Effects of Co Addition on the Microstructure and Morphological Properties of TIO2: Multicomponent Oxide of Transition Metals
This work presents the process of fabrication and characterization of cobalt-doped titanium dioxide thin films on soda-lime glass substrates useful in spintronic applications. The samples were fabricated via the DC Sputtering technique, under the magnetron configuration. The samples were submitted o...
- Autores:
-
Quiroz Gaitán, Heiddy Paola
Bohórquez, Andrés Jhovanny
Dussan Cuenca, Anderson
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Universidad EIA .
- Repositorio:
- Repositorio EIA .
- Idioma:
- spa
- OAI Identifier:
- oai:repository.eia.edu.co:11190/5094
- Acceso en línea:
- https://repository.eia.edu.co/handle/11190/5094
https://doi.org/10.24050/reia.v17i34.1344
- Palabra clave:
- Alloys
titania
ferromagnetic
room temperature.
Ciencia de Materiales
Aleaciones
titania
ferromagnético
temperatura ambiente
- Rights
- openAccess
- License
- Revista EIA - 2020
id |
REIA2_753e41feb7d978e85f46e5428f623c17 |
---|---|
oai_identifier_str |
oai:repository.eia.edu.co:11190/5094 |
network_acronym_str |
REIA2 |
network_name_str |
Repositorio EIA . |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Effects of Co Addition on the Microstructure and Morphological Properties of TIO2: Multicomponent Oxide of Transition Metals |
dc.title.translated.eng.fl_str_mv |
Efecto de la adición de Co sobre las propiedades de la microestructura y la morfología de TIO2: óxido multicomponente de metales de transición |
title |
Effects of Co Addition on the Microstructure and Morphological Properties of TIO2: Multicomponent Oxide of Transition Metals |
spellingShingle |
Effects of Co Addition on the Microstructure and Morphological Properties of TIO2: Multicomponent Oxide of Transition Metals Alloys titania ferromagnetic room temperature. Ciencia de Materiales Aleaciones titania ferromagnético temperatura ambiente |
title_short |
Effects of Co Addition on the Microstructure and Morphological Properties of TIO2: Multicomponent Oxide of Transition Metals |
title_full |
Effects of Co Addition on the Microstructure and Morphological Properties of TIO2: Multicomponent Oxide of Transition Metals |
title_fullStr |
Effects of Co Addition on the Microstructure and Morphological Properties of TIO2: Multicomponent Oxide of Transition Metals |
title_full_unstemmed |
Effects of Co Addition on the Microstructure and Morphological Properties of TIO2: Multicomponent Oxide of Transition Metals |
title_sort |
Effects of Co Addition on the Microstructure and Morphological Properties of TIO2: Multicomponent Oxide of Transition Metals |
dc.creator.fl_str_mv |
Quiroz Gaitán, Heiddy Paola Bohórquez, Andrés Jhovanny Dussan Cuenca, Anderson |
dc.contributor.author.spa.fl_str_mv |
Quiroz Gaitán, Heiddy Paola Bohórquez, Andrés Jhovanny Dussan Cuenca, Anderson |
dc.subject.spa.fl_str_mv |
Alloys titania ferromagnetic room temperature. Ciencia de Materiales |
topic |
Alloys titania ferromagnetic room temperature. Ciencia de Materiales Aleaciones titania ferromagnético temperatura ambiente |
dc.subject.eng.fl_str_mv |
Aleaciones titania ferromagnético temperatura ambiente |
description |
This work presents the process of fabrication and characterization of cobalt-doped titanium dioxide thin films on soda-lime glass substrates useful in spintronic applications. The samples were fabricated via the DC Sputtering technique, under the magnetron configuration. The samples were submitted of annealing at atmospheric pressure, after deposit process. Annealing process affect the structural properties of thin films, evidencing the formation of the Co3O4 with spinel structure. XPS measurements corroborated the presence of cobalt oxide species with a spinel-like arrangement. Morphological characterization showed an overall granular nature of the fabricated samples, which varied depending on the deposition time and annealing process. PPMS measurements revealed a ferromagnetic behavior of the thin films at room temperature. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-06-21 00:00:00 2022-06-17T20:20:32Z |
dc.date.available.none.fl_str_mv |
2020-06-21 00:00:00 2022-06-17T20:20:32Z |
dc.date.issued.none.fl_str_mv |
2020-06-21 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.eng.fl_str_mv |
Journal article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_6501 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ARTREF |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
1794-1237 |
dc.identifier.uri.none.fl_str_mv |
https://repository.eia.edu.co/handle/11190/5094 |
dc.identifier.doi.none.fl_str_mv |
10.24050/reia.v17i34.1344 |
dc.identifier.eissn.none.fl_str_mv |
2463-0950 |
dc.identifier.url.none.fl_str_mv |
https://doi.org/10.24050/reia.v17i34.1344 |
identifier_str_mv |
1794-1237 10.24050/reia.v17i34.1344 2463-0950 |
url |
https://repository.eia.edu.co/handle/11190/5094 https://doi.org/10.24050/reia.v17i34.1344 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Charlton, G.; Howes, P.; Muryn, C.; Raza, H.; Jones, N.; Taylor, J.; Norris, C.; McGrath, R.; Norman, D.; Turner, T.; Thornton, G. (2000). Copper interface induced relaxation of TiO2 (110)−1×1. Physical Review B, 61, pp. 16117. [Online] Disponible en: 10.1103/PhysRevB.61.16117 [Consultado 19 de julio de 2019]. [2] Diebold, U.; Tao, H. S.; Shinn, N. D.; Madey, T. E. (1994). Electronic structure of ultrathin Fe films on TiO2(110) studied with soft-x-ray photoelectron spectroscopy and resonant photoemission. Physical Review B: Condensed Matter, 50, pp. 14474. [Online] Disponible en: 10.1103/physrevb.50.14474 [Consultado 19 de julio de 2019]. [3] Shao, Y.; Chen, W.; Wold, E.; Pau, J. (1994). Dispersion and electronic structure of titania-supported cobalt and cobalt oxide, Langmuir, 10, pp. 178-187. [Online] Disponible en: https://doi.org/10.1021/la00013a027 [Consultado 19 de julio de 2019]. [4] Huang, C.; Guo, Y.; Liu, X.; Wang, Y. (2006). Structural and optical properties of Ti1-xCoxO2 films prepared by sol-gel spin coating. Thin Solid Films, 505 (1-2), pp. 141-144. [Online] Disponible en: https://doi.org/10.1016/j.tsf.2005.10.021 [Consultado 19 de julio de 2019]. [5] Xue, Y.; Wang, H. M. (2005). Microstructure and wear properties of laser clad TiCo/Ti2Co intermetallic coatings on titanium alloy. Applied Surface Science, 243 (1-4), 278-286. [Online] Disponible en: https://doi.org/10.1016/j.apsusc.2004.09.073 [Consultado 19 de julio de 2019]. [6] Megusar, J.; Meier, G. H.; (1976). Internal Oxidation of Dilute Co-Ti Alloys. Metallurgical Transactions A, 7, pp. 1133-1140. [Online] Disponible en: https://doi.org/10.1007/BF02656595 [Consultado 19 de julio de 2019]. [7] Yankin, A.; Vikhreva, O.; Balakirev, V. (1999). P–T–x diagram of the Co–Ti–O system. Journal of Physics and Chemistry of Solids, 60 (1), pp. 139-143. [Online] Disponible en: https://doi.org/10.1016/S0022-3697(98)00058-4 [Consultado 19 de julio de 2019]. [8] Brezny, Bohuslav; Muan, Arnulf. (1969). Phase Relations and Stabilities Of Compounds In The System CoO-TiO2*. Journal of Inorganic and Nuclear Chemistry, 3, pp. 649-655. [Online] Disponible en: https://doi.org/10.1016/0022-1902(69)80009-6 [Consultado 19 de julio de 2019]. [9] Rout, S.; Popovici, N.; Dalui, S.; Paramês, M.; da Silva, R. (2013). Phase growth control in low temperature PLD Co:TiO2 films by pressure. Current Applied Physics, 13, pp. 670-676. [Online] Disponible en: 10.1016/j.cap.2012.11.005 [Consultado 19 de julio de 2019]. [10] Earnshaw, A.; Greenwood, N. (1997). Chemistry of the Elements. Oxford Butterworth-Heinmann, pp. 961. [11] Lee, Jeong-Min; Kim, Ju Wan; Lim, Ji Sun; Kim, Tae Jin; Kim, Shin Dong; Park, Soo-Jin; Lee, Young-Seak. (2007). X-ray Photoelectron Spectroscopy Study of Cobalt Supported Multi-walled Carbon Nanotubes Prepared by Different Precursors. Carbon Science 8 (2), pp. 120-126. [Online] Disponible en: 10.5714/CL.2007.8.2.120 [Consultado 19 de julio de 2019]. [12] Cabrera-German, Dagoberto; Gomez-Sosa, Gustavo; Herrera-Gomez, Alberto. (2016). Accurate peak fitting and subsequent quantitative composition analysis of the spectrum of Co 2p obtained with Al K α radiation: I: cobalt spinel. Surface and Interface Analysis, 48, pp. 252-256. [Online] Disponible en: https://doi.org/10.1002/sia.5933 [Consultado 19 de julio de 2019]. [13] Galhenage, Randima P.; Yan, Hui; Tenney, Samuel A.; Park, Nayoung; Henkelman, Graeme; Albrecht, Peter; Mullins, David R.; Chen, Donna A. (2013). Understanding the Nucleation and Growth of Metals on TiO2: Co Compared to Au, Ni, and Pt. Journal of Physical Chemistry C, 117 (34), pp. 7191-7201. [Online] Disponible en: https://doi.org/10.1021/jp401283k [Consultado 19 de julio de 2019]. [14] Albella, J. M. (2003). Láminas Delgadas y Recubrimientos: Preparación, Propiedades y Aplicaciones. Madrid. Consejo Superior de Investigaciones Científicas, pp. 120. [15] Tomou, A.; Gournis, D.; Panagiotopoulos, I.; Huang, Y.; Hadjipanayis, G. C.; Kooi, B. J. (2006). Weak ferromagnetism and exchange biasing in cobalt oxide nanoparticle systems. Journal of Applied Physics, 9, pp. 123915. [Online] Disponible en: https://doi.org/10.1063/1.2207809 [Consultado 19 de julio de 2019]. |
dc.relation.bitstream.none.fl_str_mv |
https://revistas.eia.edu.co/index.php/reveia/article/download/1344/1339 |
dc.relation.citationedition.spa.fl_str_mv |
Núm. 34 , Año 2020 |
dc.relation.citationendpage.none.fl_str_mv |
6 |
dc.relation.citationissue.spa.fl_str_mv |
34 |
dc.relation.citationstartpage.none.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
17 |
dc.relation.ispartofjournal.spa.fl_str_mv |
Revista EIA |
dc.rights.spa.fl_str_mv |
Revista EIA - 2020 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0 |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Revista EIA - 2020 https://creativecommons.org/licenses/by-nc-nd/4.0 http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Fondo Editorial EIA - Universidad EIA |
dc.source.spa.fl_str_mv |
https://revistas.eia.edu.co/index.php/reveia/article/view/1344 |
institution |
Universidad EIA . |
bitstream.url.fl_str_mv |
https://repository.eia.edu.co/bitstreams/4ed30351-e185-48f6-aaae-373ce628b03e/download |
bitstream.checksum.fl_str_mv |
19406741d749f43eb4ea58e14f8f4ef8 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EIA |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814100892555673600 |
spelling |
Quiroz Gaitán, Heiddy Paola7042278b0083cfb6c64b445f0bf71b66500Bohórquez, Andrés Jhovanny470c994b80aeb83a8db2d235bcff6ca9300Dussan Cuenca, Andersonb7a8fc3307ce61d8e85615627d0f33fb2020-06-21 00:00:002022-06-17T20:20:32Z2020-06-21 00:00:002022-06-17T20:20:32Z2020-06-211794-1237https://repository.eia.edu.co/handle/11190/509410.24050/reia.v17i34.13442463-0950https://doi.org/10.24050/reia.v17i34.1344This work presents the process of fabrication and characterization of cobalt-doped titanium dioxide thin films on soda-lime glass substrates useful in spintronic applications. The samples were fabricated via the DC Sputtering technique, under the magnetron configuration. The samples were submitted of annealing at atmospheric pressure, after deposit process. Annealing process affect the structural properties of thin films, evidencing the formation of the Co3O4 with spinel structure. XPS measurements corroborated the presence of cobalt oxide species with a spinel-like arrangement. Morphological characterization showed an overall granular nature of the fabricated samples, which varied depending on the deposition time and annealing process. PPMS measurements revealed a ferromagnetic behavior of the thin films at room temperature.Este trabajo presenta el proceso de fabricación y caracterización de películas delgadas de dióxido de titanio dopado con cobalto depositado sobre vidrio tipo Soda-lime, y usado para aplicaciones Espintrónicas. Las muestras fueron fabricadas por la técnica de DC “Sputtering" en configuración “magnetron”. Después del proceso de depósito, las muestras fueron sometidas a recocidos en a presione atmosférica. Los procesos de recocido afectaron las propiedades estructurales, evidenciad en la formación de Co3O4 con una estructura espinela. Las medidas de XPS corroboraron la presencia de especies de cobalt con un arreglo de espinela. La caracterización morfológica mostro una naturaleza granular de las muestras, que variaron con el tiempo de depósito y los procesos de recocido. Medidas de PPMS revelaron un comportamiento ferromagnético a temperatura ambiente de las películas delgadas.application/pdfspaFondo Editorial EIA - Universidad EIARevista EIA - 2020https://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.http://purl.org/coar/access_right/c_abf2https://revistas.eia.edu.co/index.php/reveia/article/view/1344Alloystitaniaferromagneticroom temperature.Ciencia de MaterialesAleacionestitaniaferromagnéticotemperatura ambienteEffects of Co Addition on the Microstructure and Morphological Properties of TIO2: Multicomponent Oxide of Transition MetalsEfecto de la adición de Co sobre las propiedades de la microestructura y la morfología de TIO2: óxido multicomponente de metales de transiciónArtículo de revistaJournal articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionTexthttp://purl.org/redcol/resource_type/ARTREFhttp://purl.org/coar/version/c_970fb48d4fbd8a85Charlton, G.; Howes, P.; Muryn, C.; Raza, H.; Jones, N.; Taylor, J.; Norris, C.; McGrath, R.; Norman, D.; Turner, T.; Thornton, G. (2000). Copper interface induced relaxation of TiO2 (110)−1×1. Physical Review B, 61, pp. 16117. [Online] Disponible en: 10.1103/PhysRevB.61.16117 [Consultado 19 de julio de 2019]. [2] Diebold, U.; Tao, H. S.; Shinn, N. D.; Madey, T. E. (1994). Electronic structure of ultrathin Fe films on TiO2(110) studied with soft-x-ray photoelectron spectroscopy and resonant photoemission. Physical Review B: Condensed Matter, 50, pp. 14474. [Online] Disponible en: 10.1103/physrevb.50.14474 [Consultado 19 de julio de 2019]. [3] Shao, Y.; Chen, W.; Wold, E.; Pau, J. (1994). Dispersion and electronic structure of titania-supported cobalt and cobalt oxide, Langmuir, 10, pp. 178-187. [Online] Disponible en: https://doi.org/10.1021/la00013a027 [Consultado 19 de julio de 2019]. [4] Huang, C.; Guo, Y.; Liu, X.; Wang, Y. (2006). Structural and optical properties of Ti1-xCoxO2 films prepared by sol-gel spin coating. Thin Solid Films, 505 (1-2), pp. 141-144. [Online] Disponible en: https://doi.org/10.1016/j.tsf.2005.10.021 [Consultado 19 de julio de 2019]. [5] Xue, Y.; Wang, H. M. (2005). Microstructure and wear properties of laser clad TiCo/Ti2Co intermetallic coatings on titanium alloy. Applied Surface Science, 243 (1-4), 278-286. [Online] Disponible en: https://doi.org/10.1016/j.apsusc.2004.09.073 [Consultado 19 de julio de 2019]. [6] Megusar, J.; Meier, G. H.; (1976). Internal Oxidation of Dilute Co-Ti Alloys. Metallurgical Transactions A, 7, pp. 1133-1140. [Online] Disponible en: https://doi.org/10.1007/BF02656595 [Consultado 19 de julio de 2019]. [7] Yankin, A.; Vikhreva, O.; Balakirev, V. (1999). P–T–x diagram of the Co–Ti–O system. Journal of Physics and Chemistry of Solids, 60 (1), pp. 139-143. [Online] Disponible en: https://doi.org/10.1016/S0022-3697(98)00058-4 [Consultado 19 de julio de 2019]. [8] Brezny, Bohuslav; Muan, Arnulf. (1969). Phase Relations and Stabilities Of Compounds In The System CoO-TiO2*. Journal of Inorganic and Nuclear Chemistry, 3, pp. 649-655. [Online] Disponible en: https://doi.org/10.1016/0022-1902(69)80009-6 [Consultado 19 de julio de 2019]. [9] Rout, S.; Popovici, N.; Dalui, S.; Paramês, M.; da Silva, R. (2013). Phase growth control in low temperature PLD Co:TiO2 films by pressure. Current Applied Physics, 13, pp. 670-676. [Online] Disponible en: 10.1016/j.cap.2012.11.005 [Consultado 19 de julio de 2019]. [10] Earnshaw, A.; Greenwood, N. (1997). Chemistry of the Elements. Oxford Butterworth-Heinmann, pp. 961. [11] Lee, Jeong-Min; Kim, Ju Wan; Lim, Ji Sun; Kim, Tae Jin; Kim, Shin Dong; Park, Soo-Jin; Lee, Young-Seak. (2007). X-ray Photoelectron Spectroscopy Study of Cobalt Supported Multi-walled Carbon Nanotubes Prepared by Different Precursors. Carbon Science 8 (2), pp. 120-126. [Online] Disponible en: 10.5714/CL.2007.8.2.120 [Consultado 19 de julio de 2019]. [12] Cabrera-German, Dagoberto; Gomez-Sosa, Gustavo; Herrera-Gomez, Alberto. (2016). Accurate peak fitting and subsequent quantitative composition analysis of the spectrum of Co 2p obtained with Al K α radiation: I: cobalt spinel. Surface and Interface Analysis, 48, pp. 252-256. [Online] Disponible en: https://doi.org/10.1002/sia.5933 [Consultado 19 de julio de 2019]. [13] Galhenage, Randima P.; Yan, Hui; Tenney, Samuel A.; Park, Nayoung; Henkelman, Graeme; Albrecht, Peter; Mullins, David R.; Chen, Donna A. (2013). Understanding the Nucleation and Growth of Metals on TiO2: Co Compared to Au, Ni, and Pt. Journal of Physical Chemistry C, 117 (34), pp. 7191-7201. [Online] Disponible en: https://doi.org/10.1021/jp401283k [Consultado 19 de julio de 2019]. [14] Albella, J. M. (2003). Láminas Delgadas y Recubrimientos: Preparación, Propiedades y Aplicaciones. Madrid. Consejo Superior de Investigaciones Científicas, pp. 120. [15] Tomou, A.; Gournis, D.; Panagiotopoulos, I.; Huang, Y.; Hadjipanayis, G. C.; Kooi, B. J. (2006). Weak ferromagnetism and exchange biasing in cobalt oxide nanoparticle systems. Journal of Applied Physics, 9, pp. 123915. [Online] Disponible en: https://doi.org/10.1063/1.2207809 [Consultado 19 de julio de 2019].https://revistas.eia.edu.co/index.php/reveia/article/download/1344/1339Núm. 34 , Año 2020634117Revista EIAPublicationOREORE.xmltext/xml2732https://repository.eia.edu.co/bitstreams/4ed30351-e185-48f6-aaae-373ce628b03e/download19406741d749f43eb4ea58e14f8f4ef8MD5111190/5094oai:repository.eia.edu.co:11190/50942023-07-25 17:03:24.853https://creativecommons.org/licenses/by-nc-nd/4.0Revista EIA - 2020metadata.onlyhttps://repository.eia.edu.coRepositorio Institucional Universidad EIAbdigital@metabiblioteca.com |