Revista EIA - 2019 https://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Fondo Editorial EIA - Universidad EIA |
dc.source.spa.fl_str_mv |
https://revistas.eia.edu.co/index.php/reveia/article/view/1081 |
institution |
Universidad EIA . |
bitstream.url.fl_str_mv |
https://repository.eia.edu.co/bitstreams/8998c4c2-8a62-47ea-b262-ab23d25809bd/download |
bitstream.checksum.fl_str_mv |
4d1f174938841e2dd616f35e3c765ae0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EIA |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814100888073011200 |
spelling |
Manrique Losada, Lis7c7142cafa145aeec6417265c1e845d3300Quimbaya Ñañez, Carolinab0e06dd208fe41ecb8c0cc2ea3612b59300Torres Palma, Ricardo Antonioeae2230df3b2a080091e3554126869fb3002019-06-06 00:00:002022-06-17T20:19:29Z2019-06-06 00:00:002022-06-17T20:19:29Z2019-06-061794-1237https://repository.eia.edu.co/handle/11190/500410.24050/reia.v16i32.10812463-0950https://doi.org/10.24050/reia.v16i32.1081Se estudió comparativamente la degradación de la fluoxetina por medio de tres procesos fotoquímicos de oxidación avanzada: foto Fenton (FFS), foto electro Fenton (FEFS) y fotocatálisis con TiO2 (FCS), mediados por radiación solar. Los experimentos se desarrollaron con soluciones de 100 mL en un vaso de reacción y para el caso de FEFS, se equipó el reactor con un ánodo de IrO2/RuO2 y un cátodo de grafito de difusión de aire para producción continua de peróxido. En todos los casos se hizo seguimiento de la degradación, la mineralización de la fluoxetina y la toxicidad. El proceso FFS presentó la mayor velocidad de degradación y mineralización, así como las mayores eficiencias en la degradación y mineralización. El pH en el proceso FFS definió el alcance de la mineralización, evidenciando que a pH ácido se logra mayor mineralización pues se evita la formación de complejos e hidróxidos típicos de un pH mayor. El proceso FCS presenta alta eficiencia, pero cinéticas lentas. La toxicidad ante levadura de cerveza disminuye a medida que se generan subproductos de degradación en todos los procesos evaluados. Se estudió comparativamente la degradación de la fluoxetina por medio de tres procesos fotoquímicos de oxidación avanzada: foto Fenton (FFS), foto electro Fenton (FEFS) y fotocatálisis con TiO2 (FCS), mediados por radiación solar. Los experimentos se desarrollaron con soluciones de 100 mL en un vaso de reacción y para el caso de FEFS, se equipó el reactor con un ánodo de IrO2/RuO2 y un cátodo de grafito de difusión de aire para producción continua de peróxido. En todos los casos se hizo seguimiento de la degradación, la mineralización de la fluoxetina y la toxicidad. El proceso FFS presentó la mayor velocidad de degradación y mineralización, así como las mayores eficiencias en la degradación y mineralización. El pH en el proceso FFS definió el alcance de la mineralización, evidenciando que a pH ácido se logra mayor mineralización pues se evita la formación de complejos e hidróxidos típicos de un pH mayor. El proceso FCS presenta alta eficiencia, pero cinéticas lentas. La toxicidad ante levadura de cerveza disminuye a medida que se generan subproductos de degradación en todos los procesos evaluados. application/pdfspaFondo Editorial EIA - Universidad EIARevista EIA - 2019https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://revistas.eia.edu.co/index.php/reveia/article/view/1081FluoxetinaFoto Fenton solarFoto electro FentonFotocatálisis con TiO2Radiación solar.FisicoquímicaDiseño de reactoresQuímica AmbientalEliminación de fluoxetina presente en aguas contaminadas usando procesos fotoquímicos de oxidación avanzada y luz solarEliminación de fluoxetina presente en aguas contaminadas usando procesos fotoquímicos de oxidación avanzada y luz solarArtículo de revistaJournal articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionTexthttp://purl.org/redcol/resource_type/ARTREFhttp://purl.org/coar/version/c_970fb48d4fbd8a85Affam, A. C., Chaudhuri, M., Kutty, S. R. M., & Muda, K. (2014). UV Fenton and sequencing batch reactor treatment of chlorpyrifos, cypermethrin and chlorothalonil pesticide wastewater. International Biodeterioration & Biodegradation, 93, 195–201. https://doi.org/10.1016/j.ibiod.2014.06.002Bandala, V. E. E. R., Bautista, P., Mohedano, A. F., Casas, J. A., Zazo, J. A., Rodriguez, J. J., … Wang, Y. (2010). Degradation of fifteen emerging contaminants at microg L(-1) initial concentrations by mild solar photo-Fenton in MWTP effluents. Water Research, 44(2), 545–54. https://doi.org/10.1016/j.watres.2009.09.059Castro, A. De, Concheiro, M., Quintela, Ó., & Cruz, A. (2005). Detección de fluoxetina y su metabolito activo norfluoxetina mediante LC-MS en plasma y saliva . Revista de Toxicología, 22(Su1), 142–149.De la Cruz, N., Giménez, J., Esplugas, S., Grandjean, D., de Alencastro, L. F., & Pulgarín, C. (2012). Degradation of 32 emergent contaminants by UV and neutral photo-fenton in domestic wastewater effluent previously treated by activated sludge. Water Research, 46(6), 1947–57. https://doi.org/10.1016/j.watres.2012.01.014Feng, H. E., & Le-cheng, L. E. I. (2004). Degradation kinetics and mechanisms of phenol in photo-Fenton process *, 5(2), 198–205.Flores, N., Sirés, I., Garrido, J. A., Centellas, F., Rodríguez, R. M., Cabot, P. L., & Brillas, E. (2015). Degradation of trans-ferulic acid in acidic aqueous medium by anodic oxidation, electro-Fenton and photoelectro-Fenton. Journal of Hazardous Materials, 1–10. https://doi.org/10.1016/j.jhazmat.2015.11.040Giraldo-Aguirre, A. L., Erazo-Erazo, E. D., Flórez-Acosta, O. A., Serna-Galvis, E. A., & Torres-Palma, R. A. (2015). TiO2 photocatalysis applied to the degradation and antimicrobial activity removal of oxacillin: Evaluation of matrix components, experimental parameters, degradation pathways and identification of organics by-products. Journal of Photochemistry and Photobiology A: Chemistry, 311, 95–103. https://doi.org/10.1016/j.jphotochem.2015.06.021Giraldo, A. L., Peñuela, G. a., Torres-Palma, R. a., Pino, N. J., Palominos, R. a., & Mansilla, H. D. (2010). Degradation of the antibiotic oxolinic acid by photocatalysis with TiO2 in suspension. Water Research, 44(18), 5158–5167. https://doi.org/10.1016/j.watres.2010.05.011Guzmán, J., Mosteo, R., Sarasa, J., Alba, J. A., & Ovelleiro, J. L. (2016). Evaluation of solar photo-Fenton and ozone based processes as citrus wastewater pre-treatments. Separation and Purification Technology, 164, 155–162. https://doi.org/10.1016/j.seppur.2016.03.025 Honda, V., Silva, O., Paula, A., Silva, A. C., Teixeira, C., Borrely, S. I., … Costa, S. (2016). Degradation and acute toxicity removal of the antidepressant Fluoxetine ( Prozac ® ) in aqueous systems by electron beam irradiation. Environmental Science and Pollution Research, 11927–11936. https://doi.org/10.1007/s11356-016-6410-1Klamerth, N., Malato, S., Agüera, A., & Fernández-Alba, A. (2013). Photo-Fenton and modified photo-Fenton at neutral pH for the treatment of emerging contaminants in wastewater treatment plant effluents: A comparison. Water Research, 47(2), 833–840. https://doi.org/10.1016/j.watres.2012.11.008Klamerth, N., Rizzo, L., Malato, S., Maldonado, M. I., Agüera, A., & Fernández-Alba, A. R. (2010). Degradation of fifteen emerging contaminants at µg L-1 initial concentrations by mild solar photo-Fenton in MWTP effluents. Water Research, 44(2), 545–554. https://doi.org/10.1016/j.watres.2009.09.059Li, W., Nanaboina, V., Zhou, Q., & Korshin, G. V. (2011). Effects of Fenton treatment on the properties of effluent organic matter and their relationships with the degradation of pharmaceuticals and personal care products. Water Research, 46(2), 403–412. https://doi.org/10.1016/j.watres.2011.11.002Luna, R. A., Zermeño, B. B., Moctezuma, E., Contreras, R. E., Leyva, E., & López B, M. A. (2013). FOTODEGRADACIÓN DE OMEPRAZOL EN SOLUCIÓN ACUOSA UTILIZANDO TiO2 COMO CATALIZADOR. Revista Mexicana de Ingeniería Química, 12(1), 85–95.Méndez-Arriaga, F., Otsu, T., Oyama, T., Gimenez, J., Esplugas, S., Hidaka, H., & Serpone, N. (2011). Photooxidation of the antidepressant drug Fluoxetine ( Prozac ® ) in aqueous media by hybrid catalytic / ozonation processes. Water Research, 45, 2782–2794. https://doi.org/10.1016/j.watres.2011.02.030Perini, J. A. D. L., Costa, B., Tonetti, A. L., & Nogueira, R. F. P. (2016). Photo-Fenton degradation of the pharmaceuticals ciprofloxacin and fluoxetine after anaerobic pre-treatment of hospital effluent. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-016-7416-4Pimentel, M., Oturan, N., Dezotti, M., & Oturan, M. A. (2008). Phenol degradation by advanced electrochemical oxidation process electro-Fenton using a carbon felt cathode, 83, 140–149. https://doi.org/10.1016/j.apcatb.2008.02.011Salazar, C., Ridruejo, C., Brillas, E., Yáñez, J., Mansilla, H. D., & Sirés, I. (2016). Abatement of the fluorinated antidepressant fluoxetine ( Prozac ) and its reaction by electrochemical advanced methods. “Applied Catalysis B, Environmental.” https://doi.org/10.1016/j.apcatb.2016.10.026Serna-galvis, E. A., Silva-agredo, J., Giraldo, A. L., Flórez-acosta, O. A., & Torres-palma, R. A. (2016). Comparative study of the effect of pharmaceutical additives on the elimination of antibiotic activity during the treatment of oxacillin in water by the photo-Fenton , TiO 2 -photocatalysis and electrochemical processes. Science of the Total Environment, The, 541, 1431–1438. https://doi.org/10.1016/j.scitotenv.2015.10.029Su, C., Bellotindos, L. M., Chang, A., & Lu, M. (2013). Degradation of acetaminophen in an aerated Fenton reactor. Journal of the Taiwan Institute of Chemical Engineers, 44(2), 309–315. https://doi.org/10.1016/j.jtice.2012.11.009Su, C. C., Chang, A. T., Bellotindos, L. M., & Lu, M. C. (2012). Degradation of acetaminophen by Fenton and electro-Fenton processes in aerator reactor. Separation and Purification Technology. https://doi.org/10.1016/j.seppur.2012.07.004Villegas-Guzman, P., Silva-Agredo, J., González-Gómez, D., Giraldo-Aguirre, A. L., Flórez-Acosta, O., & Torres-Palma, R. a. (2015). Evaluation of water matrix effects, experimental parameters, and the degradation pathway during the TiO2 photocatalytical treatment of the antibiotic dicloxacillin. Journal of Environmental Science and Health. Part A, Toxic/hazardous Substances & Environmental Engineering, 50(1), 40–8. https://doi.org/10.1080/10934529.2015.964606Zayat, M., Garcia-parejo, P., & Levy, D. (2007). Preventing UV-light damage of light sensitive materials using a highly protective UV-absorbing coating, 1270–1281. https://doi.org/10.1039/b608888kZhao, Y., Yu, G., Chen, S., Zhang, S., Wang, B., Huang, J., & Wang, Y. (2017). Ozonation of antidepressant fluoxetine and its metabolite product norfluoxitine : Kinetics , intermediates and toxicity. Chemical Engineering Journal. https://doi.org/10.1016/j.cej.2017.02.032https://revistas.eia.edu.co/index.php/reveia/article/download/1081/1244Núm. 32 , Año 201942322716Revista EIAPublicationOREORE.xmltext/xml2721https://repository.eia.edu.co/bitstreams/8998c4c2-8a62-47ea-b262-ab23d25809bd/download4d1f174938841e2dd616f35e3c765ae0MD5111190/5004oai:repository.eia.edu.co:11190/50042023-07-25 17:00:03.383https://creativecommons.org/licenses/by-nc-sa/4.0/Revista EIA - 2019metadata.onlyhttps://repository.eia.edu.coRepositorio Institucional Universidad EIAbdigital@metabiblioteca.com |