Dispositivo para emular las propiedades viscoelásticas en el simulador de la mecánica respiratoria SAMI-SII
97 páginas
- Autores:
-
Castaño Betancur, Jacobo
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2023
- Institución:
- Universidad EIA .
- Repositorio:
- Repositorio EIA .
- Idioma:
- spa
- OAI Identifier:
- oai:repository.eia.edu.co:11190/6044
- Acceso en línea:
- https://repository.eia.edu.co/handle/11190/6044
- Palabra clave:
- Viscoelasticidad
Modelo Sólido Lineal Estándar
Ventilación mecánica
Pausa inspiratoria
Simulador de la mecánica respiratoria
Stress relaxation
- Rights
- closedAccess
- License
- Derechos Reservados - Universidad EIA, 2023
id |
REIA2_710da19a8b8fe70ea1b93408de2c4e8c |
---|---|
oai_identifier_str |
oai:repository.eia.edu.co:11190/6044 |
network_acronym_str |
REIA2 |
network_name_str |
Repositorio EIA . |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Dispositivo para emular las propiedades viscoelásticas en el simulador de la mecánica respiratoria SAMI-SII |
title |
Dispositivo para emular las propiedades viscoelásticas en el simulador de la mecánica respiratoria SAMI-SII |
spellingShingle |
Dispositivo para emular las propiedades viscoelásticas en el simulador de la mecánica respiratoria SAMI-SII Viscoelasticidad Modelo Sólido Lineal Estándar Ventilación mecánica Pausa inspiratoria Simulador de la mecánica respiratoria Stress relaxation |
title_short |
Dispositivo para emular las propiedades viscoelásticas en el simulador de la mecánica respiratoria SAMI-SII |
title_full |
Dispositivo para emular las propiedades viscoelásticas en el simulador de la mecánica respiratoria SAMI-SII |
title_fullStr |
Dispositivo para emular las propiedades viscoelásticas en el simulador de la mecánica respiratoria SAMI-SII |
title_full_unstemmed |
Dispositivo para emular las propiedades viscoelásticas en el simulador de la mecánica respiratoria SAMI-SII |
title_sort |
Dispositivo para emular las propiedades viscoelásticas en el simulador de la mecánica respiratoria SAMI-SII |
dc.creator.fl_str_mv |
Castaño Betancur, Jacobo |
dc.contributor.advisor.none.fl_str_mv |
Montagut Ferizzola, Yeison Javier Giraldo Vázquez, Mario Alejandro Jiménez Posada, León Darío |
dc.contributor.author.none.fl_str_mv |
Castaño Betancur, Jacobo |
dc.subject.proposal.spa.fl_str_mv |
Viscoelasticidad Modelo Sólido Lineal Estándar Ventilación mecánica Pausa inspiratoria Simulador de la mecánica respiratoria |
topic |
Viscoelasticidad Modelo Sólido Lineal Estándar Ventilación mecánica Pausa inspiratoria Simulador de la mecánica respiratoria Stress relaxation |
dc.subject.proposal.eng.fl_str_mv |
Stress relaxation |
description |
97 páginas |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-08-10T19:00:37Z |
dc.date.available.none.fl_str_mv |
2023-08-10T19:00:37Z 2028-07-04 |
dc.date.issued.none.fl_str_mv |
2023 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.content.none.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repository.eia.edu.co/handle/11190/6044 |
url |
https://repository.eia.edu.co/handle/11190/6044 |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
Derechos Reservados - Universidad EIA, 2023 |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/closedAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
rights_invalid_str_mv |
Derechos Reservados - Universidad EIA, 2023 http://purl.org/coar/access_right/c_14cb |
eu_rights_str_mv |
closedAccess |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad EIA |
dc.publisher.program.none.fl_str_mv |
Ingeniería Biomédica |
dc.publisher.faculty.none.fl_str_mv |
Escuela de Ciencias de la Vida |
dc.publisher.place.none.fl_str_mv |
Envigado (Antioquia, Colombia) |
publisher.none.fl_str_mv |
Universidad EIA |
institution |
Universidad EIA . |
bitstream.url.fl_str_mv |
https://repository.eia.edu.co/bitstreams/a2d4bb70-d44a-4e28-a4ba-4f70b080a31d/download |
bitstream.checksum.fl_str_mv |
da9276a8e06ed571bb7fc7c7186cd8fe |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EIA |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814100881792040960 |
spelling |
Montagut Ferizzola, Yeison JavierGiraldo Vázquez, Mario AlejandroJiménez Posada, León DaríoCastaño Betancur, Jacobo2023-08-10T19:00:37Z2028-07-042023-08-10T19:00:37Z2023https://repository.eia.edu.co/handle/11190/604497 páginasRESUMEN: la viscoelasticidad es una característica que poseen los tejidos pulmonares. A pesar de ser una propiedad que está bien definida en la literatura, es difícil medirla, ya que tener acceso a estos tejidos implicaría usar técnicas invasivas que podrían ser lesivas para un paciente, además de las correspondientes razones éticas. Debido a esto, los médicos no tienen una comprensión clara del efecto de esta característica, no se conocen valores estándares de viscoelasticidad, ni patologías atribuidas a esta, a pesar de que se sepa que cumple un papel importante durante el movimiento pulmonar. Por tal motivo, es importante el desarrollo de simuladores de la mecánica respiratoria que permitan estudiar los cambios de las variables pulmonares, tanto en escenarios sanos como patológicos; sin embargo, en la actualidad no existen simuladores físicos que tengan la capacidad de representar el efecto de las propiedades viscoelásticas. El presente trabajo tuvo como finalidad desarrollar un dispositivo electromecánico que emule las fuerzas viscoelásticas para ser implementado en el simulador de la mecánica respiratoria SAMI-SII, que fue desarrollado en la Universidad EIA de Envigado, Colombia. Esto permitiría tener un mejor entendimiento de la biomecánica respiratoria y marcaría un nuevo punto de partida referente al estudio de la viscoelasticidad en términos fisiológicos. Para lograr este trabajo, se llevó a cabo un procedimiento basado en cuatro etapas: Una fase de diseño del dispositivo tomando como referencia la metodología de Ulrich y Eppinger, una segunda fase donde se desarrolló un prototipo inicial del dispositivo donde fue posible generar el efecto viscoelástico desde un enfoque de la resistencia del sistema respiratorio, mediante fuerzas generadas por la oposición de polos magnéticos y la medición de estos con un sistema de instrumentación basado en el efecto hall. Se observó una resistencia asociada a la disipación de presión viscoelástica (ΔR) de 12.75 cmH2O/l/min, 7.50 cmH2O/l/min, 4.92 cmH2O/l/min, 3.52 cmH2O/l/min y 0.8 cmH2O/l/min. En la tercera fase se implementó una segunda versión del dispositivo basado en técnicas electroneumáticas y se verificó su capacidad para reproducir el efecto viscoelástico en un escenario de ventilación mecánica mediante la comparación de los resultados con la respuesta de stress relaxation de un modelo Sólido Lineal Estándar. Los coeficientes de determinación R2 fueron superiores al 95 %. Finalmente, se realizaron las modificaciones mecánicas, electrónicas y de control necesarias para acoplar el dispositivo en la cavidad torácica del SAMI-SII y se verificó su funcionamiento mediante la comparación de los resultados con el modelo previamente mencionado. Los coeficientes de determinación R2 fueron superiores al 92 %. Hasta donde sabemos, este es el primer sistema electromecánico capaz de representar el efecto viscoelástico pulmonar en un escenario de ventilación mecánica.ABSTRACT: Viscoelasticity is a characteristic of lung tissues. Despite being a property that is well defined in the literature, it is complex to be measured, since having access to these tissues would imply using invasive techniques that could be harmful to a patient, in addition to the corresponding ethical reasons. Due to this, clinicians do not have a clear understanding of the effect of this characteristic, there are no standard values of viscoelasticity known, nor pathologies attributed to it, even though it is known to play an important role during lung movement. Thus, it is important to develop respiratory mechanics simulators that allow the study of changes in pulmonary variables, both in healthy and pathological scenarios; however, there are currently no physical simulators that can represent the effect of viscoelasticity. The purpose of this work was to develop an electromechanical device that emulates viscoelastic forces to be implemented in the SAMI-SII respiratory mechanics simulator, which was developed at the EIA University of Envigado, Colombia. This would allow a better understanding of respiratory biomechanics and would set a new starting point regarding the study of viscoelasticity physiologically. To achieve this work, a procedure based on four stages was carried out: A design phase of the device referenced on the Ulrich and Eppinger methodology, a second phase where an initial prototype of the device was developed where it was possible to generate the viscoelastic effect from a resistance of the respiratory system approach, through forces generated by the opposition of magnetic poles and the measurement of these with an instrumentation system based on the hall effect. A viscoelastic pressure dissipation associated resistance (ΔR) of 12.75 cmH2O/l/min, 7.50 cmH2O/l/min, 4.92 cmH2O/l/min, 3.52 cmH2O/l/min and 0.8 cmH2O/l/min was observed. In the third phase, a second version of the device based on electropneumatic techniques was implemented and its ability to reproduce the viscoelastic effect in a mechanical ventilation scenario was verified by comparing the results with the stress relaxation response of a Standard Lineal Solid model. The R2 determination coefficients were higher than 95 %. Finally, the necessary mechanical, electronic, and control modifications were made to fit the device into the rib cage of the SAMI-SII, and its operation was verified by comparing the results with the previously mentioned model. The R2 determination coefficients were higher than 92 %. To the best of our knowledge, this is the first electromechanic system capable of representing the pulmonary viscoelastic effect in a mechanical ventilation scenario.PregradoIngeniero(a) Biomédico(a)application/pdfspaUniversidad EIAIngeniería BiomédicaEscuela de Ciencias de la VidaEnvigado (Antioquia, Colombia)Derechos Reservados - Universidad EIA, 2023info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbDispositivo para emular las propiedades viscoelásticas en el simulador de la mecánica respiratoria SAMI-SIITrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/publishedVersionTexthttp://purl.org/redcol/resource_type/TPhttp://purl.org/coar/version/c_970fb48d4fbd8a85ViscoelasticidadModelo Sólido Lineal EstándarVentilación mecánicaPausa inspiratoriaSimulador de la mecánica respiratoriaStress relaxationLICENSElicense.txtlicense.txttext/plain; charset=utf-82515https://repository.eia.edu.co/bitstreams/a2d4bb70-d44a-4e28-a4ba-4f70b080a31d/downloadda9276a8e06ed571bb7fc7c7186cd8feMD5611190/6044oai:repository.eia.edu.co:11190/60442023-08-10 14:01:36.038metadata.onlyhttps://repository.eia.edu.coRepositorio Institucional Universidad EIAbdigital@metabiblioteca.comICAgICAgICAgICAgICAgICAgICAgICAgPGNlbnRlcj5BVklTTyBERSBQUklWQUNJREFEPC9jZW50ZXI+CgpMYSBFc2N1ZWxhIGRlIEluZ2VuaWVyw61hIGRlIEFudGlvcXVpYSBhIHRyYXbDqXMgZGUgZXN0ZSBhdmlzbywgaW5mb3JtYSBhIGxvcyB0aXR1bGFyZXMgZGUgZGF0b3MgcGVyc29uYWxlcyBxdWUgc2UgZW5jdWVudHJlbiBlbiBzdXMgYmFzZXMgZGUgZGF0b3MgcXVlIGxhcyBwb2zDrXRpY2FzIGRlIHRyYXRhbWllbnRvIGRlIGRhdG9zIHBlcnNvbmFsZXMgbGEgRUlBIHNvbjoKCkFsIHRpdHVsYXIgZGUgbG9zIGRhdG9zIHBlcnNvbmFsZXMgZW4gdHJhdGFtaWVudG8sIHNlIGxlIHJlc3BldGFyw6FuIHN1cyBkZXJlY2hvcyBhIGNvbm9jZXIgw61udGVncmFtZW50ZSB5IGRlIGZvcm1hIGdyYXR1aXRhIHN1cyBkYXRvcyBwZXJzb25hbGVzLCBhc8OtIGNvbW8gYSBhY3R1YWxpemFybG9zIHkgcmVjdGlmaWNhcmxvcyBmcmVudGUgYSBsYSBFSUEgbyBsb3MgZW5jYXJnYWRvcyBkZWwgdHJhdGFtaWVudG8uCgpBbCB0aXR1bGFyIGRlIGxvcyBkYXRvcyBwZXJzb25hbGVzIGVuIHRyYXRhbWllbnRvLCBwb2Ryw6EgY29ub2NlciBlbCB1c28gcXVlIHNlIGxlIGhhIGRhZG8gYSBzdXMgZGF0b3MgcGVyc29uYWxlcywgcHJldmlhIHNvbGljaXR1ZC4KCkVsIHRpdHVsYXIgZGUgbG9zIGRhdG9zIHBlcnNvbmFsZXMgZW4gdHJhdGFtaWVudG8sIHBvZHLDoSBzb2xpY2l0YXIgcHJ1ZWJhIGRlIGxhIGF1dG9yaXphY2nDs24gb3RvcmdhZGEgYSBsYSBFSUEuIHNhbHZvIGN1YW5kbyBleHByZXNhbWVudGUgc2UgZXhjZXB0w7plIGNvbW8gcmVxdWlzaXRvIHBhcmEgZWwgdHJhdGFtaWVudG8sIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBsZXkuCgpFbCB0aXR1bGFyIGRlIGxvcyBkYXRvcyBwdWVkZSByZXZvY2FyIGxhIGF1dG9yaXphY2nDs24geSBzb2xpY2l0YXIgbGEgc3VwcmVzacOzbiBkZWwgZGF0byBjdWFuZG8gZW4gZWwgdHJhdGFtaWVudG8gbm8gc2UgcmVzcGV0ZW4gbG9zIHByaW5jaXBpb3MsIGRlcmVjaG9zIHkgZ2FyYW50w61hcyBjb25zdGl0dWNpb25hbGVzIHkgbGVnYWxlcy4gTGEgcmV2b2NhdG9yaWEgeSBzdXByZXNpw7NuIHByb2NlZGVyw6EgY3VhbmRvIGxhIFN1cGVyaW50ZW5kZW5jaWEgZGUgSW5kdXN0cmlhIHkgQ29tZXJjaW8gKFNJQykgaGF5YSBkZXRlcm1pbmFkbyBxdWUgZW4gZWwgdHJhdGFtaWVudG8sIGxhIEVTQ1VFTEEgREUgSU5HRU5JRVLDjUEgREUgQU5USU9RVUlBIGhhIGluY3VycmlkbyBlbiBjb25kdWN0YXMgY29udHJhcmlhcyBhIGVzdGEgTGV5IHkgYSBsYSBDb25zdGl0dWNpw7NuIFBvbMOtdGljYS4KClBhcmEgZWZlY3RvcyBkZSBlamVyY2VyIHN1cyBkZXJlY2hvcyBkZSBjb25vY2VyLCBhY3R1YWxpemFyLCByZWN0aWZpY2FyIHkgc3VwcmltaXIgaW5mb3JtYWNpw7NuLCByZXZvY2FyIGxhIGF1dG9yaXphY2nDs24sIGVudHJlIG90cm9zOyBlbCB0aXR1bGFyIGRlIGxvcyBkYXRvcyBwb2Ryw6EgYWN1ZGlyIGEgbGEgRVNDVUVMQSBERSBJTkdFTklFUsONQSBERSBBTlRJT1FVSUEsIGNvbW8gcmVzcG9uc2FibGUgZGVsIHRyYXRhbWllbnRvIGRlIGRhdG9zIGFsIMOhcmVhIGRlIGNvbXVuaWNhY2lvbmVzLCBtZWRpYW50ZSBjb3JyZW8gZWxlY3Ryw7NuaWNvIGEgd2VibWFzdGVyQGVpYS5lZHUuY28gLgoKRW4gY2FzbyBkZSBpbmZyYWNjaW9uZXMgYSBsYSBsZXkgMTU4MSBkZSAyMDEyLCBlbCB0aXR1bGFyIGRlIGxvcyBkYXRvcyBwb2Ryw6EgcHJlc2VudGFyIHF1ZWphIGFudGUgbGEgU3VwZXJpbnRlbmRlbmNpYSBkZSBJbmR1c3RyaWEgeSBDb21lcmNpbyAoU0lDKS4KCkVsIHRpdHVsYXIgc2Vyw6EgaW5mb3JtYWRvIGFjZXJjYSBkZSBsYSBubyBvYmxpZ2F0b3JpZWRhZCBkZSBsYXMgcmVzcHVlc3RhcyBhIGxhcyBwcmVndW50YXMgcXVlIGxlIHNlYW4gaGVjaGFzLCBjdWFuZG8gw6lzdGFzIHZlcnNlbiBzb2JyZSBkYXRvcyBzZW5zaWJsZXMsIHRhbGVzIGNvbW8gb3JpZ2VuIHJhY2lhbCBvIMOpdG5pY28sIG9yaWVudGFjacOzbiBwb2zDrXRpY2EsIGNvbnZpY2Npb25lcyByZWxpZ2lvc2FzICwgcGVydGVuZW5jaWEgYSBzaW5kaWNhdG9zLCBvcmdhbml6YWNpb25lcyBzb2NpYWxlcyBkZSBkZXJlY2hvcyBodW1hbm9zLCBkYXRvcyByZWxhdGl2b3MgYSBsYSBzYWx1ZCwgYSBsYSB2aWRhIHNleHVhbCB5IGRhdG9zIGJpb23DqXRyaWNvcyBvIHNvYnJlIGxvcyBkYXRvcyBkZSBsb3MgbmnDsW9zLCBuacOxYXMgeSBhZG9sZXNjZW50ZXMuCgpFbCB0aXR1bGFyIHBvZHLDoSBjb25vY2VyIG51ZXN0cmEgcG9sw610aWNhIGRlIHRyYXRhbWllbnRvLCBsb3MgZGF0b3Mgc3VzdGFuY2lhbGVzIHF1ZSBzZSBsbGVndWVuIGEgcHJvZHVjaXIgZW4gZWwgcHJlc2VudGUgYXZpc28gbyBlbiBsYXMgcG9sw610aWNhcyBkZSB0cmF0YW1pZW50bywgc2Vyw6FuIHB1YmxpY2FkYXMgZW4gbnVlc3RybyBzaXRpbyB3ZWIsIG1lZGlvIGVsZWN0csOzbmljbyBoYWJpdHVhbCBkZSBjb250YWN0byBjb24gbG9zIHRpdHVsYXJlcy4KCg== |