Optimal Sensor Placement of a Box Girder Bridge Using Mode Shapes Obtained from Numerical Analysis and Field Testing

This paper presents a comparative study of an Optimal Sensor Placement (OSP) implementation conducted in a box girder bridge using experimental and numerical mode shapes obtained at different construction stages. It is widely recognized that monitoring the dynamic response of bridges during differen...

Full description

Autores:
Viviescas, Álvaro
Chio Cho, Gustavo
Begambre, Oscar
Hernandez, Wilson
Riveros-Jerez, Carlos Alberto
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Universidad EIA .
Repositorio:
Repositorio EIA .
Idioma:
spa
OAI Identifier:
oai:repository.eia.edu.co:11190/5076
Acceso en línea:
https://repository.eia.edu.co/handle/11190/5076
https://doi.org/10.24050/reia.v17i34.1296
Palabra clave:
Box girder bridge
optimal sensor placement
Fisher information matrix
modal identification
field testing.
Puente de viga cajón
óptima localización de sensores
matriz de información Fisher
identificación modal
pruebas de medición en campo
Rights
openAccess
License
Revista EIA - 2020
id REIA2_9a1af61d0f72eb23c8ea793ad72dac53
oai_identifier_str oai:repository.eia.edu.co:11190/5076
network_acronym_str REIA2
network_name_str Repositorio EIA .
repository_id_str
dc.title.spa.fl_str_mv Optimal Sensor Placement of a Box Girder Bridge Using Mode Shapes Obtained from Numerical Analysis and Field Testing
dc.title.translated.eng.fl_str_mv Óptima Localización de Sensores en un Puente de Viga Cajón Utilizando Modos de Vibración Obtenidos de Análisis Numérico y Pruebas de Medición en Campo
title Optimal Sensor Placement of a Box Girder Bridge Using Mode Shapes Obtained from Numerical Analysis and Field Testing
spellingShingle Optimal Sensor Placement of a Box Girder Bridge Using Mode Shapes Obtained from Numerical Analysis and Field Testing
Box girder bridge
optimal sensor placement
Fisher information matrix
modal identification
field testing.
Puente de viga cajón
óptima localización de sensores
matriz de información Fisher
identificación modal
pruebas de medición en campo
title_short Optimal Sensor Placement of a Box Girder Bridge Using Mode Shapes Obtained from Numerical Analysis and Field Testing
title_full Optimal Sensor Placement of a Box Girder Bridge Using Mode Shapes Obtained from Numerical Analysis and Field Testing
title_fullStr Optimal Sensor Placement of a Box Girder Bridge Using Mode Shapes Obtained from Numerical Analysis and Field Testing
title_full_unstemmed Optimal Sensor Placement of a Box Girder Bridge Using Mode Shapes Obtained from Numerical Analysis and Field Testing
title_sort Optimal Sensor Placement of a Box Girder Bridge Using Mode Shapes Obtained from Numerical Analysis and Field Testing
dc.creator.fl_str_mv Viviescas, Álvaro
Chio Cho, Gustavo
Begambre, Oscar
Hernandez, Wilson
Riveros-Jerez, Carlos Alberto
dc.contributor.author.spa.fl_str_mv Viviescas, Álvaro
Chio Cho, Gustavo
Begambre, Oscar
Hernandez, Wilson
Riveros-Jerez, Carlos Alberto
dc.subject.spa.fl_str_mv Box girder bridge
optimal sensor placement
Fisher information matrix
modal identification
field testing.
topic Box girder bridge
optimal sensor placement
Fisher information matrix
modal identification
field testing.
Puente de viga cajón
óptima localización de sensores
matriz de información Fisher
identificación modal
pruebas de medición en campo
dc.subject.eng.fl_str_mv Puente de viga cajón
óptima localización de sensores
matriz de información Fisher
identificación modal
pruebas de medición en campo
description This paper presents a comparative study of an Optimal Sensor Placement (OSP) implementation conducted in a box girder bridge using experimental and numerical mode shapes obtained at different construction stages. It is widely recognized that monitoring the dynamic response of bridges during different construction stages provides valuable information to adjust design considerations. Therefore, there is a need for the development of OSP implementations in order to find the optimal number of sensors needed for real applications. In the present study, an OPS method based on the maximization of the Fisher Information Matrix (FIM) is used. The use of experimentally derived and numerical based mode shapes is considered in the determination of the optimal sensor locations. Field testing results previously conducted before connecting the central segment of the main span are also included in this study. The asphalt pavement weight effect in OSP determination is also analyzed by considering field testing.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-06-21 00:00:00
2022-06-17T20:20:16Z
dc.date.available.none.fl_str_mv 2020-06-21 00:00:00
2022-06-17T20:20:16Z
dc.date.issued.none.fl_str_mv 2020-06-21
dc.type.spa.fl_str_mv Artículo de revista
dc.type.eng.fl_str_mv Journal article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_6501
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 1794-1237
dc.identifier.uri.none.fl_str_mv https://repository.eia.edu.co/handle/11190/5076
dc.identifier.doi.none.fl_str_mv 10.24050/reia.v17i34.1296
dc.identifier.eissn.none.fl_str_mv 2463-0950
dc.identifier.url.none.fl_str_mv https://doi.org/10.24050/reia.v17i34.1296
identifier_str_mv 1794-1237
10.24050/reia.v17i34.1296
2463-0950
url https://repository.eia.edu.co/handle/11190/5076
https://doi.org/10.24050/reia.v17i34.1296
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Bagheri, A., Alipour, M., Ozbulut, O., Harris, D. (2018). A nondestructive method for load rating of bridges without structural properties and plans. Engineering Structures, 171, pp. 545-556. Chang, M., Pakzad, S. (2014). Optimal sensor placement for modal identification of bridge systems considering number of sensing nodes. Journal of Bridge Engineering ASCE, 9(6):04014019. Chen, G-W., Omenzetter, P., Beskhyroun, S. (2017). Operational modal analysis of an eleven-span concrete bridge subjected to weak ambient excitations. Engineering Structures, 151, pp. 839-860. Costa, C., Ribeiro D., Jorge, P., Silva, R., Arêde, A., Calçada, R. (2016). Calibration of the numerical model of a stone masonry railway bridge based on experimentally identified modal parameters. Engineering Structures, 123, pp. 354-371. Hernandez, W., Viviescas, A., Riveros, C.A. Dynamic response assessment during the construction of a segmental bridge using finite element modeling and ambient vibration testing. Dyna, in Review. Kammer, D., Brillhart, R. (1996). Optimal sensor placement for modal identification using system-realization methods. Journal of Guidance, Control and Dynamics, 19, pp. 729-731. Kim, T., Youn, B., Oh, H. (2018). Development of a stochastic effective independence (SEFI) method for optimal sensor placement under uncertainty. Mechanical Systems and Signal Processing, 111, pp. 615-627. Kinemetrics Inc. (2016). [On line]. [Last access: 19 April 2016]. Liu, K., Yang, R., Soares, C. (2018). Optimal sensor placement and assessment for modal identification. Ocean Engineering, 165, pp. 209-220. Meo, M., Zumpano, G. (2005). On the optimal sensor placement techniques for a bridge structure. Engineering Structures, 27, pp. 1488-1497. MIDAS Information Technology Co. Ltd. (2016). Midas User Manual, MIDAS Information Technology, Seongnam, South Korea. Prabhu, S., Atamturktur, S. (2013) Selection of Optimal Sensor Locations Based on Modified Effective Independence Method: Case Study on a Gothic Revival Cathedral. Journal of Architectural Engineering ASCE, 19(4), pp. 288-301. Riveros, C., García, E., Rivero, J. (2013). A comparative study of sensor placement techniques for structural damage detection. Revista EIA, 10, pp. 23-37. LANL/UCSD Engineering Institute. (2010). Structural Health Monitoring Tools (SHM Tools). Los Alamos national laboratory, US. Vicenzi, L., Simonini, L. (2017). Influence of model errors in optimal sensor placement. Journal of Sound and Vibration, 389, pp. 119-133.
dc.relation.bitstream.none.fl_str_mv https://revistas.eia.edu.co/index.php/reveia/article/download/1296/1334
dc.relation.citationedition.spa.fl_str_mv Núm. 34 , Año 2020
dc.relation.citationendpage.none.fl_str_mv 12
dc.relation.citationissue.spa.fl_str_mv 34
dc.relation.citationstartpage.none.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 17
dc.relation.ispartofjournal.spa.fl_str_mv Revista EIA
dc.rights.spa.fl_str_mv Revista EIA - 2020
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Revista EIA - 2020
https://creativecommons.org/licenses/by-nc-nd/4.0
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Fondo Editorial EIA - Universidad EIA
dc.source.spa.fl_str_mv https://revistas.eia.edu.co/index.php/reveia/article/view/1296
institution Universidad EIA .
bitstream.url.fl_str_mv https://repository.eia.edu.co/bitstreams/ba80cfb9-c7d3-4bb9-9f47-e720bc1fe2be/download
bitstream.checksum.fl_str_mv 5803e861f975bc4f75bfe707b7cebd5a
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EIA
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814100909611810816
spelling Viviescas, Álvaro5f6f620532eade3d5deab85fa90c819f300Chio Cho, Gustavo3f0a3b98e2e8afb0d1a8f21478cec61b500Begambre, Oscar75d9dec1f692009e394b7703777a280f300Hernandez, Wilson5fd272a8edb688636fa45e84e79b6fcf300Riveros-Jerez, Carlos Alberto599f00c715fb15d9ccdf0f46e474ffa92020-06-21 00:00:002022-06-17T20:20:16Z2020-06-21 00:00:002022-06-17T20:20:16Z2020-06-211794-1237https://repository.eia.edu.co/handle/11190/507610.24050/reia.v17i34.12962463-0950https://doi.org/10.24050/reia.v17i34.1296This paper presents a comparative study of an Optimal Sensor Placement (OSP) implementation conducted in a box girder bridge using experimental and numerical mode shapes obtained at different construction stages. It is widely recognized that monitoring the dynamic response of bridges during different construction stages provides valuable information to adjust design considerations. Therefore, there is a need for the development of OSP implementations in order to find the optimal number of sensors needed for real applications. In the present study, an OPS method based on the maximization of the Fisher Information Matrix (FIM) is used. The use of experimentally derived and numerical based mode shapes is considered in the determination of the optimal sensor locations. Field testing results previously conducted before connecting the central segment of the main span are also included in this study. The asphalt pavement weight effect in OSP determination is also analyzed by considering field testing.Este artículo presenta un estudio comparativo de óptima localización de sensores (OSP) realizado en un puente de viga cajón usando modos de vibración experimentales y numéricos obtenidos en diferentes estados de construcción del puente. Es ampliamente reconocido que el monitoreo de la respuesta dinámica de puentes durante diferentes estados de construcción provee información invaluable para ajustar las consideraciones de diseño. Por lo tanto, existe una necesidad de desarrollar estrategias para determinar la localización óptima de sensores (OSP, por sus siglas en inglés). En el presente estudio, un método OSP basado en la maximización de la matriz de información Fisher (FIM) es utilizado. El uso de modos de vibración derivados de forma experimental y numérica es considerado en la determinación las posiciones OSP. Resultados de pruebas de medición en campo ejecutadas antes de conectar la dovela central de la luz principal también se incluyen en este estudio. El peso de la carpeta asfáltica en la determinación de las posiciones OSP es también considerado en las pruebas de medición en campo.application/pdfspaFondo Editorial EIA - Universidad EIARevista EIA - 2020https://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.http://purl.org/coar/access_right/c_abf2https://revistas.eia.edu.co/index.php/reveia/article/view/1296Box girder bridgeoptimal sensor placementFisher information matrixmodal identificationfield testing.Puente de viga cajónóptima localización de sensoresmatriz de información Fisheridentificación modalpruebas de medición en campoOptimal Sensor Placement of a Box Girder Bridge Using Mode Shapes Obtained from Numerical Analysis and Field TestingÓptima Localización de Sensores en un Puente de Viga Cajón Utilizando Modos de Vibración Obtenidos de Análisis Numérico y Pruebas de Medición en CampoArtículo de revistaJournal articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionTexthttp://purl.org/redcol/resource_type/ARTREFhttp://purl.org/coar/version/c_970fb48d4fbd8a85Bagheri, A., Alipour, M., Ozbulut, O., Harris, D. (2018). A nondestructive method for load rating of bridges without structural properties and plans. Engineering Structures, 171, pp. 545-556. Chang, M., Pakzad, S. (2014). Optimal sensor placement for modal identification of bridge systems considering number of sensing nodes. Journal of Bridge Engineering ASCE, 9(6):04014019. Chen, G-W., Omenzetter, P., Beskhyroun, S. (2017). Operational modal analysis of an eleven-span concrete bridge subjected to weak ambient excitations. Engineering Structures, 151, pp. 839-860. Costa, C., Ribeiro D., Jorge, P., Silva, R., Arêde, A., Calçada, R. (2016). Calibration of the numerical model of a stone masonry railway bridge based on experimentally identified modal parameters. Engineering Structures, 123, pp. 354-371. Hernandez, W., Viviescas, A., Riveros, C.A. Dynamic response assessment during the construction of a segmental bridge using finite element modeling and ambient vibration testing. Dyna, in Review. Kammer, D., Brillhart, R. (1996). Optimal sensor placement for modal identification using system-realization methods. Journal of Guidance, Control and Dynamics, 19, pp. 729-731. Kim, T., Youn, B., Oh, H. (2018). Development of a stochastic effective independence (SEFI) method for optimal sensor placement under uncertainty. Mechanical Systems and Signal Processing, 111, pp. 615-627. Kinemetrics Inc. (2016). [On line]. [Last access: 19 April 2016]. Liu, K., Yang, R., Soares, C. (2018). Optimal sensor placement and assessment for modal identification. Ocean Engineering, 165, pp. 209-220. Meo, M., Zumpano, G. (2005). On the optimal sensor placement techniques for a bridge structure. Engineering Structures, 27, pp. 1488-1497. MIDAS Information Technology Co. Ltd. (2016). Midas User Manual, MIDAS Information Technology, Seongnam, South Korea. Prabhu, S., Atamturktur, S. (2013) Selection of Optimal Sensor Locations Based on Modified Effective Independence Method: Case Study on a Gothic Revival Cathedral. Journal of Architectural Engineering ASCE, 19(4), pp. 288-301. Riveros, C., García, E., Rivero, J. (2013). A comparative study of sensor placement techniques for structural damage detection. Revista EIA, 10, pp. 23-37. LANL/UCSD Engineering Institute. (2010). Structural Health Monitoring Tools (SHM Tools). Los Alamos national laboratory, US. Vicenzi, L., Simonini, L. (2017). Influence of model errors in optimal sensor placement. Journal of Sound and Vibration, 389, pp. 119-133.https://revistas.eia.edu.co/index.php/reveia/article/download/1296/1334Núm. 34 , Año 20201234117Revista EIAPublicationOREORE.xmltext/xml2795https://repository.eia.edu.co/bitstreams/ba80cfb9-c7d3-4bb9-9f47-e720bc1fe2be/download5803e861f975bc4f75bfe707b7cebd5aMD5111190/5076oai:repository.eia.edu.co:11190/50762023-07-25 17:14:25.793https://creativecommons.org/licenses/by-nc-nd/4.0Revista EIA - 2020metadata.onlyhttps://repository.eia.edu.coRepositorio Institucional Universidad EIAbdigital@metabiblioteca.com