Effects of Co Addition on the Microstructure and Morphological Properties of TIO2: Multicomponent Oxide of Transition Metals

This work presents the process of fabrication and characterization of cobalt-doped titanium dioxide thin films on soda-lime glass substrates useful in spintronic applications. The samples were fabricated via the DC Sputtering technique, under the magnetron configuration. The samples were submitted o...

Full description

Autores:
Quiroz Gaitán, Heiddy Paola
Bohórquez, Andrés Jhovanny
Dussan Cuenca, Anderson
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Universidad EIA .
Repositorio:
Repositorio EIA .
Idioma:
spa
OAI Identifier:
oai:repository.eia.edu.co:11190/5094
Acceso en línea:
https://repository.eia.edu.co/handle/11190/5094
https://doi.org/10.24050/reia.v17i34.1344
Palabra clave:
Alloys
titania
ferromagnetic
room temperature.
Ciencia de Materiales
Aleaciones
titania
ferromagnético
temperatura ambiente
Rights
openAccess
License
Revista EIA - 2020
id REIA2_753e41feb7d978e85f46e5428f623c17
oai_identifier_str oai:repository.eia.edu.co:11190/5094
network_acronym_str REIA2
network_name_str Repositorio EIA .
repository_id_str
dc.title.spa.fl_str_mv Effects of Co Addition on the Microstructure and Morphological Properties of TIO2: Multicomponent Oxide of Transition Metals
dc.title.translated.eng.fl_str_mv Efecto de la adición de Co sobre las propiedades de la microestructura y la morfología de TIO2: óxido multicomponente de metales de transición
title Effects of Co Addition on the Microstructure and Morphological Properties of TIO2: Multicomponent Oxide of Transition Metals
spellingShingle Effects of Co Addition on the Microstructure and Morphological Properties of TIO2: Multicomponent Oxide of Transition Metals
Alloys
titania
ferromagnetic
room temperature.
Ciencia de Materiales
Aleaciones
titania
ferromagnético
temperatura ambiente
title_short Effects of Co Addition on the Microstructure and Morphological Properties of TIO2: Multicomponent Oxide of Transition Metals
title_full Effects of Co Addition on the Microstructure and Morphological Properties of TIO2: Multicomponent Oxide of Transition Metals
title_fullStr Effects of Co Addition on the Microstructure and Morphological Properties of TIO2: Multicomponent Oxide of Transition Metals
title_full_unstemmed Effects of Co Addition on the Microstructure and Morphological Properties of TIO2: Multicomponent Oxide of Transition Metals
title_sort Effects of Co Addition on the Microstructure and Morphological Properties of TIO2: Multicomponent Oxide of Transition Metals
dc.creator.fl_str_mv Quiroz Gaitán, Heiddy Paola
Bohórquez, Andrés Jhovanny
Dussan Cuenca, Anderson
dc.contributor.author.spa.fl_str_mv Quiroz Gaitán, Heiddy Paola
Bohórquez, Andrés Jhovanny
Dussan Cuenca, Anderson
dc.subject.spa.fl_str_mv Alloys
titania
ferromagnetic
room temperature.
Ciencia de Materiales
topic Alloys
titania
ferromagnetic
room temperature.
Ciencia de Materiales
Aleaciones
titania
ferromagnético
temperatura ambiente
dc.subject.eng.fl_str_mv Aleaciones
titania
ferromagnético
temperatura ambiente
description This work presents the process of fabrication and characterization of cobalt-doped titanium dioxide thin films on soda-lime glass substrates useful in spintronic applications. The samples were fabricated via the DC Sputtering technique, under the magnetron configuration. The samples were submitted of annealing at atmospheric pressure, after deposit process. Annealing process affect the structural properties of thin films, evidencing the formation of the Co3O4 with spinel structure. XPS measurements corroborated the presence of cobalt oxide species with a spinel-like arrangement. Morphological characterization showed an overall granular nature of the fabricated samples, which varied depending on the deposition time and annealing process. PPMS measurements revealed a ferromagnetic behavior of the thin films at room temperature.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-06-21 00:00:00
2022-06-17T20:20:32Z
dc.date.available.none.fl_str_mv 2020-06-21 00:00:00
2022-06-17T20:20:32Z
dc.date.issued.none.fl_str_mv 2020-06-21
dc.type.spa.fl_str_mv Artículo de revista
dc.type.eng.fl_str_mv Journal article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_6501
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 1794-1237
dc.identifier.uri.none.fl_str_mv https://repository.eia.edu.co/handle/11190/5094
dc.identifier.doi.none.fl_str_mv 10.24050/reia.v17i34.1344
dc.identifier.eissn.none.fl_str_mv 2463-0950
dc.identifier.url.none.fl_str_mv https://doi.org/10.24050/reia.v17i34.1344
identifier_str_mv 1794-1237
10.24050/reia.v17i34.1344
2463-0950
url https://repository.eia.edu.co/handle/11190/5094
https://doi.org/10.24050/reia.v17i34.1344
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Charlton, G.; Howes, P.; Muryn, C.; Raza, H.; Jones, N.; Taylor, J.; Norris, C.; McGrath, R.; Norman, D.; Turner, T.; Thornton, G. (2000). Copper interface induced relaxation of TiO2 (110)−1×1. Physical Review B, 61, pp. 16117. [Online] Disponible en: 10.1103/PhysRevB.61.16117 [Consultado 19 de julio de 2019]. [2] Diebold, U.; Tao, H. S.; Shinn, N. D.; Madey, T. E. (1994). Electronic structure of ultrathin Fe films on TiO2(110) studied with soft-x-ray photoelectron spectroscopy and resonant photoemission. Physical Review B: Condensed Matter, 50, pp. 14474. [Online] Disponible en: 10.1103/physrevb.50.14474 [Consultado 19 de julio de 2019]. [3] Shao, Y.; Chen, W.; Wold, E.; Pau, J. (1994). Dispersion and electronic structure of titania-supported cobalt and cobalt oxide, Langmuir, 10, pp. 178-187. [Online] Disponible en: https://doi.org/10.1021/la00013a027 [Consultado 19 de julio de 2019]. [4] Huang, C.; Guo, Y.; Liu, X.; Wang, Y. (2006). Structural and optical properties of Ti1-xCoxO2 films prepared by sol-gel spin coating. Thin Solid Films, 505 (1-2), pp. 141-144. [Online] Disponible en: https://doi.org/10.1016/j.tsf.2005.10.021 [Consultado 19 de julio de 2019]. [5] Xue, Y.; Wang, H. M. (2005). Microstructure and wear properties of laser clad TiCo/Ti2Co intermetallic coatings on titanium alloy. Applied Surface Science, 243 (1-4), 278-286. [Online] Disponible en: https://doi.org/10.1016/j.apsusc.2004.09.073 [Consultado 19 de julio de 2019]. [6] Megusar, J.; Meier, G. H.; (1976). Internal Oxidation of Dilute Co-Ti Alloys. Metallurgical Transactions A, 7, pp. 1133-1140. [Online] Disponible en: https://doi.org/10.1007/BF02656595 [Consultado 19 de julio de 2019]. [7] Yankin, A.; Vikhreva, O.; Balakirev, V. (1999). P–T–x diagram of the Co–Ti–O system. Journal of Physics and Chemistry of Solids, 60 (1), pp. 139-143. [Online] Disponible en: https://doi.org/10.1016/S0022-3697(98)00058-4 [Consultado 19 de julio de 2019]. [8] Brezny, Bohuslav; Muan, Arnulf. (1969). Phase Relations and Stabilities Of Compounds In The System CoO-TiO2*. Journal of Inorganic and Nuclear Chemistry, 3, pp. 649-655. [Online] Disponible en: https://doi.org/10.1016/0022-1902(69)80009-6 [Consultado 19 de julio de 2019]. [9] Rout, S.; Popovici, N.; Dalui, S.; Paramês, M.; da Silva, R. (2013). Phase growth control in low temperature PLD Co:TiO2 films by pressure. Current Applied Physics, 13, pp. 670-676. [Online] Disponible en: 10.1016/j.cap.2012.11.005 [Consultado 19 de julio de 2019]. [10] Earnshaw, A.; Greenwood, N. (1997). Chemistry of the Elements. Oxford Butterworth-Heinmann, pp. 961. [11] Lee, Jeong-Min; Kim, Ju Wan; Lim, Ji Sun; Kim, Tae Jin; Kim, Shin Dong; Park, Soo-Jin; Lee, Young-Seak. (2007). X-ray Photoelectron Spectroscopy Study of Cobalt Supported Multi-walled Carbon Nanotubes Prepared by Different Precursors. Carbon Science 8 (2), pp. 120-126. [Online] Disponible en: 10.5714/CL.2007.8.2.120 [Consultado 19 de julio de 2019]. [12] Cabrera-German, Dagoberto; Gomez-Sosa, Gustavo; Herrera-Gomez, Alberto. (2016). Accurate peak fitting and subsequent quantitative composition analysis of the spectrum of Co 2p obtained with Al K α radiation: I: cobalt spinel. Surface and Interface Analysis, 48, pp. 252-256. [Online] Disponible en: https://doi.org/10.1002/sia.5933 [Consultado 19 de julio de 2019]. [13] Galhenage, Randima P.; Yan, Hui; Tenney, Samuel A.; Park, Nayoung; Henkelman, Graeme; Albrecht, Peter; Mullins, David R.; Chen, Donna A. (2013). Understanding the Nucleation and Growth of Metals on TiO2: Co Compared to Au, Ni, and Pt. Journal of Physical Chemistry C, 117 (34), pp. 7191-7201. [Online] Disponible en: https://doi.org/10.1021/jp401283k [Consultado 19 de julio de 2019]. [14] Albella, J. M. (2003). Láminas Delgadas y Recubrimientos: Preparación, Propiedades y Aplicaciones. Madrid. Consejo Superior de Investigaciones Científicas, pp. 120. [15] Tomou, A.; Gournis, D.; Panagiotopoulos, I.; Huang, Y.; Hadjipanayis, G. C.; Kooi, B. J. (2006). Weak ferromagnetism and exchange biasing in cobalt oxide nanoparticle systems. Journal of Applied Physics, 9, pp. 123915. [Online] Disponible en: https://doi.org/10.1063/1.2207809 [Consultado 19 de julio de 2019].
dc.relation.bitstream.none.fl_str_mv https://revistas.eia.edu.co/index.php/reveia/article/download/1344/1339
dc.relation.citationedition.spa.fl_str_mv Núm. 34 , Año 2020
dc.relation.citationendpage.none.fl_str_mv 6
dc.relation.citationissue.spa.fl_str_mv 34
dc.relation.citationstartpage.none.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 17
dc.relation.ispartofjournal.spa.fl_str_mv Revista EIA
dc.rights.spa.fl_str_mv Revista EIA - 2020
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Revista EIA - 2020
https://creativecommons.org/licenses/by-nc-nd/4.0
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Fondo Editorial EIA - Universidad EIA
dc.source.spa.fl_str_mv https://revistas.eia.edu.co/index.php/reveia/article/view/1344
institution Universidad EIA .
bitstream.url.fl_str_mv https://repository.eia.edu.co/bitstreams/4ed30351-e185-48f6-aaae-373ce628b03e/download
bitstream.checksum.fl_str_mv 19406741d749f43eb4ea58e14f8f4ef8
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EIA
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808400302422884352
spelling Quiroz Gaitán, Heiddy Paola7042278b0083cfb6c64b445f0bf71b66500Bohórquez, Andrés Jhovanny470c994b80aeb83a8db2d235bcff6ca9300Dussan Cuenca, Andersonb7a8fc3307ce61d8e85615627d0f33fb2020-06-21 00:00:002022-06-17T20:20:32Z2020-06-21 00:00:002022-06-17T20:20:32Z2020-06-211794-1237https://repository.eia.edu.co/handle/11190/509410.24050/reia.v17i34.13442463-0950https://doi.org/10.24050/reia.v17i34.1344This work presents the process of fabrication and characterization of cobalt-doped titanium dioxide thin films on soda-lime glass substrates useful in spintronic applications. The samples were fabricated via the DC Sputtering technique, under the magnetron configuration. The samples were submitted of annealing at atmospheric pressure, after deposit process. Annealing process affect the structural properties of thin films, evidencing the formation of the Co3O4 with spinel structure. XPS measurements corroborated the presence of cobalt oxide species with a spinel-like arrangement. Morphological characterization showed an overall granular nature of the fabricated samples, which varied depending on the deposition time and annealing process. PPMS measurements revealed a ferromagnetic behavior of the thin films at room temperature.Este trabajo presenta el proceso de fabricación y caracterización de películas delgadas de dióxido de titanio dopado con cobalto depositado sobre vidrio tipo Soda-lime, y usado para aplicaciones Espintrónicas. Las muestras fueron fabricadas por la técnica de DC “Sputtering" en configuración “magnetron”. Después del proceso de depósito, las muestras fueron sometidas a recocidos en a presione atmosférica. Los procesos de recocido afectaron las propiedades estructurales, evidenciad en la formación de Co3O4 con una estructura espinela. Las medidas de XPS corroboraron la presencia de especies de cobalt con un arreglo de espinela. La caracterización morfológica mostro una naturaleza granular de las muestras, que variaron con el tiempo de depósito y los procesos de recocido. Medidas de PPMS revelaron un comportamiento ferromagnético a temperatura ambiente de las películas delgadas.application/pdfspaFondo Editorial EIA - Universidad EIARevista EIA - 2020https://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.http://purl.org/coar/access_right/c_abf2https://revistas.eia.edu.co/index.php/reveia/article/view/1344Alloystitaniaferromagneticroom temperature.Ciencia de MaterialesAleacionestitaniaferromagnéticotemperatura ambienteEffects of Co Addition on the Microstructure and Morphological Properties of TIO2: Multicomponent Oxide of Transition MetalsEfecto de la adición de Co sobre las propiedades de la microestructura y la morfología de TIO2: óxido multicomponente de metales de transiciónArtículo de revistaJournal articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionTexthttp://purl.org/redcol/resource_type/ARTREFhttp://purl.org/coar/version/c_970fb48d4fbd8a85Charlton, G.; Howes, P.; Muryn, C.; Raza, H.; Jones, N.; Taylor, J.; Norris, C.; McGrath, R.; Norman, D.; Turner, T.; Thornton, G. (2000). Copper interface induced relaxation of TiO2 (110)−1×1. Physical Review B, 61, pp. 16117. [Online] Disponible en: 10.1103/PhysRevB.61.16117 [Consultado 19 de julio de 2019]. [2] Diebold, U.; Tao, H. S.; Shinn, N. D.; Madey, T. E. (1994). Electronic structure of ultrathin Fe films on TiO2(110) studied with soft-x-ray photoelectron spectroscopy and resonant photoemission. Physical Review B: Condensed Matter, 50, pp. 14474. [Online] Disponible en: 10.1103/physrevb.50.14474 [Consultado 19 de julio de 2019]. [3] Shao, Y.; Chen, W.; Wold, E.; Pau, J. (1994). Dispersion and electronic structure of titania-supported cobalt and cobalt oxide, Langmuir, 10, pp. 178-187. [Online] Disponible en: https://doi.org/10.1021/la00013a027 [Consultado 19 de julio de 2019]. [4] Huang, C.; Guo, Y.; Liu, X.; Wang, Y. (2006). Structural and optical properties of Ti1-xCoxO2 films prepared by sol-gel spin coating. Thin Solid Films, 505 (1-2), pp. 141-144. [Online] Disponible en: https://doi.org/10.1016/j.tsf.2005.10.021 [Consultado 19 de julio de 2019]. [5] Xue, Y.; Wang, H. M. (2005). Microstructure and wear properties of laser clad TiCo/Ti2Co intermetallic coatings on titanium alloy. Applied Surface Science, 243 (1-4), 278-286. [Online] Disponible en: https://doi.org/10.1016/j.apsusc.2004.09.073 [Consultado 19 de julio de 2019]. [6] Megusar, J.; Meier, G. H.; (1976). Internal Oxidation of Dilute Co-Ti Alloys. Metallurgical Transactions A, 7, pp. 1133-1140. [Online] Disponible en: https://doi.org/10.1007/BF02656595 [Consultado 19 de julio de 2019]. [7] Yankin, A.; Vikhreva, O.; Balakirev, V. (1999). P–T–x diagram of the Co–Ti–O system. Journal of Physics and Chemistry of Solids, 60 (1), pp. 139-143. [Online] Disponible en: https://doi.org/10.1016/S0022-3697(98)00058-4 [Consultado 19 de julio de 2019]. [8] Brezny, Bohuslav; Muan, Arnulf. (1969). Phase Relations and Stabilities Of Compounds In The System CoO-TiO2*. Journal of Inorganic and Nuclear Chemistry, 3, pp. 649-655. [Online] Disponible en: https://doi.org/10.1016/0022-1902(69)80009-6 [Consultado 19 de julio de 2019]. [9] Rout, S.; Popovici, N.; Dalui, S.; Paramês, M.; da Silva, R. (2013). Phase growth control in low temperature PLD Co:TiO2 films by pressure. Current Applied Physics, 13, pp. 670-676. [Online] Disponible en: 10.1016/j.cap.2012.11.005 [Consultado 19 de julio de 2019]. [10] Earnshaw, A.; Greenwood, N. (1997). Chemistry of the Elements. Oxford Butterworth-Heinmann, pp. 961. [11] Lee, Jeong-Min; Kim, Ju Wan; Lim, Ji Sun; Kim, Tae Jin; Kim, Shin Dong; Park, Soo-Jin; Lee, Young-Seak. (2007). X-ray Photoelectron Spectroscopy Study of Cobalt Supported Multi-walled Carbon Nanotubes Prepared by Different Precursors. Carbon Science 8 (2), pp. 120-126. [Online] Disponible en: 10.5714/CL.2007.8.2.120 [Consultado 19 de julio de 2019]. [12] Cabrera-German, Dagoberto; Gomez-Sosa, Gustavo; Herrera-Gomez, Alberto. (2016). Accurate peak fitting and subsequent quantitative composition analysis of the spectrum of Co 2p obtained with Al K α radiation: I: cobalt spinel. Surface and Interface Analysis, 48, pp. 252-256. [Online] Disponible en: https://doi.org/10.1002/sia.5933 [Consultado 19 de julio de 2019]. [13] Galhenage, Randima P.; Yan, Hui; Tenney, Samuel A.; Park, Nayoung; Henkelman, Graeme; Albrecht, Peter; Mullins, David R.; Chen, Donna A. (2013). Understanding the Nucleation and Growth of Metals on TiO2: Co Compared to Au, Ni, and Pt. Journal of Physical Chemistry C, 117 (34), pp. 7191-7201. [Online] Disponible en: https://doi.org/10.1021/jp401283k [Consultado 19 de julio de 2019]. [14] Albella, J. M. (2003). Láminas Delgadas y Recubrimientos: Preparación, Propiedades y Aplicaciones. Madrid. Consejo Superior de Investigaciones Científicas, pp. 120. [15] Tomou, A.; Gournis, D.; Panagiotopoulos, I.; Huang, Y.; Hadjipanayis, G. C.; Kooi, B. J. (2006). Weak ferromagnetism and exchange biasing in cobalt oxide nanoparticle systems. Journal of Applied Physics, 9, pp. 123915. [Online] Disponible en: https://doi.org/10.1063/1.2207809 [Consultado 19 de julio de 2019].https://revistas.eia.edu.co/index.php/reveia/article/download/1344/1339Núm. 34 , Año 2020634117Revista EIAPublicationOREORE.xmltext/xml2732https://repository.eia.edu.co/bitstreams/4ed30351-e185-48f6-aaae-373ce628b03e/download19406741d749f43eb4ea58e14f8f4ef8MD5111190/5094oai:repository.eia.edu.co:11190/50942023-07-25 17:03:24.853https://creativecommons.org/licenses/by-nc-nd/4.0Revista EIA - 2020metadata.onlyhttps://repository.eia.edu.coRepositorio Institucional Universidad EIAbdigital@metabiblioteca.com