OPTIMIZACIÓN DE PARÁMETROS Y DE VALORES DE INICIO PARA EL MODELO DE HOLT BASADO EN SEÑALES DE RASTREO (PARAMETER AND INITIAL VALUES OPTIMIZATION FOR HOLT MODEL BASED ON TRACKING SIGNALS)

Los modelos de series de tiempo son técnicas cuantitativas con frecuencia utilizadas para realizar pronósticos de variables, dentro de los cuales se encuentran los modelos de suavización, en particular el de suavización con ajuste de tendencia, llamado también modelo de Holt, que requiere la definic...

Full description

Autores:
Alberto Castro, Carlos
Uribe, Diana Cecilia
Tipo de recurso:
Article of journal
Fecha de publicación:
2013
Institución:
Universidad EIA .
Repositorio:
Repositorio EIA .
Idioma:
spa
OAI Identifier:
oai:repository.eia.edu.co:11190/4798
Acceso en línea:
https://repository.eia.edu.co/handle/11190/4798
https://revistas.eia.edu.co/index.php/reveia/article/view/423
Palabra clave:
pronósticos
series de tiempo
suavización exponencial de Holt
medidas de desempeño. Keywords
forecasting
time series
Holts exponential smoothing
performance measures.
Rights
openAccess
License
Revista EIA - 2013
id REIA2_b4a3c40b71db91363de8de422a24e2e1
oai_identifier_str oai:repository.eia.edu.co:11190/4798
network_acronym_str REIA2
network_name_str Repositorio EIA .
repository_id_str
dc.title.spa.fl_str_mv OPTIMIZACIÓN DE PARÁMETROS Y DE VALORES DE INICIO PARA EL MODELO DE HOLT BASADO EN SEÑALES DE RASTREO (PARAMETER AND INITIAL VALUES OPTIMIZATION FOR HOLT MODEL BASED ON TRACKING SIGNALS)
dc.title.translated.eng.fl_str_mv OPTIMIZACIÓN DE PARÁMETROS Y DE VALORES DE INICIO PARA EL MODELO DE HOLT BASADO EN SEÑALES DE RASTREO (PARAMETER AND INITIAL VALUES OPTIMIZATION FOR HOLT MODEL BASED ON TRACKING SIGNALS)
title OPTIMIZACIÓN DE PARÁMETROS Y DE VALORES DE INICIO PARA EL MODELO DE HOLT BASADO EN SEÑALES DE RASTREO (PARAMETER AND INITIAL VALUES OPTIMIZATION FOR HOLT MODEL BASED ON TRACKING SIGNALS)
spellingShingle OPTIMIZACIÓN DE PARÁMETROS Y DE VALORES DE INICIO PARA EL MODELO DE HOLT BASADO EN SEÑALES DE RASTREO (PARAMETER AND INITIAL VALUES OPTIMIZATION FOR HOLT MODEL BASED ON TRACKING SIGNALS)
pronósticos
series de tiempo
suavización exponencial de Holt
medidas de desempeño. Keywords
forecasting
time series
Holts exponential smoothing
performance measures.
title_short OPTIMIZACIÓN DE PARÁMETROS Y DE VALORES DE INICIO PARA EL MODELO DE HOLT BASADO EN SEÑALES DE RASTREO (PARAMETER AND INITIAL VALUES OPTIMIZATION FOR HOLT MODEL BASED ON TRACKING SIGNALS)
title_full OPTIMIZACIÓN DE PARÁMETROS Y DE VALORES DE INICIO PARA EL MODELO DE HOLT BASADO EN SEÑALES DE RASTREO (PARAMETER AND INITIAL VALUES OPTIMIZATION FOR HOLT MODEL BASED ON TRACKING SIGNALS)
title_fullStr OPTIMIZACIÓN DE PARÁMETROS Y DE VALORES DE INICIO PARA EL MODELO DE HOLT BASADO EN SEÑALES DE RASTREO (PARAMETER AND INITIAL VALUES OPTIMIZATION FOR HOLT MODEL BASED ON TRACKING SIGNALS)
title_full_unstemmed OPTIMIZACIÓN DE PARÁMETROS Y DE VALORES DE INICIO PARA EL MODELO DE HOLT BASADO EN SEÑALES DE RASTREO (PARAMETER AND INITIAL VALUES OPTIMIZATION FOR HOLT MODEL BASED ON TRACKING SIGNALS)
title_sort OPTIMIZACIÓN DE PARÁMETROS Y DE VALORES DE INICIO PARA EL MODELO DE HOLT BASADO EN SEÑALES DE RASTREO (PARAMETER AND INITIAL VALUES OPTIMIZATION FOR HOLT MODEL BASED ON TRACKING SIGNALS)
dc.creator.fl_str_mv Alberto Castro, Carlos
Uribe, Diana Cecilia
dc.contributor.author.spa.fl_str_mv Alberto Castro, Carlos
Uribe, Diana Cecilia
dc.subject.spa.fl_str_mv pronósticos
series de tiempo
suavización exponencial de Holt
medidas de desempeño. Keywords
forecasting
time series
Holts exponential smoothing
performance measures.
topic pronósticos
series de tiempo
suavización exponencial de Holt
medidas de desempeño. Keywords
forecasting
time series
Holts exponential smoothing
performance measures.
description Los modelos de series de tiempo son técnicas cuantitativas con frecuencia utilizadas para realizar pronósticos de variables, dentro de los cuales se encuentran los modelos de suavización, en particular el de suavización con ajuste de tendencia, llamado también modelo de Holt, que requiere la definición de los parámetros a y b y conocidos como coeficientes de suavización y de los valores de inicio que son fundamentales para su actualización. En este artículo se propone una forma de obtener estos valores mediante la optimización del rango de la señal de rastreo (TSR) que permitan lograr un modelo más confiable desde el punto de vista de la exactitud de los resultados y de su desempeño histórico. Se realizan algunas comparaciones con modelos propuestos que utilizan la desviación absoluta media (MAD) y el error cuadrado medio (MSE) las cuales son las medidas tradicionalmente utilizadas para determinar el grado de exactitud de un modelo, lográndose obtener un comportamiento mejor de modelo.Abstract: Time series models are quantitative techniques commonly used to forecast the behavior of variables. These models include the exponential smoothing with trend or Holt model that requires the definition of the smoothing constants a and b and the initialization values, both required for the model upgrade. This paper proposes a different way to obtain the parameter values and initial conditions of the Holts model, optimizing the tracking signal range (TSR), in order to achieve a more robust model from the viewpoint of accuracy of the results and historical performance. Some comparisons between the proposed approach and the traditional methods based on the mean absolute deviation (MAD) and the mean square error (MSE) are provided. These are the measures traditionally used to determine the degree of accuracy of a model, and a better model performance is obtained.
publishDate 2013
dc.date.accessioned.none.fl_str_mv 2013-11-07 00:00:00
2022-06-17T20:17:11Z
dc.date.available.none.fl_str_mv 2013-11-07 00:00:00
2022-06-17T20:17:11Z
dc.date.issued.none.fl_str_mv 2013-11-07
dc.type.spa.fl_str_mv Artículo de revista
dc.type.eng.fl_str_mv Journal article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_6501
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 1794-1237
dc.identifier.uri.none.fl_str_mv https://repository.eia.edu.co/handle/11190/4798
dc.identifier.eissn.none.fl_str_mv 2463-0950
dc.identifier.url.none.fl_str_mv https://revistas.eia.edu.co/index.php/reveia/article/view/423
identifier_str_mv 1794-1237
2463-0950
url https://repository.eia.edu.co/handle/11190/4798
https://revistas.eia.edu.co/index.php/reveia/article/view/423
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.bitstream.none.fl_str_mv https://revistas.eia.edu.co/index.php/reveia/article/download/423/416
dc.relation.citationedition.spa.fl_str_mv Núm. 14 , Año 2010
dc.relation.citationendpage.none.fl_str_mv 124
dc.relation.citationissue.spa.fl_str_mv 14
dc.relation.citationstartpage.none.fl_str_mv 115
dc.relation.citationvolume.spa.fl_str_mv 7
dc.relation.ispartofjournal.spa.fl_str_mv Revista EIA
dc.rights.spa.fl_str_mv Revista EIA - 2013
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Revista EIA - 2013
https://creativecommons.org/licenses/by-nc-nd/4.0
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Fondo Editorial EIA - Universidad EIA
dc.source.spa.fl_str_mv https://revistas.eia.edu.co/index.php/reveia/article/view/423
institution Universidad EIA .
bitstream.url.fl_str_mv https://repository.eia.edu.co/bitstreams/56613426-892d-416d-9f95-693259da31c9/download
bitstream.checksum.fl_str_mv 21428a1c6223c21bfa19eb3a0b70d2c0
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EIA
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814100887269801984
spelling Alberto Castro, Carlosc2029a6b72de3eff6e6ecbcc097e1784300Uribe, Diana Cecilia73837ac49db85302357e2fc614bcf8f43002013-11-07 00:00:002022-06-17T20:17:11Z2013-11-07 00:00:002022-06-17T20:17:11Z2013-11-071794-1237https://repository.eia.edu.co/handle/11190/47982463-0950https://revistas.eia.edu.co/index.php/reveia/article/view/423Los modelos de series de tiempo son técnicas cuantitativas con frecuencia utilizadas para realizar pronósticos de variables, dentro de los cuales se encuentran los modelos de suavización, en particular el de suavización con ajuste de tendencia, llamado también modelo de Holt, que requiere la definición de los parámetros a y b y conocidos como coeficientes de suavización y de los valores de inicio que son fundamentales para su actualización. En este artículo se propone una forma de obtener estos valores mediante la optimización del rango de la señal de rastreo (TSR) que permitan lograr un modelo más confiable desde el punto de vista de la exactitud de los resultados y de su desempeño histórico. Se realizan algunas comparaciones con modelos propuestos que utilizan la desviación absoluta media (MAD) y el error cuadrado medio (MSE) las cuales son las medidas tradicionalmente utilizadas para determinar el grado de exactitud de un modelo, lográndose obtener un comportamiento mejor de modelo.Abstract: Time series models are quantitative techniques commonly used to forecast the behavior of variables. These models include the exponential smoothing with trend or Holt model that requires the definition of the smoothing constants a and b and the initialization values, both required for the model upgrade. This paper proposes a different way to obtain the parameter values and initial conditions of the Holts model, optimizing the tracking signal range (TSR), in order to achieve a more robust model from the viewpoint of accuracy of the results and historical performance. Some comparisons between the proposed approach and the traditional methods based on the mean absolute deviation (MAD) and the mean square error (MSE) are provided. These are the measures traditionally used to determine the degree of accuracy of a model, and a better model performance is obtained.Los modelos de series de tiempo son técnicas cuantitativas con frecuencia utilizadas para realizar pronósticos de variables, dentro de los cuales se encuentran los modelos de suavización, en particular el de suavización con ajuste de tendencia, llamado también modelo de Holt, que requiere la definición de los parámetros a y b y conocidos como coeficientes de suavización y de los valores de inicio que son fundamentales para su actualización. En este artículo se propone una forma de obtener estos valores mediante la optimización del rango de la señal de rastreo (TSR) que permitan lograr un modelo más confiable desde el punto de vista de la exactitud de los resultados y de su desempeño histórico. Se realizan algunas comparaciones con modelos propuestos que utilizan la desviación absoluta media (MAD) y el error cuadrado medio (MSE) las cuales son las medidas tradicionalmente utilizadas para determinar el grado de exactitud de un modelo, lográndose obtener un comportamiento mejor de modelo.Abstract: Time series models are quantitative techniques commonly used to forecast the behavior of variables. These models include the exponential smoothing with trend or Holt model that requires the definition of the smoothing constants a and b and the initialization values, both required for the model upgrade. This paper proposes a different way to obtain the parameter values and initial conditions of the Holts model, optimizing the tracking signal range (TSR), in order to achieve a more robust model from the viewpoint of accuracy of the results and historical performance. Some comparisons between the proposed approach and the traditional methods based on the mean absolute deviation (MAD) and the mean square error (MSE) are provided. These are the measures traditionally used to determine the degree of accuracy of a model, and a better model performance is obtained.application/pdfspaFondo Editorial EIA - Universidad EIARevista EIA - 2013https://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.http://purl.org/coar/access_right/c_abf2https://revistas.eia.edu.co/index.php/reveia/article/view/423pronósticosseries de tiemposuavización exponencial de Holtmedidas de desempeño. Keywordsforecastingtime seriesHolts exponential smoothingperformance measures.OPTIMIZACIÓN DE PARÁMETROS Y DE VALORES DE INICIO PARA EL MODELO DE HOLT BASADO EN SEÑALES DE RASTREO (PARAMETER AND INITIAL VALUES OPTIMIZATION FOR HOLT MODEL BASED ON TRACKING SIGNALS)OPTIMIZACIÓN DE PARÁMETROS Y DE VALORES DE INICIO PARA EL MODELO DE HOLT BASADO EN SEÑALES DE RASTREO (PARAMETER AND INITIAL VALUES OPTIMIZATION FOR HOLT MODEL BASED ON TRACKING SIGNALS)Artículo de revistaJournal articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionTexthttp://purl.org/redcol/resource_type/ARTREFhttp://purl.org/coar/version/c_970fb48d4fbd8a85https://revistas.eia.edu.co/index.php/reveia/article/download/423/416Núm. 14 , Año 2010124141157Revista EIAPublicationOREORE.xmltext/xml2808https://repository.eia.edu.co/bitstreams/56613426-892d-416d-9f95-693259da31c9/download21428a1c6223c21bfa19eb3a0b70d2c0MD5111190/4798oai:repository.eia.edu.co:11190/47982023-07-25 16:59:57.356https://creativecommons.org/licenses/by-nc-nd/4.0Revista EIA - 2013metadata.onlyhttps://repository.eia.edu.coRepositorio Institucional Universidad EIAbdigital@metabiblioteca.com