Control por retroalimentación dinámica y observadores de estado para un dispositivo de rehabilitación de rodilla usando actuación flexible
Rehabilitation devices with soft components increasingly attract more attention due to their characteristics in human-robot interaction. However, these types of systems have a certain level of complexity when analyzing and controlling. We have designed a 5-link knee rehabilitation device operated on...
- Autores:
-
Guatibonza Artunduaga, Andres Felipe
Solaque Guzmán, Leonardo Enrique
Velasco Vivas, Alexandra
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Universidad EIA .
- Repositorio:
- Repositorio EIA .
- Idioma:
- eng
- OAI Identifier:
- oai:repository.eia.edu.co:11190/5104
- Acceso en línea:
- https://repository.eia.edu.co/handle/11190/5104
https://doi.org/10.24050/reia.v17i33.1363
- Palabra clave:
- Assistive Robotics
Rehabilitation Robotics
Kinematics Modeling
Dynamics Modeling
Assistive Robotics
Rehabilitation Robotics
Kinematics Modeling
Dynamics Modeling.
- Rights
- openAccess
- License
- Revista EIA - 2020
id |
REIA2_aa27da9affb2b9ccad08c171637717fa |
---|---|
oai_identifier_str |
oai:repository.eia.edu.co:11190/5104 |
network_acronym_str |
REIA2 |
network_name_str |
Repositorio EIA . |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Control por retroalimentación dinámica y observadores de estado para un dispositivo de rehabilitación de rodilla usando actuación flexible |
dc.title.translated.eng.fl_str_mv |
Dynamic feedback control and state observers for a knee rehabilitation device using soft action |
title |
Control por retroalimentación dinámica y observadores de estado para un dispositivo de rehabilitación de rodilla usando actuación flexible |
spellingShingle |
Control por retroalimentación dinámica y observadores de estado para un dispositivo de rehabilitación de rodilla usando actuación flexible Assistive Robotics Rehabilitation Robotics Kinematics Modeling Dynamics Modeling Assistive Robotics Rehabilitation Robotics Kinematics Modeling Dynamics Modeling. |
title_short |
Control por retroalimentación dinámica y observadores de estado para un dispositivo de rehabilitación de rodilla usando actuación flexible |
title_full |
Control por retroalimentación dinámica y observadores de estado para un dispositivo de rehabilitación de rodilla usando actuación flexible |
title_fullStr |
Control por retroalimentación dinámica y observadores de estado para un dispositivo de rehabilitación de rodilla usando actuación flexible |
title_full_unstemmed |
Control por retroalimentación dinámica y observadores de estado para un dispositivo de rehabilitación de rodilla usando actuación flexible |
title_sort |
Control por retroalimentación dinámica y observadores de estado para un dispositivo de rehabilitación de rodilla usando actuación flexible |
dc.creator.fl_str_mv |
Guatibonza Artunduaga, Andres Felipe Solaque Guzmán, Leonardo Enrique Velasco Vivas, Alexandra |
dc.contributor.author.spa.fl_str_mv |
Guatibonza Artunduaga, Andres Felipe Solaque Guzmán, Leonardo Enrique Velasco Vivas, Alexandra |
dc.subject.eng.fl_str_mv |
Assistive Robotics Rehabilitation Robotics Kinematics Modeling Dynamics Modeling |
topic |
Assistive Robotics Rehabilitation Robotics Kinematics Modeling Dynamics Modeling Assistive Robotics Rehabilitation Robotics Kinematics Modeling Dynamics Modeling. |
dc.subject.spa.fl_str_mv |
Assistive Robotics Rehabilitation Robotics Kinematics Modeling Dynamics Modeling. |
description |
Rehabilitation devices with soft components increasingly attract more attention due to their characteristics in human-robot interaction. However, these types of systems have a certain level of complexity when analyzing and controlling. We have designed a 5-link knee rehabilitation device operated on two of the five joints using elastic action to help the movement of the knee. In this work, we simplify the modeling of the rehabilitation device in a smooth acting system of 1 degree of freedom. Subsequently, we present the design and implementation of a dynamic feedback controller to track a desired reference. For the proposed controller, we implemented a state observer to estimate the rigidity of the system and some of the states. As a result, we present the design and implementation of the controller with a status observer, which follows a desired angular path with a desired stiffness. We demonstrate in simulation, through tests aimed at carrying out some rehabilitation routines, to validate the effectiveness and stability of the controlled system, which responds effectively to disturbances. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-02-03 00:00:00 2022-06-17T20:20:39Z |
dc.date.available.none.fl_str_mv |
2020-02-03 00:00:00 2022-06-17T20:20:39Z |
dc.date.issued.none.fl_str_mv |
2020-02-03 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.eng.fl_str_mv |
Journal article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_6501 |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ARTREF |
dc.type.coarversion.eng.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
1794-1237 |
dc.identifier.uri.none.fl_str_mv |
https://repository.eia.edu.co/handle/11190/5104 |
dc.identifier.doi.none.fl_str_mv |
10.24050/reia.v17i33.1363 |
dc.identifier.eissn.none.fl_str_mv |
2463-0950 |
dc.identifier.url.none.fl_str_mv |
https://doi.org/10.24050/reia.v17i33.1363 |
identifier_str_mv |
1794-1237 10.24050/reia.v17i33.1363 2463-0950 |
url |
https://repository.eia.edu.co/handle/11190/5104 https://doi.org/10.24050/reia.v17i33.1363 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.references.eng.fl_str_mv |
Allen, M., Zhong, Q., Kirsch, N., Dani, A., Clark, W. W.& Sharma, N. (2017), ‘A nonlinear dynamics-based estimator for functional electrical stimulation: Preliminary results from lower-leg extension experiments’, IEEE Trans-actions on Neural Systems and Rehabilitation Engineering25(12), 2365–2374. Brahmi, B., Saad, M., Ochoa-Luna, C., Rahman, M. H.& Brahmi, A. (2018), ‘Adaptive tracking control of an exoskeleton robot with uncertain dynamics based on estimated time-delay control’, IEEE/ASME Transactions onMechatronics23(2), 575–585. Della-Santina, C., Bianchi, M., Grioli, G., Angelini, F., Catalano, M. G., Garabini, M. & Bicchi, A. (2017), ‘Controlling soft robots: Balancing feedback and feedforward elements’, IEEE Robot. Automat. Mag.24(3), 75–83.URL: https://doi.org/10.1109/MRA.2016.2636360. Erwin, A. & O’Malley, M. K. (2017), A novel exoskeleton for assessing passive wrist stiffness and active range of motion, in ‘2017 International Symposium on Wearable Robotics and Rehabilitation (WeRob)’, pp. 1–1. Expo, M.(n.d.), ‘Rehabilitation exoskeletons’, http://www.medicalexpo.es/fabricante-medical/exoesqueleto-rehabilitacion-10025.html. [Online; accessed 10-Aug-2019]. Guatibonza, A., Solaque, L. & Velasco, A. (2018), Kinematic and dynamic modeling of a 5-bar assistive device for knee rehabilitation, in ‘Proceedings ETCM’. Guo, S., Zhao, F., Wei, W., Guo, J., Zhao, X. & Zhang, W. (2015), Soft actuator for hand rehabilitation, in ‘2015 IEEE International Conference on Mechatronics and Automation (ICMA)’, pp. 2197–2202. Htoon, Z. L., Sidek, S. N., Fatai, S. & Rashid, M. M. (2016), Estimation of upper limb impedance parameters using recursive least square estimator, in ‘2016 International Conference on Computer and Communication Engineering (ICCCE)’, pp. 144–148. Huo, W., Mohammed, S., Moreno, J. C. & Amirat, Y. (2016), ‘Lower limb wearable robots for assistance and rehabilitation: A state of the art’, IEEE Systems Journal10(3), 1068–1081. Jujjavarapu, S. S. & Esfahani, E. T. (2019), Improving stability in upper limb rehabilitation using variable stiffness, in ‘2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)’, pp. 122–125. Koller-Hodac, A., Leonardo, D., Walpen, S. & Felder, D. (2010), A novel robotic device for knee rehabilitation improved physical therapy through automated process, in ‘2010 3rd IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics’, pp. 820–824. Lemerle, S., Fukushima, S., Saito, Y., Nozaki, T. & Ohnishi, K. (2017), Wearable finger exoskeleton using flexible actuator for rehabilitation, in ‘2017 IEEE International Conference on Mechatronics (ICM)’, pp. 244–249. Lessard, S., Pansodtee, P., Robbins, A., Trombadore, J. M., Kurniawan, S. & Teodorescu, M. (2018), ‘A soft exosuit for flexible upper-extremity rehabilitation’, IEEE Transactions on Neural Systems and Rehabilitation Engineering26(8), 1604–1617. Luenberger, D. G. (1971), “an introduction to observers.”, IEEE Transactions on Automatic Control. 16(6), pp. 596–602. Luo, L., Peng, L., Hou, Z. & Wang, W. (2017), An adaptive impedance controller for upper limb rehabilitation based on estimation of patients’ stiffness, in ‘2017 IEEE International Conference on Robotics and Biomimetics (ROBIO)’, pp. 532–537. Ma, X., Yang, Q., Cai, J., Sun, M. & Song, J. (2016), Design and research of 7 - dof upper-limb rehabilitation robot flexible joint, in ‘2016 International Conference on Advanced Robotics and Mechatronics (ICARM)’, pp. 614–619. National Institute of Biomedical Imaging, N.I. & Bioengineering (n.d.), ‘Ingeniería de Rehabilitación’, https://www.nibib.nih.gov/espanol/temas-cientificos/ingenier%C3%ADa-de-rehabilitaci%C3%B3n. [Online; accessed 10-Aug-2019]. Ogata, K. (1996), Discrete Time Control Systems, PearsonEducation.URL: https://books.google.com.co/books?id=aYFUs17m0YQC Ogata, K. (2010), Modern Control Engineering, Pearson Education. Parivash, F. & Bamdad, M. (2015), Independent position-stiffness control for elbow rehabilitation robot with cable-based series elastic actuator, in ‘2015 22nd Iranian Conference on Biomedical Engineering (ICBME)’, pp. 346–351. Polytechnique fédérale de Lausanne, E. (n.d.), ‘Soft actuator packs for human augmentation’, https://www.epfl.ch/labs/rrl/research-2/research-soft/page-148992-en-html/. [Online; accessed 10-Aug-2019]. Qb robotics. (n.d.), ‘Qbmove advanced’, https://qbrobotics.com/products/qbmove-advanced/. [Online; accessed 06-Aug-2019]. Solaque, L. & Velasco, A. (2019), Control strategy for a soft actuated knee rehabilitation device, in ‘Proceedings of ICMRE’. Umivale, P. S. (2011), ‘Patología de la rodilla: Guía de manejo clínico’. Wu, Q., Wang, X., Chen, B. & Wu, H. (2018), ‘Design and fuzzy sliding mode admittance control of a soft wear-able exoskeleton for elbow rehabilitation’, IEEE Access 6, 60249–60263. |
dc.relation.bitstream.none.fl_str_mv |
https://revistas.eia.edu.co/index.php/reveia/article/download/1363/1299 |
dc.relation.citationedition.spa.fl_str_mv |
Núm. 33 , Año 2020 |
dc.relation.citationendpage.none.fl_str_mv |
10 |
dc.relation.citationissue.spa.fl_str_mv |
33 |
dc.relation.citationstartpage.none.fl_str_mv |
33019 pp. 1 |
dc.relation.citationvolume.spa.fl_str_mv |
17 |
dc.relation.ispartofjournal.spa.fl_str_mv |
Revista EIA |
dc.rights.eng.fl_str_mv |
Revista EIA - 2020 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0 |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.eng.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Revista EIA - 2020 https://creativecommons.org/licenses/by-nc-nd/4.0 http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.eng.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Fondo Editorial EIA - Universidad EIA |
dc.source.eng.fl_str_mv |
https://revistas.eia.edu.co/index.php/reveia/article/view/1363 |
institution |
Universidad EIA . |
bitstream.url.fl_str_mv |
https://repository.eia.edu.co/bitstreams/3807c009-bc12-49ae-b57b-a3d1ce6dff16/download |
bitstream.checksum.fl_str_mv |
e4912bbf2445ee5402d62c8d56cc69a4 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EIA |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814100914736201728 |
spelling |
Guatibonza Artunduaga, Andres Felipe62cedb32ddd80c098457768215e1e56f300Solaque Guzmán, Leonardo Enriquebffca58eb9891ed54f2cbc1393628184300Velasco Vivas, Alexandraa6f76537b6fb683dd7e56ec9e517006c3002020-02-03 00:00:002022-06-17T20:20:39Z2020-02-03 00:00:002022-06-17T20:20:39Z2020-02-031794-1237https://repository.eia.edu.co/handle/11190/510410.24050/reia.v17i33.13632463-0950https://doi.org/10.24050/reia.v17i33.1363Rehabilitation devices with soft components increasingly attract more attention due to their characteristics in human-robot interaction. However, these types of systems have a certain level of complexity when analyzing and controlling. We have designed a 5-link knee rehabilitation device operated on two of the five joints using elastic action to help the movement of the knee. In this work, we simplify the modeling of the rehabilitation device in a smooth acting system of 1 degree of freedom. Subsequently, we present the design and implementation of a dynamic feedback controller to track a desired reference. For the proposed controller, we implemented a state observer to estimate the rigidity of the system and some of the states. As a result, we present the design and implementation of the controller with a status observer, which follows a desired angular path with a desired stiffness. We demonstrate in simulation, through tests aimed at carrying out some rehabilitation routines, to validate the effectiveness and stability of the controlled system, which responds effectively to disturbances.Rehabilitation devices with soft components increasingly attract more attention due to their characteristics in human-robot interaction. However, these types of systems have a certain level of complexity when analyzing and controlling. We have designed a 5-link knee rehabilitation device operated on two of the five joints using elastic action to help the movement of the knee. In this work, we simplify the modeling of the rehabilitation device in a smooth acting system of 1 degree of freedom. Subsequently, we present the design and implementation of a dynamic feedback controller to track a desired reference. For the proposed controller, we implemented a state observer to estimate the rigidity of the system and some of the states. As a result, we present the design and implementation of the controller with a status observer, which follows a desired angular path with a desired stiffness. We demonstrate in simulation, through tests aimed at carrying out some rehabilitation routines, to validate the effectiveness and stability of the controlled system, which responds effectively to disturbances.application/pdfengFondo Editorial EIA - Universidad EIARevista EIA - 2020https://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.http://purl.org/coar/access_right/c_abf2https://revistas.eia.edu.co/index.php/reveia/article/view/1363Assistive RoboticsRehabilitation RoboticsKinematics ModelingDynamics ModelingAssistive RoboticsRehabilitation RoboticsKinematics ModelingDynamics Modeling.Control por retroalimentación dinámica y observadores de estado para un dispositivo de rehabilitación de rodilla usando actuación flexibleDynamic feedback control and state observers for a knee rehabilitation device using soft actionArtículo de revistaJournal articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionTexthttp://purl.org/redcol/resource_type/ARTREFhttp://purl.org/coar/version/c_970fb48d4fbd8a85Allen, M., Zhong, Q., Kirsch, N., Dani, A., Clark, W. W.& Sharma, N. (2017), ‘A nonlinear dynamics-based estimator for functional electrical stimulation: Preliminary results from lower-leg extension experiments’, IEEE Trans-actions on Neural Systems and Rehabilitation Engineering25(12), 2365–2374.Brahmi, B., Saad, M., Ochoa-Luna, C., Rahman, M. H.& Brahmi, A. (2018), ‘Adaptive tracking control of an exoskeleton robot with uncertain dynamics based on estimated time-delay control’, IEEE/ASME Transactions onMechatronics23(2), 575–585.Della-Santina, C., Bianchi, M., Grioli, G., Angelini, F., Catalano, M. G., Garabini, M. & Bicchi, A. (2017), ‘Controlling soft robots: Balancing feedback and feedforward elements’, IEEE Robot. Automat. Mag.24(3), 75–83.URL: https://doi.org/10.1109/MRA.2016.2636360.Erwin, A. & O’Malley, M. K. (2017), A novel exoskeleton for assessing passive wrist stiffness and active range of motion, in ‘2017 International Symposium on Wearable Robotics and Rehabilitation (WeRob)’, pp. 1–1.Expo, M.(n.d.), ‘Rehabilitation exoskeletons’, http://www.medicalexpo.es/fabricante-medical/exoesqueleto-rehabilitacion-10025.html. [Online; accessed 10-Aug-2019].Guatibonza, A., Solaque, L. & Velasco, A. (2018), Kinematic and dynamic modeling of a 5-bar assistive device for knee rehabilitation, in ‘Proceedings ETCM’.Guo, S., Zhao, F., Wei, W., Guo, J., Zhao, X. & Zhang, W. (2015), Soft actuator for hand rehabilitation, in ‘2015 IEEE International Conference on Mechatronics and Automation (ICMA)’, pp. 2197–2202.Htoon, Z. L., Sidek, S. N., Fatai, S. & Rashid, M. M. (2016), Estimation of upper limb impedance parameters using recursive least square estimator, in ‘2016 International Conference on Computer and Communication Engineering (ICCCE)’, pp. 144–148.Huo, W., Mohammed, S., Moreno, J. C. & Amirat, Y. (2016), ‘Lower limb wearable robots for assistance and rehabilitation: A state of the art’, IEEE Systems Journal10(3), 1068–1081.Jujjavarapu, S. S. & Esfahani, E. T. (2019), Improving stability in upper limb rehabilitation using variable stiffness, in ‘2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)’, pp. 122–125.Koller-Hodac, A., Leonardo, D., Walpen, S. & Felder, D. (2010), A novel robotic device for knee rehabilitation improved physical therapy through automated process, in ‘2010 3rd IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics’, pp. 820–824.Lemerle, S., Fukushima, S., Saito, Y., Nozaki, T. & Ohnishi, K. (2017), Wearable finger exoskeleton using flexible actuator for rehabilitation, in ‘2017 IEEE International Conference on Mechatronics (ICM)’, pp. 244–249.Lessard, S., Pansodtee, P., Robbins, A., Trombadore, J. M., Kurniawan, S. & Teodorescu, M. (2018), ‘A soft exosuit for flexible upper-extremity rehabilitation’, IEEE Transactions on Neural Systems and Rehabilitation Engineering26(8), 1604–1617.Luenberger, D. G. (1971), “an introduction to observers.”, IEEE Transactions on Automatic Control. 16(6), pp. 596–602.Luo, L., Peng, L., Hou, Z. & Wang, W. (2017), An adaptive impedance controller for upper limb rehabilitation based on estimation of patients’ stiffness, in ‘2017 IEEE International Conference on Robotics and Biomimetics (ROBIO)’, pp. 532–537.Ma, X., Yang, Q., Cai, J., Sun, M. & Song, J. (2016), Design and research of 7 - dof upper-limb rehabilitation robot flexible joint, in ‘2016 International Conference on Advanced Robotics and Mechatronics (ICARM)’, pp. 614–619.National Institute of Biomedical Imaging, N.I. & Bioengineering (n.d.), ‘Ingeniería de Rehabilitación’, https://www.nibib.nih.gov/espanol/temas-cientificos/ingenier%C3%ADa-de-rehabilitaci%C3%B3n. [Online; accessed 10-Aug-2019].Ogata, K. (1996), Discrete Time Control Systems, PearsonEducation.URL: https://books.google.com.co/books?id=aYFUs17m0YQCOgata, K. (2010), Modern Control Engineering, Pearson Education.Parivash, F. & Bamdad, M. (2015), Independent position-stiffness control for elbow rehabilitation robot with cable-based series elastic actuator, in ‘2015 22nd Iranian Conference on Biomedical Engineering (ICBME)’, pp. 346–351.Polytechnique fédérale de Lausanne, E. (n.d.), ‘Soft actuator packs for human augmentation’, https://www.epfl.ch/labs/rrl/research-2/research-soft/page-148992-en-html/. [Online; accessed 10-Aug-2019].Qb robotics. (n.d.), ‘Qbmove advanced’, https://qbrobotics.com/products/qbmove-advanced/. [Online; accessed 06-Aug-2019].Solaque, L. & Velasco, A. (2019), Control strategy for a soft actuated knee rehabilitation device, in ‘Proceedings of ICMRE’.Umivale, P. S. (2011), ‘Patología de la rodilla: Guía de manejo clínico’.Wu, Q., Wang, X., Chen, B. & Wu, H. (2018), ‘Design and fuzzy sliding mode admittance control of a soft wear-able exoskeleton for elbow rehabilitation’, IEEE Access 6, 60249–60263.https://revistas.eia.edu.co/index.php/reveia/article/download/1363/1299Núm. 33 , Año 2020103333019 pp. 117Revista EIAPublicationOREORE.xmltext/xml2779https://repository.eia.edu.co/bitstreams/3807c009-bc12-49ae-b57b-a3d1ce6dff16/downloade4912bbf2445ee5402d62c8d56cc69a4MD5111190/5104oai:repository.eia.edu.co:11190/51042023-07-25 17:17:53.621https://creativecommons.org/licenses/by-nc-nd/4.0Revista EIA - 2020metadata.onlyhttps://repository.eia.edu.coRepositorio Institucional Universidad EIAbdigital@metabiblioteca.com |