Control por retroalimentación dinámica y observadores de estado para un dispositivo de rehabilitación de rodilla usando actuación flexible

Rehabilitation devices with soft components increasingly attract more attention due to their characteristics in human-robot interaction. However, these types of systems have a certain level of complexity when analyzing and controlling. We have designed a 5-link knee rehabilitation device operated on...

Full description

Autores:
Guatibonza Artunduaga, Andres Felipe
Solaque Guzmán, Leonardo Enrique
Velasco Vivas, Alexandra
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Universidad EIA .
Repositorio:
Repositorio EIA .
Idioma:
eng
OAI Identifier:
oai:repository.eia.edu.co:11190/5104
Acceso en línea:
https://repository.eia.edu.co/handle/11190/5104
https://doi.org/10.24050/reia.v17i33.1363
Palabra clave:
Assistive Robotics
Rehabilitation Robotics
Kinematics Modeling
Dynamics Modeling
Assistive Robotics
Rehabilitation Robotics
Kinematics Modeling
Dynamics Modeling.
Rights
openAccess
License
Revista EIA - 2020
id REIA2_aa27da9affb2b9ccad08c171637717fa
oai_identifier_str oai:repository.eia.edu.co:11190/5104
network_acronym_str REIA2
network_name_str Repositorio EIA .
repository_id_str
dc.title.spa.fl_str_mv Control por retroalimentación dinámica y observadores de estado para un dispositivo de rehabilitación de rodilla usando actuación flexible
dc.title.translated.eng.fl_str_mv Dynamic feedback control and state observers for a knee rehabilitation device using soft action
title Control por retroalimentación dinámica y observadores de estado para un dispositivo de rehabilitación de rodilla usando actuación flexible
spellingShingle Control por retroalimentación dinámica y observadores de estado para un dispositivo de rehabilitación de rodilla usando actuación flexible
Assistive Robotics
Rehabilitation Robotics
Kinematics Modeling
Dynamics Modeling
Assistive Robotics
Rehabilitation Robotics
Kinematics Modeling
Dynamics Modeling.
title_short Control por retroalimentación dinámica y observadores de estado para un dispositivo de rehabilitación de rodilla usando actuación flexible
title_full Control por retroalimentación dinámica y observadores de estado para un dispositivo de rehabilitación de rodilla usando actuación flexible
title_fullStr Control por retroalimentación dinámica y observadores de estado para un dispositivo de rehabilitación de rodilla usando actuación flexible
title_full_unstemmed Control por retroalimentación dinámica y observadores de estado para un dispositivo de rehabilitación de rodilla usando actuación flexible
title_sort Control por retroalimentación dinámica y observadores de estado para un dispositivo de rehabilitación de rodilla usando actuación flexible
dc.creator.fl_str_mv Guatibonza Artunduaga, Andres Felipe
Solaque Guzmán, Leonardo Enrique
Velasco Vivas, Alexandra
dc.contributor.author.spa.fl_str_mv Guatibonza Artunduaga, Andres Felipe
Solaque Guzmán, Leonardo Enrique
Velasco Vivas, Alexandra
dc.subject.eng.fl_str_mv Assistive Robotics
Rehabilitation Robotics
Kinematics Modeling
Dynamics Modeling
topic Assistive Robotics
Rehabilitation Robotics
Kinematics Modeling
Dynamics Modeling
Assistive Robotics
Rehabilitation Robotics
Kinematics Modeling
Dynamics Modeling.
dc.subject.spa.fl_str_mv Assistive Robotics
Rehabilitation Robotics
Kinematics Modeling
Dynamics Modeling.
description Rehabilitation devices with soft components increasingly attract more attention due to their characteristics in human-robot interaction. However, these types of systems have a certain level of complexity when analyzing and controlling. We have designed a 5-link knee rehabilitation device operated on two of the five joints using elastic action to help the movement of the knee. In this work, we simplify the modeling of the rehabilitation device in a smooth acting system of 1 degree of freedom. Subsequently, we present the design and implementation of a dynamic feedback controller to track a desired reference. For the proposed controller, we implemented a state observer to estimate the rigidity of the system and some of the states. As a result, we present the design and implementation of the controller with a status observer, which follows a desired angular path with a desired stiffness. We demonstrate in simulation, through tests aimed at carrying out some rehabilitation routines, to validate the effectiveness and stability of the controlled system, which responds effectively to disturbances.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-02-03 00:00:00
2022-06-17T20:20:39Z
dc.date.available.none.fl_str_mv 2020-02-03 00:00:00
2022-06-17T20:20:39Z
dc.date.issued.none.fl_str_mv 2020-02-03
dc.type.spa.fl_str_mv Artículo de revista
dc.type.eng.fl_str_mv Journal article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_6501
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.content.eng.fl_str_mv Text
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.coarversion.eng.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 1794-1237
dc.identifier.uri.none.fl_str_mv https://repository.eia.edu.co/handle/11190/5104
dc.identifier.doi.none.fl_str_mv 10.24050/reia.v17i33.1363
dc.identifier.eissn.none.fl_str_mv 2463-0950
dc.identifier.url.none.fl_str_mv https://doi.org/10.24050/reia.v17i33.1363
identifier_str_mv 1794-1237
10.24050/reia.v17i33.1363
2463-0950
url https://repository.eia.edu.co/handle/11190/5104
https://doi.org/10.24050/reia.v17i33.1363
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.references.eng.fl_str_mv Allen, M., Zhong, Q., Kirsch, N., Dani, A., Clark, W. W.& Sharma, N. (2017), ‘A nonlinear dynamics-based estimator for functional electrical stimulation: Preliminary results from lower-leg extension experiments’, IEEE Trans-actions on Neural Systems and Rehabilitation Engineering25(12), 2365–2374.
Brahmi, B., Saad, M., Ochoa-Luna, C., Rahman, M. H.& Brahmi, A. (2018), ‘Adaptive tracking control of an exoskeleton robot with uncertain dynamics based on estimated time-delay control’, IEEE/ASME Transactions onMechatronics23(2), 575–585.
Della-Santina, C., Bianchi, M., Grioli, G., Angelini, F., Catalano, M. G., Garabini, M. & Bicchi, A. (2017), ‘Controlling soft robots: Balancing feedback and feedforward elements’, IEEE Robot. Automat. Mag.24(3), 75–83.URL: https://doi.org/10.1109/MRA.2016.2636360.
Erwin, A. & O’Malley, M. K. (2017), A novel exoskeleton for assessing passive wrist stiffness and active range of motion, in ‘2017 International Symposium on Wearable Robotics and Rehabilitation (WeRob)’, pp. 1–1.
Expo, M.(n.d.), ‘Rehabilitation exoskeletons’, http://www.medicalexpo.es/fabricante-medical/exoesqueleto-rehabilitacion-10025.html. [Online; accessed 10-Aug-2019].
Guatibonza, A., Solaque, L. & Velasco, A. (2018), Kinematic and dynamic modeling of a 5-bar assistive device for knee rehabilitation, in ‘Proceedings ETCM’.
Guo, S., Zhao, F., Wei, W., Guo, J., Zhao, X. & Zhang, W. (2015), Soft actuator for hand rehabilitation, in ‘2015 IEEE International Conference on Mechatronics and Automation (ICMA)’, pp. 2197–2202.
Htoon, Z. L., Sidek, S. N., Fatai, S. & Rashid, M. M. (2016), Estimation of upper limb impedance parameters using recursive least square estimator, in ‘2016 International Conference on Computer and Communication Engineering (ICCCE)’, pp. 144–148.
Huo, W., Mohammed, S., Moreno, J. C. & Amirat, Y. (2016), ‘Lower limb wearable robots for assistance and rehabilitation: A state of the art’, IEEE Systems Journal10(3), 1068–1081.
Jujjavarapu, S. S. & Esfahani, E. T. (2019), Improving stability in upper limb rehabilitation using variable stiffness, in ‘2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)’, pp. 122–125.
Koller-Hodac, A., Leonardo, D., Walpen, S. & Felder, D. (2010), A novel robotic device for knee rehabilitation improved physical therapy through automated process, in ‘2010 3rd IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics’, pp. 820–824.
Lemerle, S., Fukushima, S., Saito, Y., Nozaki, T. & Ohnishi, K. (2017), Wearable finger exoskeleton using flexible actuator for rehabilitation, in ‘2017 IEEE International Conference on Mechatronics (ICM)’, pp. 244–249.
Lessard, S., Pansodtee, P., Robbins, A., Trombadore, J. M., Kurniawan, S. & Teodorescu, M. (2018), ‘A soft exosuit for flexible upper-extremity rehabilitation’, IEEE Transactions on Neural Systems and Rehabilitation Engineering26(8), 1604–1617.
Luenberger, D. G. (1971), “an introduction to observers.”, IEEE Transactions on Automatic Control. 16(6), pp. 596–602.
Luo, L., Peng, L., Hou, Z. & Wang, W. (2017), An adaptive impedance controller for upper limb rehabilitation based on estimation of patients’ stiffness, in ‘2017 IEEE International Conference on Robotics and Biomimetics (ROBIO)’, pp. 532–537.
Ma, X., Yang, Q., Cai, J., Sun, M. & Song, J. (2016), Design and research of 7 - dof upper-limb rehabilitation robot flexible joint, in ‘2016 International Conference on Advanced Robotics and Mechatronics (ICARM)’, pp. 614–619.
National Institute of Biomedical Imaging, N.I. & Bioengineering (n.d.), ‘Ingeniería de Rehabilitación’, https://www.nibib.nih.gov/espanol/temas-cientificos/ingenier%C3%ADa-de-rehabilitaci%C3%B3n. [Online; accessed 10-Aug-2019].
Ogata, K. (1996), Discrete Time Control Systems, PearsonEducation.URL: https://books.google.com.co/books?id=aYFUs17m0YQC
Ogata, K. (2010), Modern Control Engineering, Pearson Education.
Parivash, F. & Bamdad, M. (2015), Independent position-stiffness control for elbow rehabilitation robot with cable-based series elastic actuator, in ‘2015 22nd Iranian Conference on Biomedical Engineering (ICBME)’, pp. 346–351.
Polytechnique fédérale de Lausanne, E. (n.d.), ‘Soft actuator packs for human augmentation’, https://www.epfl.ch/labs/rrl/research-2/research-soft/page-148992-en-html/. [Online; accessed 10-Aug-2019].
Qb robotics. (n.d.), ‘Qbmove advanced’, https://qbrobotics.com/products/qbmove-advanced/. [Online; accessed 06-Aug-2019].
Solaque, L. & Velasco, A. (2019), Control strategy for a soft actuated knee rehabilitation device, in ‘Proceedings of ICMRE’.
Umivale, P. S. (2011), ‘Patología de la rodilla: Guía de manejo clínico’.
Wu, Q., Wang, X., Chen, B. & Wu, H. (2018), ‘Design and fuzzy sliding mode admittance control of a soft wear-able exoskeleton for elbow rehabilitation’, IEEE Access 6, 60249–60263.
dc.relation.bitstream.none.fl_str_mv https://revistas.eia.edu.co/index.php/reveia/article/download/1363/1299
dc.relation.citationedition.spa.fl_str_mv Núm. 33 , Año 2020
dc.relation.citationendpage.none.fl_str_mv 10
dc.relation.citationissue.spa.fl_str_mv 33
dc.relation.citationstartpage.none.fl_str_mv 33019 pp. 1
dc.relation.citationvolume.spa.fl_str_mv 17
dc.relation.ispartofjournal.spa.fl_str_mv Revista EIA
dc.rights.eng.fl_str_mv Revista EIA - 2020
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.eng.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Revista EIA - 2020
https://creativecommons.org/licenses/by-nc-nd/4.0
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Fondo Editorial EIA - Universidad EIA
dc.source.eng.fl_str_mv https://revistas.eia.edu.co/index.php/reveia/article/view/1363
institution Universidad EIA .
bitstream.url.fl_str_mv https://repository.eia.edu.co/bitstreams/3807c009-bc12-49ae-b57b-a3d1ce6dff16/download
bitstream.checksum.fl_str_mv e4912bbf2445ee5402d62c8d56cc69a4
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EIA
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814100914736201728
spelling Guatibonza Artunduaga, Andres Felipe62cedb32ddd80c098457768215e1e56f300Solaque Guzmán, Leonardo Enriquebffca58eb9891ed54f2cbc1393628184300Velasco Vivas, Alexandraa6f76537b6fb683dd7e56ec9e517006c3002020-02-03 00:00:002022-06-17T20:20:39Z2020-02-03 00:00:002022-06-17T20:20:39Z2020-02-031794-1237https://repository.eia.edu.co/handle/11190/510410.24050/reia.v17i33.13632463-0950https://doi.org/10.24050/reia.v17i33.1363Rehabilitation devices with soft components increasingly attract more attention due to their characteristics in human-robot interaction. However, these types of systems have a certain level of complexity when analyzing and controlling. We have designed a 5-link knee rehabilitation device operated on two of the five joints using elastic action to help the movement of the knee. In this work, we simplify the modeling of the rehabilitation device in a smooth acting system of 1 degree of freedom. Subsequently, we present the design and implementation of a dynamic feedback controller to track a desired reference. For the proposed controller, we implemented a state observer to estimate the rigidity of the system and some of the states. As a result, we present the design and implementation of the controller with a status observer, which follows a desired angular path with a desired stiffness. We demonstrate in simulation, through tests aimed at carrying out some rehabilitation routines, to validate the effectiveness and stability of the controlled system, which responds effectively to disturbances.Rehabilitation devices with soft components increasingly attract more attention due to their characteristics in human-robot interaction. However, these types of systems have a certain level of complexity when analyzing and controlling. We have designed a 5-link knee rehabilitation device operated on two of the five joints using elastic action to help the movement of the knee. In this work, we simplify the modeling of the rehabilitation device in a smooth acting system of 1 degree of freedom. Subsequently, we present the design and implementation of a dynamic feedback controller to track a desired reference. For the proposed controller, we implemented a state observer to estimate the rigidity of the system and some of the states. As a result, we present the design and implementation of the controller with a status observer, which follows a desired angular path with a desired stiffness. We demonstrate in simulation, through tests aimed at carrying out some rehabilitation routines, to validate the effectiveness and stability of the controlled system, which responds effectively to disturbances.application/pdfengFondo Editorial EIA - Universidad EIARevista EIA - 2020https://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.http://purl.org/coar/access_right/c_abf2https://revistas.eia.edu.co/index.php/reveia/article/view/1363Assistive RoboticsRehabilitation RoboticsKinematics ModelingDynamics ModelingAssistive RoboticsRehabilitation RoboticsKinematics ModelingDynamics Modeling.Control por retroalimentación dinámica y observadores de estado para un dispositivo de rehabilitación de rodilla usando actuación flexibleDynamic feedback control and state observers for a knee rehabilitation device using soft actionArtículo de revistaJournal articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionTexthttp://purl.org/redcol/resource_type/ARTREFhttp://purl.org/coar/version/c_970fb48d4fbd8a85Allen, M., Zhong, Q., Kirsch, N., Dani, A., Clark, W. W.& Sharma, N. (2017), ‘A nonlinear dynamics-based estimator for functional electrical stimulation: Preliminary results from lower-leg extension experiments’, IEEE Trans-actions on Neural Systems and Rehabilitation Engineering25(12), 2365–2374.Brahmi, B., Saad, M., Ochoa-Luna, C., Rahman, M. H.& Brahmi, A. (2018), ‘Adaptive tracking control of an exoskeleton robot with uncertain dynamics based on estimated time-delay control’, IEEE/ASME Transactions onMechatronics23(2), 575–585.Della-Santina, C., Bianchi, M., Grioli, G., Angelini, F., Catalano, M. G., Garabini, M. & Bicchi, A. (2017), ‘Controlling soft robots: Balancing feedback and feedforward elements’, IEEE Robot. Automat. Mag.24(3), 75–83.URL: https://doi.org/10.1109/MRA.2016.2636360.Erwin, A. & O’Malley, M. K. (2017), A novel exoskeleton for assessing passive wrist stiffness and active range of motion, in ‘2017 International Symposium on Wearable Robotics and Rehabilitation (WeRob)’, pp. 1–1.Expo, M.(n.d.), ‘Rehabilitation exoskeletons’, http://www.medicalexpo.es/fabricante-medical/exoesqueleto-rehabilitacion-10025.html. [Online; accessed 10-Aug-2019].Guatibonza, A., Solaque, L. & Velasco, A. (2018), Kinematic and dynamic modeling of a 5-bar assistive device for knee rehabilitation, in ‘Proceedings ETCM’.Guo, S., Zhao, F., Wei, W., Guo, J., Zhao, X. & Zhang, W. (2015), Soft actuator for hand rehabilitation, in ‘2015 IEEE International Conference on Mechatronics and Automation (ICMA)’, pp. 2197–2202.Htoon, Z. L., Sidek, S. N., Fatai, S. & Rashid, M. M. (2016), Estimation of upper limb impedance parameters using recursive least square estimator, in ‘2016 International Conference on Computer and Communication Engineering (ICCCE)’, pp. 144–148.Huo, W., Mohammed, S., Moreno, J. C. & Amirat, Y. (2016), ‘Lower limb wearable robots for assistance and rehabilitation: A state of the art’, IEEE Systems Journal10(3), 1068–1081.Jujjavarapu, S. S. & Esfahani, E. T. (2019), Improving stability in upper limb rehabilitation using variable stiffness, in ‘2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)’, pp. 122–125.Koller-Hodac, A., Leonardo, D., Walpen, S. & Felder, D. (2010), A novel robotic device for knee rehabilitation improved physical therapy through automated process, in ‘2010 3rd IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics’, pp. 820–824.Lemerle, S., Fukushima, S., Saito, Y., Nozaki, T. & Ohnishi, K. (2017), Wearable finger exoskeleton using flexible actuator for rehabilitation, in ‘2017 IEEE International Conference on Mechatronics (ICM)’, pp. 244–249.Lessard, S., Pansodtee, P., Robbins, A., Trombadore, J. M., Kurniawan, S. & Teodorescu, M. (2018), ‘A soft exosuit for flexible upper-extremity rehabilitation’, IEEE Transactions on Neural Systems and Rehabilitation Engineering26(8), 1604–1617.Luenberger, D. G. (1971), “an introduction to observers.”, IEEE Transactions on Automatic Control. 16(6), pp. 596–602.Luo, L., Peng, L., Hou, Z. & Wang, W. (2017), An adaptive impedance controller for upper limb rehabilitation based on estimation of patients’ stiffness, in ‘2017 IEEE International Conference on Robotics and Biomimetics (ROBIO)’, pp. 532–537.Ma, X., Yang, Q., Cai, J., Sun, M. & Song, J. (2016), Design and research of 7 - dof upper-limb rehabilitation robot flexible joint, in ‘2016 International Conference on Advanced Robotics and Mechatronics (ICARM)’, pp. 614–619.National Institute of Biomedical Imaging, N.I. & Bioengineering (n.d.), ‘Ingeniería de Rehabilitación’, https://www.nibib.nih.gov/espanol/temas-cientificos/ingenier%C3%ADa-de-rehabilitaci%C3%B3n. [Online; accessed 10-Aug-2019].Ogata, K. (1996), Discrete Time Control Systems, PearsonEducation.URL: https://books.google.com.co/books?id=aYFUs17m0YQCOgata, K. (2010), Modern Control Engineering, Pearson Education.Parivash, F. & Bamdad, M. (2015), Independent position-stiffness control for elbow rehabilitation robot with cable-based series elastic actuator, in ‘2015 22nd Iranian Conference on Biomedical Engineering (ICBME)’, pp. 346–351.Polytechnique fédérale de Lausanne, E. (n.d.), ‘Soft actuator packs for human augmentation’, https://www.epfl.ch/labs/rrl/research-2/research-soft/page-148992-en-html/. [Online; accessed 10-Aug-2019].Qb robotics. (n.d.), ‘Qbmove advanced’, https://qbrobotics.com/products/qbmove-advanced/. [Online; accessed 06-Aug-2019].Solaque, L. & Velasco, A. (2019), Control strategy for a soft actuated knee rehabilitation device, in ‘Proceedings of ICMRE’.Umivale, P. S. (2011), ‘Patología de la rodilla: Guía de manejo clínico’.Wu, Q., Wang, X., Chen, B. & Wu, H. (2018), ‘Design and fuzzy sliding mode admittance control of a soft wear-able exoskeleton for elbow rehabilitation’, IEEE Access 6, 60249–60263.https://revistas.eia.edu.co/index.php/reveia/article/download/1363/1299Núm. 33 , Año 2020103333019 pp. 117Revista EIAPublicationOREORE.xmltext/xml2779https://repository.eia.edu.co/bitstreams/3807c009-bc12-49ae-b57b-a3d1ce6dff16/downloade4912bbf2445ee5402d62c8d56cc69a4MD5111190/5104oai:repository.eia.edu.co:11190/51042023-07-25 17:17:53.621https://creativecommons.org/licenses/by-nc-nd/4.0Revista EIA - 2020metadata.onlyhttps://repository.eia.edu.coRepositorio Institucional Universidad EIAbdigital@metabiblioteca.com