Optimal Sensor Placement of a Box Girder Bridge Using Mode Shapes Obtained from Numerical Analysis and Field Testing
This paper presents a comparative study of an Optimal Sensor Placement (OSP) implementation conducted in a box girder bridge using experimental and numerical mode shapes obtained at different construction stages. It is widely recognized that monitoring the dynamic response of bridges during differen...
- Autores:
-
Viviescas, Álvaro
Chio Cho, Gustavo
Begambre, Oscar
Hernandez, Wilson
Riveros-Jerez, Carlos Alberto
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Universidad EIA .
- Repositorio:
- Repositorio EIA .
- Idioma:
- spa
- OAI Identifier:
- oai:repository.eia.edu.co:11190/5076
- Acceso en línea:
- https://repository.eia.edu.co/handle/11190/5076
https://doi.org/10.24050/reia.v17i34.1296
- Palabra clave:
- Box girder bridge
optimal sensor placement
Fisher information matrix
modal identification
field testing.
Puente de viga cajón
óptima localización de sensores
matriz de información Fisher
identificación modal
pruebas de medición en campo
- Rights
- openAccess
- License
- Revista EIA - 2020
id |
REIA2_9a1af61d0f72eb23c8ea793ad72dac53 |
---|---|
oai_identifier_str |
oai:repository.eia.edu.co:11190/5076 |
network_acronym_str |
REIA2 |
network_name_str |
Repositorio EIA . |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Optimal Sensor Placement of a Box Girder Bridge Using Mode Shapes Obtained from Numerical Analysis and Field Testing |
dc.title.translated.eng.fl_str_mv |
Óptima Localización de Sensores en un Puente de Viga Cajón Utilizando Modos de Vibración Obtenidos de Análisis Numérico y Pruebas de Medición en Campo |
title |
Optimal Sensor Placement of a Box Girder Bridge Using Mode Shapes Obtained from Numerical Analysis and Field Testing |
spellingShingle |
Optimal Sensor Placement of a Box Girder Bridge Using Mode Shapes Obtained from Numerical Analysis and Field Testing Box girder bridge optimal sensor placement Fisher information matrix modal identification field testing. Puente de viga cajón óptima localización de sensores matriz de información Fisher identificación modal pruebas de medición en campo |
title_short |
Optimal Sensor Placement of a Box Girder Bridge Using Mode Shapes Obtained from Numerical Analysis and Field Testing |
title_full |
Optimal Sensor Placement of a Box Girder Bridge Using Mode Shapes Obtained from Numerical Analysis and Field Testing |
title_fullStr |
Optimal Sensor Placement of a Box Girder Bridge Using Mode Shapes Obtained from Numerical Analysis and Field Testing |
title_full_unstemmed |
Optimal Sensor Placement of a Box Girder Bridge Using Mode Shapes Obtained from Numerical Analysis and Field Testing |
title_sort |
Optimal Sensor Placement of a Box Girder Bridge Using Mode Shapes Obtained from Numerical Analysis and Field Testing |
dc.creator.fl_str_mv |
Viviescas, Álvaro Chio Cho, Gustavo Begambre, Oscar Hernandez, Wilson Riveros-Jerez, Carlos Alberto |
dc.contributor.author.spa.fl_str_mv |
Viviescas, Álvaro Chio Cho, Gustavo Begambre, Oscar Hernandez, Wilson Riveros-Jerez, Carlos Alberto |
dc.subject.spa.fl_str_mv |
Box girder bridge optimal sensor placement Fisher information matrix modal identification field testing. |
topic |
Box girder bridge optimal sensor placement Fisher information matrix modal identification field testing. Puente de viga cajón óptima localización de sensores matriz de información Fisher identificación modal pruebas de medición en campo |
dc.subject.eng.fl_str_mv |
Puente de viga cajón óptima localización de sensores matriz de información Fisher identificación modal pruebas de medición en campo |
description |
This paper presents a comparative study of an Optimal Sensor Placement (OSP) implementation conducted in a box girder bridge using experimental and numerical mode shapes obtained at different construction stages. It is widely recognized that monitoring the dynamic response of bridges during different construction stages provides valuable information to adjust design considerations. Therefore, there is a need for the development of OSP implementations in order to find the optimal number of sensors needed for real applications. In the present study, an OPS method based on the maximization of the Fisher Information Matrix (FIM) is used. The use of experimentally derived and numerical based mode shapes is considered in the determination of the optimal sensor locations. Field testing results previously conducted before connecting the central segment of the main span are also included in this study. The asphalt pavement weight effect in OSP determination is also analyzed by considering field testing. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-06-21 00:00:00 2022-06-17T20:20:16Z |
dc.date.available.none.fl_str_mv |
2020-06-21 00:00:00 2022-06-17T20:20:16Z |
dc.date.issued.none.fl_str_mv |
2020-06-21 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.eng.fl_str_mv |
Journal article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_6501 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ARTREF |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
1794-1237 |
dc.identifier.uri.none.fl_str_mv |
https://repository.eia.edu.co/handle/11190/5076 |
dc.identifier.doi.none.fl_str_mv |
10.24050/reia.v17i34.1296 |
dc.identifier.eissn.none.fl_str_mv |
2463-0950 |
dc.identifier.url.none.fl_str_mv |
https://doi.org/10.24050/reia.v17i34.1296 |
identifier_str_mv |
1794-1237 10.24050/reia.v17i34.1296 2463-0950 |
url |
https://repository.eia.edu.co/handle/11190/5076 https://doi.org/10.24050/reia.v17i34.1296 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Bagheri, A., Alipour, M., Ozbulut, O., Harris, D. (2018). A nondestructive method for load rating of bridges without structural properties and plans. Engineering Structures, 171, pp. 545-556. Chang, M., Pakzad, S. (2014). Optimal sensor placement for modal identification of bridge systems considering number of sensing nodes. Journal of Bridge Engineering ASCE, 9(6):04014019. Chen, G-W., Omenzetter, P., Beskhyroun, S. (2017). Operational modal analysis of an eleven-span concrete bridge subjected to weak ambient excitations. Engineering Structures, 151, pp. 839-860. Costa, C., Ribeiro D., Jorge, P., Silva, R., Arêde, A., Calçada, R. (2016). Calibration of the numerical model of a stone masonry railway bridge based on experimentally identified modal parameters. Engineering Structures, 123, pp. 354-371. Hernandez, W., Viviescas, A., Riveros, C.A. Dynamic response assessment during the construction of a segmental bridge using finite element modeling and ambient vibration testing. Dyna, in Review. Kammer, D., Brillhart, R. (1996). Optimal sensor placement for modal identification using system-realization methods. Journal of Guidance, Control and Dynamics, 19, pp. 729-731. Kim, T., Youn, B., Oh, H. (2018). Development of a stochastic effective independence (SEFI) method for optimal sensor placement under uncertainty. Mechanical Systems and Signal Processing, 111, pp. 615-627. Kinemetrics Inc. (2016). [On line]. [Last access: 19 April 2016]. Liu, K., Yang, R., Soares, C. (2018). Optimal sensor placement and assessment for modal identification. Ocean Engineering, 165, pp. 209-220. Meo, M., Zumpano, G. (2005). On the optimal sensor placement techniques for a bridge structure. Engineering Structures, 27, pp. 1488-1497. MIDAS Information Technology Co. Ltd. (2016). Midas User Manual, MIDAS Information Technology, Seongnam, South Korea. Prabhu, S., Atamturktur, S. (2013) Selection of Optimal Sensor Locations Based on Modified Effective Independence Method: Case Study on a Gothic Revival Cathedral. Journal of Architectural Engineering ASCE, 19(4), pp. 288-301. Riveros, C., García, E., Rivero, J. (2013). A comparative study of sensor placement techniques for structural damage detection. Revista EIA, 10, pp. 23-37. LANL/UCSD Engineering Institute. (2010). Structural Health Monitoring Tools (SHM Tools). Los Alamos national laboratory, US. Vicenzi, L., Simonini, L. (2017). Influence of model errors in optimal sensor placement. Journal of Sound and Vibration, 389, pp. 119-133. |
dc.relation.bitstream.none.fl_str_mv |
https://revistas.eia.edu.co/index.php/reveia/article/download/1296/1334 |
dc.relation.citationedition.spa.fl_str_mv |
Núm. 34 , Año 2020 |
dc.relation.citationendpage.none.fl_str_mv |
12 |
dc.relation.citationissue.spa.fl_str_mv |
34 |
dc.relation.citationstartpage.none.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
17 |
dc.relation.ispartofjournal.spa.fl_str_mv |
Revista EIA |
dc.rights.spa.fl_str_mv |
Revista EIA - 2020 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0 |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Revista EIA - 2020 https://creativecommons.org/licenses/by-nc-nd/4.0 http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Fondo Editorial EIA - Universidad EIA |
dc.source.spa.fl_str_mv |
https://revistas.eia.edu.co/index.php/reveia/article/view/1296 |
institution |
Universidad EIA . |
bitstream.url.fl_str_mv |
https://repository.eia.edu.co/bitstreams/ba80cfb9-c7d3-4bb9-9f47-e720bc1fe2be/download |
bitstream.checksum.fl_str_mv |
5803e861f975bc4f75bfe707b7cebd5a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EIA |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814100909611810816 |
spelling |
Viviescas, Álvaro5f6f620532eade3d5deab85fa90c819f300Chio Cho, Gustavo3f0a3b98e2e8afb0d1a8f21478cec61b500Begambre, Oscar75d9dec1f692009e394b7703777a280f300Hernandez, Wilson5fd272a8edb688636fa45e84e79b6fcf300Riveros-Jerez, Carlos Alberto599f00c715fb15d9ccdf0f46e474ffa92020-06-21 00:00:002022-06-17T20:20:16Z2020-06-21 00:00:002022-06-17T20:20:16Z2020-06-211794-1237https://repository.eia.edu.co/handle/11190/507610.24050/reia.v17i34.12962463-0950https://doi.org/10.24050/reia.v17i34.1296This paper presents a comparative study of an Optimal Sensor Placement (OSP) implementation conducted in a box girder bridge using experimental and numerical mode shapes obtained at different construction stages. It is widely recognized that monitoring the dynamic response of bridges during different construction stages provides valuable information to adjust design considerations. Therefore, there is a need for the development of OSP implementations in order to find the optimal number of sensors needed for real applications. In the present study, an OPS method based on the maximization of the Fisher Information Matrix (FIM) is used. The use of experimentally derived and numerical based mode shapes is considered in the determination of the optimal sensor locations. Field testing results previously conducted before connecting the central segment of the main span are also included in this study. The asphalt pavement weight effect in OSP determination is also analyzed by considering field testing.Este artículo presenta un estudio comparativo de óptima localización de sensores (OSP) realizado en un puente de viga cajón usando modos de vibración experimentales y numéricos obtenidos en diferentes estados de construcción del puente. Es ampliamente reconocido que el monitoreo de la respuesta dinámica de puentes durante diferentes estados de construcción provee información invaluable para ajustar las consideraciones de diseño. Por lo tanto, existe una necesidad de desarrollar estrategias para determinar la localización óptima de sensores (OSP, por sus siglas en inglés). En el presente estudio, un método OSP basado en la maximización de la matriz de información Fisher (FIM) es utilizado. El uso de modos de vibración derivados de forma experimental y numérica es considerado en la determinación las posiciones OSP. Resultados de pruebas de medición en campo ejecutadas antes de conectar la dovela central de la luz principal también se incluyen en este estudio. El peso de la carpeta asfáltica en la determinación de las posiciones OSP es también considerado en las pruebas de medición en campo.application/pdfspaFondo Editorial EIA - Universidad EIARevista EIA - 2020https://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.http://purl.org/coar/access_right/c_abf2https://revistas.eia.edu.co/index.php/reveia/article/view/1296Box girder bridgeoptimal sensor placementFisher information matrixmodal identificationfield testing.Puente de viga cajónóptima localización de sensoresmatriz de información Fisheridentificación modalpruebas de medición en campoOptimal Sensor Placement of a Box Girder Bridge Using Mode Shapes Obtained from Numerical Analysis and Field TestingÓptima Localización de Sensores en un Puente de Viga Cajón Utilizando Modos de Vibración Obtenidos de Análisis Numérico y Pruebas de Medición en CampoArtículo de revistaJournal articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionTexthttp://purl.org/redcol/resource_type/ARTREFhttp://purl.org/coar/version/c_970fb48d4fbd8a85Bagheri, A., Alipour, M., Ozbulut, O., Harris, D. (2018). A nondestructive method for load rating of bridges without structural properties and plans. Engineering Structures, 171, pp. 545-556. Chang, M., Pakzad, S. (2014). Optimal sensor placement for modal identification of bridge systems considering number of sensing nodes. Journal of Bridge Engineering ASCE, 9(6):04014019. Chen, G-W., Omenzetter, P., Beskhyroun, S. (2017). Operational modal analysis of an eleven-span concrete bridge subjected to weak ambient excitations. Engineering Structures, 151, pp. 839-860. Costa, C., Ribeiro D., Jorge, P., Silva, R., Arêde, A., Calçada, R. (2016). Calibration of the numerical model of a stone masonry railway bridge based on experimentally identified modal parameters. Engineering Structures, 123, pp. 354-371. Hernandez, W., Viviescas, A., Riveros, C.A. Dynamic response assessment during the construction of a segmental bridge using finite element modeling and ambient vibration testing. Dyna, in Review. Kammer, D., Brillhart, R. (1996). Optimal sensor placement for modal identification using system-realization methods. Journal of Guidance, Control and Dynamics, 19, pp. 729-731. Kim, T., Youn, B., Oh, H. (2018). Development of a stochastic effective independence (SEFI) method for optimal sensor placement under uncertainty. Mechanical Systems and Signal Processing, 111, pp. 615-627. Kinemetrics Inc. (2016). [On line]. [Last access: 19 April 2016]. Liu, K., Yang, R., Soares, C. (2018). Optimal sensor placement and assessment for modal identification. Ocean Engineering, 165, pp. 209-220. Meo, M., Zumpano, G. (2005). On the optimal sensor placement techniques for a bridge structure. Engineering Structures, 27, pp. 1488-1497. MIDAS Information Technology Co. Ltd. (2016). Midas User Manual, MIDAS Information Technology, Seongnam, South Korea. Prabhu, S., Atamturktur, S. (2013) Selection of Optimal Sensor Locations Based on Modified Effective Independence Method: Case Study on a Gothic Revival Cathedral. Journal of Architectural Engineering ASCE, 19(4), pp. 288-301. Riveros, C., García, E., Rivero, J. (2013). A comparative study of sensor placement techniques for structural damage detection. Revista EIA, 10, pp. 23-37. LANL/UCSD Engineering Institute. (2010). Structural Health Monitoring Tools (SHM Tools). Los Alamos national laboratory, US. Vicenzi, L., Simonini, L. (2017). Influence of model errors in optimal sensor placement. Journal of Sound and Vibration, 389, pp. 119-133.https://revistas.eia.edu.co/index.php/reveia/article/download/1296/1334Núm. 34 , Año 20201234117Revista EIAPublicationOREORE.xmltext/xml2795https://repository.eia.edu.co/bitstreams/ba80cfb9-c7d3-4bb9-9f47-e720bc1fe2be/download5803e861f975bc4f75bfe707b7cebd5aMD5111190/5076oai:repository.eia.edu.co:11190/50762023-07-25 17:14:25.793https://creativecommons.org/licenses/by-nc-nd/4.0Revista EIA - 2020metadata.onlyhttps://repository.eia.edu.coRepositorio Institucional Universidad EIAbdigital@metabiblioteca.com |