Diseño y construcción de un equipo estimulador de campo eléctrico tipo capacitivo para estimulación celular

RESUMENLa búsqueda de alternativas para tratamientos al cáncer que puedan ser de bajo costo, menos invasivos y con menores efectos secundarios, sigue siendo un tema de continuo interés. El estudio de un sistema combinado de campos eléctricos de bajo voltaje con nanomateriales, estos últimos actuando...

Full description

Autores:
Orozco-Vásquez, Juan Carlos
Grisales-Díaz, Juan Felipe
Roldán-Vasco, Sebastián
Ossa-Orozco, Claudia Patricia
Restrepo-Múnera, Luz Marina
Moncada Acevedo, María Elena
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Universidad EIA .
Repositorio:
Repositorio EIA .
Idioma:
spa
OAI Identifier:
oai:repository.eia.edu.co:11190/5117
Acceso en línea:
https://repository.eia.edu.co/handle/11190/5117
https://doi.org/10.24050/reia.v17i34.1410
Palabra clave:
Estimulación eléctrica
Desarrollo de equipos
Estimulación capacitiva
Electric stimulation instrument
Development equipment
Capacitive stimulation
Rights
openAccess
License
Revista EIA - 2020
id REIA2_a70c21fb58b24471e9e1826041007b74
oai_identifier_str oai:repository.eia.edu.co:11190/5117
network_acronym_str REIA2
network_name_str Repositorio EIA .
repository_id_str
dc.title.spa.fl_str_mv Diseño y construcción de un equipo estimulador de campo eléctrico tipo capacitivo para estimulación celular
dc.title.translated.eng.fl_str_mv Design and construction capacitive electric field equipment for cell stimulation
title Diseño y construcción de un equipo estimulador de campo eléctrico tipo capacitivo para estimulación celular
spellingShingle Diseño y construcción de un equipo estimulador de campo eléctrico tipo capacitivo para estimulación celular
Estimulación eléctrica
Desarrollo de equipos
Estimulación capacitiva
Electric stimulation instrument
Development equipment
Capacitive stimulation
title_short Diseño y construcción de un equipo estimulador de campo eléctrico tipo capacitivo para estimulación celular
title_full Diseño y construcción de un equipo estimulador de campo eléctrico tipo capacitivo para estimulación celular
title_fullStr Diseño y construcción de un equipo estimulador de campo eléctrico tipo capacitivo para estimulación celular
title_full_unstemmed Diseño y construcción de un equipo estimulador de campo eléctrico tipo capacitivo para estimulación celular
title_sort Diseño y construcción de un equipo estimulador de campo eléctrico tipo capacitivo para estimulación celular
dc.creator.fl_str_mv Orozco-Vásquez, Juan Carlos
Grisales-Díaz, Juan Felipe
Roldán-Vasco, Sebastián
Ossa-Orozco, Claudia Patricia
Restrepo-Múnera, Luz Marina
Moncada Acevedo, María Elena
dc.contributor.author.spa.fl_str_mv Orozco-Vásquez, Juan Carlos
Grisales-Díaz, Juan Felipe
Roldán-Vasco, Sebastián
Ossa-Orozco, Claudia Patricia
Restrepo-Múnera, Luz Marina
Moncada Acevedo, María Elena
dc.subject.spa.fl_str_mv Estimulación eléctrica
Desarrollo de equipos
Estimulación capacitiva
topic Estimulación eléctrica
Desarrollo de equipos
Estimulación capacitiva
Electric stimulation instrument
Development equipment
Capacitive stimulation
dc.subject.eng.fl_str_mv Electric stimulation instrument
Development equipment
Capacitive stimulation
description RESUMENLa búsqueda de alternativas para tratamientos al cáncer que puedan ser de bajo costo, menos invasivos y con menores efectos secundarios, sigue siendo un tema de continuo interés. El estudio de un sistema combinado de campos eléctricos de bajo voltaje con nanomateriales, estos últimos actuando como nanovectores, en el tratamiento de cáncer ha mostrado resultados prometedores. En este trabajo se presenta el diseño, simulación y construcción de un equipo estimulador eléctrico tipo capacitivo de bajo voltaje para estimular células tipo fibrobastos normales y tipo melanoma combinadas con nanopartículas de oro. El equipo permite variación en voltaje, frecuencia, intensidad de corriente, forma de onda y ciclo de dureza. El diseño fue realizado en la plataforma Arduino Due, llevado a Eagle para el desarrollo PCB y con visualización en pantalla LCD. El generador construido es finalmente conectado a un par de placas paralelas encargadas del campo eléctrico que será inducido. De las variables entregadas por el equipo se encontraron exactitudes inferiores al 1,5% lo que garantiza el cumplimiento técnico del equipo en las variables necesarias.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-06-21 00:00:00
2022-06-17T20:20:49Z
dc.date.available.none.fl_str_mv 2020-06-21 00:00:00
2022-06-17T20:20:49Z
dc.date.issued.none.fl_str_mv 2020-06-21
dc.type.spa.fl_str_mv Artículo de revista
dc.type.eng.fl_str_mv Journal article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_6501
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 1794-1237
dc.identifier.uri.none.fl_str_mv https://repository.eia.edu.co/handle/11190/5117
dc.identifier.doi.none.fl_str_mv 10.24050/reia.v17i34.1410
dc.identifier.eissn.none.fl_str_mv 2463-0950
dc.identifier.url.none.fl_str_mv https://doi.org/10.24050/reia.v17i34.1410
identifier_str_mv 1794-1237
10.24050/reia.v17i34.1410
2463-0950
url https://repository.eia.edu.co/handle/11190/5117
https://doi.org/10.24050/reia.v17i34.1410
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Araujo, T. S. (2015). Modulation of electrical stimulation applied to human physiology and clinical diagnostic. Lisboa: Universidade Nova Lisboa. Fundación para la Ciencia y la Tecnología.
Balakatounis K, Angoules A. (2008) ‘Low-intensity Electrical Stimulation in Wound Healing: Review of the Efficacy of Externally Applied Currents Resembling the Current of Injury’. Journal of Plactic Surgery. 8:283-91.
Camapana LG., et. al. (2009) ‘Bleomycin-based electrochemotherapy: clinical outcome from a single institution's experience with 52 patients’, Ann. Surg. Oncol. 16 191–199.
Cemazar M., et. al. (2009) ‘Control by pulse parameters of DNA electrotransfer into solid tumors in mice’, Gene Ther. 16 635–644.
Esser A.T., et. al. (2007) ‘Towards solid tumor treatment by irreversible electroporation: intrinsic redistribution of fields and currents in tissue’, Technol. Cancer Res. Treat. 6 (2007) 261–274.
Gehl J, et. al. (2006) ‘Results of the ESOPE (European Standard Operating Procedures on Electrochemotherapy) study: efficient, highly tolerable and simple palliative treatment of cutaneous and subcutaneousmetastases fromcancers of any histology’, J. Clin. Oncol. 24 s8047 (Suppl).
Gehl, (2003) ‘Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research’, Acta Physiol. Scand. 177 437–447.
Gintautas S, (1997) ‘Pore disappearance in a cell after electroporation: theoretical simulation and comparison with experiments’, Biophys. J. 73 1299–1309.
Jankovic A, Binic I. (2008) ‘Frequency rhythmic electrical modulation system in the treatment of chronic painful leg ulcers’. Arch Dermatol Res. 2008;300(7):377-83.
Kasivisvanathan V, et. al. (2012) ‘A. Thapar, Y. Oskrochi, J. Picard, E.L.S. Leen, Irreversible electroporation for focal ablation at the porta hepatis’, Cardiovasc. Intervent. Radiol. 35 1531–1534.
Kozinsky B, et. al. (2006) ‘Static dielectric properties of carbon nanotubes from first principles’, Phys. Rev. Lett. 96 166801.
Lee S, et. al., (2014) ‘Chemical tumor-targeting of nanoparticles based on metabolic glycoengineering and click chemistry’, ACS Nano 8 2048–2063.
Lekner, (2014) ‘Electroporation in cancer therapy without insertion of electrodes’, Phys. Med. Biol. 59 6031–6042.
Maeda H., (2010) ‘Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects’, Bioconjug. Chem. 21 797–802.
Marty M., et. al. (2006) ‘Electrochemotherapy — an easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: results of ESOPE (European Standard Operating Procedures of Electrochemotherapy) study’, EJC Suppl. 4 3–13.
Matsumura Y., Maeda H., (1986). ‘A new concept for macromolecular therapeutics in cáncer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent SMANCS’, Cancer Res. 46 pag. 6387–6392.
Miklavčič D, et. al. (2012) ‘Electrochemotherapy: technological advancements for efficient electroporation-based treatment of internal tumors’, Med. Biol. Eng. Comput. 50 1213–1225.
Neumann E, et. al. (1999) ‘Fundamentals of electroporative delivery of drugs and genes, Bioelectrochem’. Bioenerg. 48 3–16.
Neumann E, et. al. (1982) ‘Gene transfer into mouse lyoma cells by electroporation in high electric fields’, EMBO J. 1 841–845.
Pamela E., et. al. (2010 ‘Electrical Stimulation Therapy Increases Rate of Healing of Pressure Ulcers in Community-Dwelling People With Spinal Cord Injury’. Archives of Physical Medicine and Rehabilitation. Volume 91, Issue 5, Pages 669-678.
Pei-Chi Lee et. al. (2016) ‘Combining the single-walled carbon nanotubes with low voltaje electrical stimulation to improve accumulation of nanomedicines in tumor for effective cancer therapy’. Journal of Controlled Release 225 140–151.
Raffa V, et. al. (2010) ‘Carbon nanotubeenhanced cell electropermeabilisation’, Bioelectrochemistry 79 136–141. Saito R, et. al. (2010) ‘Physical Properties of Carbon Nanotube’, Imperial College Press, London, 2010 1–29.
Sano K, et. al. (2013) ‘Markedly enhanced permeability and retention effects induced by photo-immunotherapy of tumors’, ACS Nano 7 717–724.
Satkauskas S, et. al. (2005) ‘Effectiveness of tumor electrochemotherapy as a function of electric pulse strength and duration’, Bioelectrochemistry 65 105–111.
Shahini M, et. al. (2013) ‘Cell electroporation by CNT-featured microfluidic chip’, Lab Chip 13 2585–2590.
Stylianopoulos T, (2013) ‘EPR-effect: utilizing size-dependent nanoparticle delivery to solid tumors’, Ther. Deliv. 4 421–423.
Titomirov AV, et. al. (1991) ‘In vivo electroporation and stable transformation of skin cells of newborn mice by plasmid DNA’, Biochim. Biophys. Acta 1088 (1991) 131–134.
Wang L, et. al. (2015) ‘Cuschieri, Tumour cell membrane poration and ablation by pulsed low-intensity electric field with carbon nanotubes’, Int. J. Mol. Sci. 16 6890–6901.
Zhong Y, et. al. (2014) ‘Ligand-directed active tumor-targeting polymeric nanoparticles for cancer chemotherapy’, Biomacromolecules 15 1955–1969.
dc.relation.bitstream.none.fl_str_mv https://revistas.eia.edu.co/index.php/reveia/article/download/1410/1361
dc.relation.citationedition.spa.fl_str_mv Núm. 34 , Año 2020
dc.relation.citationendpage.none.fl_str_mv 11
dc.relation.citationissue.spa.fl_str_mv 34
dc.relation.citationstartpage.none.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 17
dc.relation.ispartofjournal.spa.fl_str_mv Revista EIA
dc.rights.spa.fl_str_mv Revista EIA - 2020
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Revista EIA - 2020
https://creativecommons.org/licenses/by-nc-nd/4.0
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Fondo Editorial EIA - Universidad EIA
dc.source.spa.fl_str_mv https://revistas.eia.edu.co/index.php/reveia/article/view/1410
institution Universidad EIA .
bitstream.url.fl_str_mv https://repository.eia.edu.co/bitstreams/d816dbb8-70a2-44f8-bf2c-ee4b950c179e/download
bitstream.checksum.fl_str_mv 526de27845a3c96982eeccb4be2f680f
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EIA
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1818099051330011136
spelling Orozco-Vásquez, Juan Carlosca21c90d0627d0ccb706e3183fefc6d0300Grisales-Díaz, Juan Felipe9d14c77d50109b9a636c4a4bdeca8b82300Roldán-Vasco, Sebastián0d67fe6dca54e91f50f275adc2212381300Ossa-Orozco, Claudia Patriciae93e9ded2171b60d1359a49749239d2a300Restrepo-Múnera, Luz Marinaebd99cb63f742581522e064e974b0cc8300Moncada Acevedo, María Elena17983910a5e01f2a0c3dea0662205f473002020-06-21 00:00:002022-06-17T20:20:49Z2020-06-21 00:00:002022-06-17T20:20:49Z2020-06-211794-1237https://repository.eia.edu.co/handle/11190/511710.24050/reia.v17i34.14102463-0950https://doi.org/10.24050/reia.v17i34.1410RESUMENLa búsqueda de alternativas para tratamientos al cáncer que puedan ser de bajo costo, menos invasivos y con menores efectos secundarios, sigue siendo un tema de continuo interés. El estudio de un sistema combinado de campos eléctricos de bajo voltaje con nanomateriales, estos últimos actuando como nanovectores, en el tratamiento de cáncer ha mostrado resultados prometedores. En este trabajo se presenta el diseño, simulación y construcción de un equipo estimulador eléctrico tipo capacitivo de bajo voltaje para estimular células tipo fibrobastos normales y tipo melanoma combinadas con nanopartículas de oro. El equipo permite variación en voltaje, frecuencia, intensidad de corriente, forma de onda y ciclo de dureza. El diseño fue realizado en la plataforma Arduino Due, llevado a Eagle para el desarrollo PCB y con visualización en pantalla LCD. El generador construido es finalmente conectado a un par de placas paralelas encargadas del campo eléctrico que será inducido. De las variables entregadas por el equipo se encontraron exactitudes inferiores al 1,5% lo que garantiza el cumplimiento técnico del equipo en las variables necesarias.The searching of options for cancer treatments at low cost, less invasive and with minor side effects is still an interest matter. The study of a combined system of low voltages electric fields with nanomaterials, the latter working as nanovectors, in the cancer treatment has shown promising results. This work presents the design, simulation and construction of an electrical stimulator equipment capacitive type of low voltage for stimulation of healthy skin cells and melanoma type combined with gold nanoparticles. The equipment allows to modify voltage, frequency, current intensity, waveform and duty cycle. The design was performed in Arduino DUE platform, then taken to Eagle to the PCB development and the visualization on a LCD screen. The implemented generator is finally connected to a couple of parallel plates which are in charge of the induced electric field. From the variables delivered by the equipment, accuracies lower than 1.5% were found, this guarantees the technical fulfillment of the equipment in the needed variables.application/pdfspaFondo Editorial EIA - Universidad EIARevista EIA - 2020https://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.http://purl.org/coar/access_right/c_abf2https://revistas.eia.edu.co/index.php/reveia/article/view/1410Estimulación eléctricaDesarrollo de equiposEstimulación capacitivaElectric stimulation instrumentDevelopment equipmentCapacitive stimulationDiseño y construcción de un equipo estimulador de campo eléctrico tipo capacitivo para estimulación celularDesign and construction capacitive electric field equipment for cell stimulationArtículo de revistaJournal articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionTexthttp://purl.org/redcol/resource_type/ARTREFhttp://purl.org/coar/version/c_970fb48d4fbd8a85Araujo, T. S. (2015). Modulation of electrical stimulation applied to human physiology and clinical diagnostic. Lisboa: Universidade Nova Lisboa. Fundación para la Ciencia y la Tecnología.Balakatounis K, Angoules A. (2008) ‘Low-intensity Electrical Stimulation in Wound Healing: Review of the Efficacy of Externally Applied Currents Resembling the Current of Injury’. Journal of Plactic Surgery. 8:283-91.Camapana LG., et. al. (2009) ‘Bleomycin-based electrochemotherapy: clinical outcome from a single institution's experience with 52 patients’, Ann. Surg. Oncol. 16 191–199.Cemazar M., et. al. (2009) ‘Control by pulse parameters of DNA electrotransfer into solid tumors in mice’, Gene Ther. 16 635–644.Esser A.T., et. al. (2007) ‘Towards solid tumor treatment by irreversible electroporation: intrinsic redistribution of fields and currents in tissue’, Technol. Cancer Res. Treat. 6 (2007) 261–274.Gehl J, et. al. (2006) ‘Results of the ESOPE (European Standard Operating Procedures on Electrochemotherapy) study: efficient, highly tolerable and simple palliative treatment of cutaneous and subcutaneousmetastases fromcancers of any histology’, J. Clin. Oncol. 24 s8047 (Suppl).Gehl, (2003) ‘Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research’, Acta Physiol. Scand. 177 437–447.Gintautas S, (1997) ‘Pore disappearance in a cell after electroporation: theoretical simulation and comparison with experiments’, Biophys. J. 73 1299–1309.Jankovic A, Binic I. (2008) ‘Frequency rhythmic electrical modulation system in the treatment of chronic painful leg ulcers’. Arch Dermatol Res. 2008;300(7):377-83.Kasivisvanathan V, et. al. (2012) ‘A. Thapar, Y. Oskrochi, J. Picard, E.L.S. Leen, Irreversible electroporation for focal ablation at the porta hepatis’, Cardiovasc. Intervent. Radiol. 35 1531–1534.Kozinsky B, et. al. (2006) ‘Static dielectric properties of carbon nanotubes from first principles’, Phys. Rev. Lett. 96 166801.Lee S, et. al., (2014) ‘Chemical tumor-targeting of nanoparticles based on metabolic glycoengineering and click chemistry’, ACS Nano 8 2048–2063.Lekner, (2014) ‘Electroporation in cancer therapy without insertion of electrodes’, Phys. Med. Biol. 59 6031–6042.Maeda H., (2010) ‘Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects’, Bioconjug. Chem. 21 797–802.Marty M., et. al. (2006) ‘Electrochemotherapy — an easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: results of ESOPE (European Standard Operating Procedures of Electrochemotherapy) study’, EJC Suppl. 4 3–13.Matsumura Y., Maeda H., (1986). ‘A new concept for macromolecular therapeutics in cáncer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent SMANCS’, Cancer Res. 46 pag. 6387–6392.Miklavčič D, et. al. (2012) ‘Electrochemotherapy: technological advancements for efficient electroporation-based treatment of internal tumors’, Med. Biol. Eng. Comput. 50 1213–1225.Neumann E, et. al. (1999) ‘Fundamentals of electroporative delivery of drugs and genes, Bioelectrochem’. Bioenerg. 48 3–16.Neumann E, et. al. (1982) ‘Gene transfer into mouse lyoma cells by electroporation in high electric fields’, EMBO J. 1 841–845.Pamela E., et. al. (2010 ‘Electrical Stimulation Therapy Increases Rate of Healing of Pressure Ulcers in Community-Dwelling People With Spinal Cord Injury’. Archives of Physical Medicine and Rehabilitation. Volume 91, Issue 5, Pages 669-678.Pei-Chi Lee et. al. (2016) ‘Combining the single-walled carbon nanotubes with low voltaje electrical stimulation to improve accumulation of nanomedicines in tumor for effective cancer therapy’. Journal of Controlled Release 225 140–151.Raffa V, et. al. (2010) ‘Carbon nanotubeenhanced cell electropermeabilisation’, Bioelectrochemistry 79 136–141. Saito R, et. al. (2010) ‘Physical Properties of Carbon Nanotube’, Imperial College Press, London, 2010 1–29.Sano K, et. al. (2013) ‘Markedly enhanced permeability and retention effects induced by photo-immunotherapy of tumors’, ACS Nano 7 717–724.Satkauskas S, et. al. (2005) ‘Effectiveness of tumor electrochemotherapy as a function of electric pulse strength and duration’, Bioelectrochemistry 65 105–111.Shahini M, et. al. (2013) ‘Cell electroporation by CNT-featured microfluidic chip’, Lab Chip 13 2585–2590.Stylianopoulos T, (2013) ‘EPR-effect: utilizing size-dependent nanoparticle delivery to solid tumors’, Ther. Deliv. 4 421–423.Titomirov AV, et. al. (1991) ‘In vivo electroporation and stable transformation of skin cells of newborn mice by plasmid DNA’, Biochim. Biophys. Acta 1088 (1991) 131–134.Wang L, et. al. (2015) ‘Cuschieri, Tumour cell membrane poration and ablation by pulsed low-intensity electric field with carbon nanotubes’, Int. J. Mol. Sci. 16 6890–6901.Zhong Y, et. al. (2014) ‘Ligand-directed active tumor-targeting polymeric nanoparticles for cancer chemotherapy’, Biomacromolecules 15 1955–1969.https://revistas.eia.edu.co/index.php/reveia/article/download/1410/1361Núm. 34 , Año 20201134117Revista EIAPublicationOREORE.xmltext/xml2886https://repository.eia.edu.co/bitstreams/d816dbb8-70a2-44f8-bf2c-ee4b950c179e/download526de27845a3c96982eeccb4be2f680fMD5111190/5117oai:repository.eia.edu.co:11190/51172023-07-25 17:03:08.438https://creativecommons.org/licenses/by-nc-nd/4.0Revista EIA - 2020metadata.onlyhttps://repository.eia.edu.coRepositorio Institucional Universidad EIAbdigital@metabiblioteca.com