Síntesis hidrotermal de AlPO-5 y SAPO-5 y su evaluación catalítica en la oligomerización de propileno
Los aluminofosfatos y silico-aluminofosfatos son familias de mallas moleculares que presentan sistemas de poros ordenados con disposición alternada de AlO4 y PO4. Estas pueden usarse en la reacción de oligomerización de propileno debido a sus propiedades para promover la obtención de hidrocarburos d...
- Autores:
-
Ruiz Llano, Jorge
Arroyave Manco, Juan Camilo
Arboleda Echavarría, Johana Catalina
Echavarría Izasa, Adriana Patricia
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Universidad EIA .
- Repositorio:
- Repositorio EIA .
- Idioma:
- spa
- OAI Identifier:
- oai:repository.eia.edu.co:11190/5057
- Acceso en línea:
- https://repository.eia.edu.co/handle/11190/5057
https://doi.org/10.24050/reia.v17i33.1260
- Palabra clave:
- silico-aluminofosfato
impregnación
oligomerización de propileno
catálisis
silicoaluminophosphate
impregnation
propylen oligomerization
catalysis
- Rights
- openAccess
- License
- Revista EIA - 2020
id |
REIA2_6f4db5950e90b6bc6d227a9176e53304 |
---|---|
oai_identifier_str |
oai:repository.eia.edu.co:11190/5057 |
network_acronym_str |
REIA2 |
network_name_str |
Repositorio EIA . |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Síntesis hidrotermal de AlPO-5 y SAPO-5 y su evaluación catalítica en la oligomerización de propileno |
dc.title.translated.eng.fl_str_mv |
AlPO-5 and SAPO-5 hydrothermal synthesis and catalytic propylen oligomerization |
title |
Síntesis hidrotermal de AlPO-5 y SAPO-5 y su evaluación catalítica en la oligomerización de propileno |
spellingShingle |
Síntesis hidrotermal de AlPO-5 y SAPO-5 y su evaluación catalítica en la oligomerización de propileno silico-aluminofosfato impregnación oligomerización de propileno catálisis silicoaluminophosphate impregnation propylen oligomerization catalysis |
title_short |
Síntesis hidrotermal de AlPO-5 y SAPO-5 y su evaluación catalítica en la oligomerización de propileno |
title_full |
Síntesis hidrotermal de AlPO-5 y SAPO-5 y su evaluación catalítica en la oligomerización de propileno |
title_fullStr |
Síntesis hidrotermal de AlPO-5 y SAPO-5 y su evaluación catalítica en la oligomerización de propileno |
title_full_unstemmed |
Síntesis hidrotermal de AlPO-5 y SAPO-5 y su evaluación catalítica en la oligomerización de propileno |
title_sort |
Síntesis hidrotermal de AlPO-5 y SAPO-5 y su evaluación catalítica en la oligomerización de propileno |
dc.creator.fl_str_mv |
Ruiz Llano, Jorge Arroyave Manco, Juan Camilo Arboleda Echavarría, Johana Catalina Echavarría Izasa, Adriana Patricia |
dc.contributor.author.spa.fl_str_mv |
Ruiz Llano, Jorge Arroyave Manco, Juan Camilo Arboleda Echavarría, Johana Catalina Echavarría Izasa, Adriana Patricia |
dc.subject.spa.fl_str_mv |
silico-aluminofosfato impregnación oligomerización de propileno catálisis |
topic |
silico-aluminofosfato impregnación oligomerización de propileno catálisis silicoaluminophosphate impregnation propylen oligomerization catalysis |
dc.subject.eng.fl_str_mv |
silicoaluminophosphate impregnation propylen oligomerization catalysis |
description |
Los aluminofosfatos y silico-aluminofosfatos son familias de mallas moleculares que presentan sistemas de poros ordenados con disposición alternada de AlO4 y PO4. Estas pueden usarse en la reacción de oligomerización de propileno debido a sus propiedades para promover la obtención de hidrocarburos de cadenas más grandes como el Diesel. En el presente trabajo se sintetizó AlPO-5 y SAPO-5 y se evaluó su actividad catalítica en la oligomerización de propileno. Las mallas moleculares obtenidas se caracterizaron por difracción de rayos X (XRD), análisis termogravimétrico (TGA), espectroscopía de absorción atómica (AA), desorción de amoniaco a temperatura programada (NH3-TPD) y microscopía electrónica de barrido (SEM). Los productos de la reacción se analizaron mediante cromatografía de gases (GC). Se obtuvo un mayor rendimiento en la proporción de oligómeros pesados en la reacción luego de las impregnaciones de Cr y Ni al material AlPO-5, siendo el material Cr 3% AlPO-5 el de mayor rendimiento. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-02-03 00:00:00 2022-06-17T20:20:03Z |
dc.date.available.none.fl_str_mv |
2020-02-03 00:00:00 2022-06-17T20:20:03Z |
dc.date.issued.none.fl_str_mv |
2020-02-03 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.eng.fl_str_mv |
Journal article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_6501 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ARTREF |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
1794-1237 |
dc.identifier.uri.none.fl_str_mv |
https://repository.eia.edu.co/handle/11190/5057 |
dc.identifier.doi.none.fl_str_mv |
10.24050/reia.v17i33.1260 |
dc.identifier.eissn.none.fl_str_mv |
2463-0950 |
dc.identifier.url.none.fl_str_mv |
https://doi.org/10.24050/reia.v17i33.1260 |
identifier_str_mv |
1794-1237 10.24050/reia.v17i33.1260 2463-0950 |
url |
https://repository.eia.edu.co/handle/11190/5057 https://doi.org/10.24050/reia.v17i33.1260 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Amrute, A. P., Mondelli, C., & Pérez-Ramírez, J. (2012). Kinetic aspects and deactivation behaviour of chromia-based catalysts in hydrogen chloride oxidation. Catalysis Science & Technology, 2(10), 2057. https://doi.org/10.1039/c2cy20185b Bellussi, G., Mizia, F., Calemma, V., Pollesel, P., & Millini, R. (2012). Oligomerization of olefins from Light Cracking Naphtha over zeolite-based catalyst for the production of high quality diesel fuel. Microporous and Mesoporous Materials, 164, 127–134. https://doi.org/10.1016/j.micromeso.2012.07.020 Blas, L., Dorge, S., Dutourni??, P., Lambert, A., Chiche, D., Bertholin, S., & Josien, L. (2015). Study of the performances of an oxygen carrier: Experimental investigation of the binder’s contribution and characterization of its structural modifications. Comptes Rendus Chimie, 18(1), 45–55. https://doi.org/10.1016/j.crci.2014.07.005 Buchholz, A., Wang, W., Xu, M., Arnold, A., & Hunger, M. (2002). Thermal stability and dehydroxylation of Brønsted acid sites in silicoaluminophosphates H-SAPO-11, H-SAPO-18, H-SAPO-31 , and H-SAPO-34 investigated by multi-nuclear solid-state NMR spectroscopy, 56, 267–278. Burton, A. W., Ong, K., Rea, T., & Chan, I. Y. (2009). On the estimation of average crystallite size of zeolites from the Scherrer equation: A critical evaluation of its application to zeolites with one-dimensional pore systems. Microporous and Mesoporous Materials, 117(1–2), 75–90. https://doi.org/10.1016/j.micromeso.2008.06.010 Cheng, T., Xu, J., Li, X., Li, Y., Zhang, B., Yan, W., … Xu, R. (2012). Molecular engineering of microporous crystals: (IV) Crystallization process of microporous aluminophosphate AlPO 4-11. Microporous and Mesoporous Materials, 152, 190–207. https://doi.org/10.1016/j.micromeso.2011.11.034 Dang, T. T. H., Hoang, D.-L., Schneider, M., Hunger, M., & Martin, A. (2014). Impact of Conventional and Microwave Heating on SAPO-5 Formation and Brønsted Acidic Properties. Zeitschrift Für Anorganische Und Allgemeine Chemie, 640(8–9), 1576–1584. https://doi.org/10.1002/zaac.201400014 Hu, Z., Xu, M., Shen, Z., & Yu, J. C. (2015). A Nanostructured Chromium(III) Oxide/Tungsten(VI) Oxide p–n Junction Photoanode toward Enhanced Efficiency for Water Oxidation. J. Mater. Chem. A, 3(26), 14046–14053. https://doi.org/10.1039/C5TA02528A Jiang, F. Y., Tang, Z. K., Zhai, J. P., Ye, J. T., & Han, J. R. (2006). Synthesis of AlPO4-5 crystals using TBAOH as template. Microporous and Mesoporous Materials, 92(1–3), 129–133. https://doi.org/10.1016/j.micromeso.2005.12.021 Kalbasi, R. J., & Izadi, E. (2011). Synthesis and characterization of polymer/microporous molecular sieve nanocomposite as a shape-selective basic catalyst. Comptes Rendus Chimie, 14(11), 1002–1013. https://doi.org/10.1016/j.crci.2011.05.001 Kaydouh, M.-N., El Hassan, N., Davidson, A., Casale, S., El Zakhem, H., & Massiani, P. (2015). Effect of the order of Ni and Ce addition in SBA-15 on the activity in dry reforming of methane. Comptes Rendus Chimie, 18(3), 293–301. https://doi.org/10.1016/j.crci.2015.01.004 Li, D., Yao, J., & Wang, H. (2012). Hydrothermal synthesis of AlPO4-5: Effect of precursor gel preparation on the morphology of crystals. Progress in Natural Science: Materials International, 22(6), 684–692. https://doi.org/10.1016/j.pnsc.2012.11.003 Liu, Z., Liu, L., Song, H., Wang, C., Xing, W., Komarneni, S., & Yan, Z. (2015). Hierarchical SAPO-11 preparation in the presence of glucose. Materials Letters, 154(66), 116–119. https://doi.org/10.1016/j.matlet.2015.04.067 Mériaudeau, P., Tuan, V. ., Lefebvre, F., Nghiem, V. ., & Naccache, C. (1998). Isomorphous substitution of silicon in the AlPO4 framework with AEL structure: n-octane hydroconversion. Microporous and Mesoporous Materials, 22(1–3), 435–449. https://doi.org/10.1016/S1387-1811(98)00095-X Santa Arango, Alejandra Maria. (2009). Oligomerización De Olefinas Livianas Para La Producción De Diesel Usando Catalizadores Tipo Zeolita. MSc. Thesis, Facultad de Ingeniería, Universidad de Antioquia, Medellín, Colombia. Santa Arango, Alejandra María, Escobar Garcés, C. M., Agudelo Valderrama, J. L., Guzmán Monsalve, A., Palacio Santos, L. A., & Echavarría Isaza, A. (2011). Oligomerization of propene over ZSM-5 modified with Cr and W. Revista Facultad de Ingenieria, (57), 57–65. Shufang, W., Yanji, W., Yang, G., & Xinqiang, Z. (2010). Preparation of SAPO-5 and Its Catalytic Synthesis of p-Aminophenol. Chinese Journal of Catalysis, 31(6), 637–644. https://doi.org/10.1016/S1872-2067(09)60079-6 Souza de Araujo, A., Carlos Diniz, J., da Silva, A. O. S., & Alves de Melo, R. a. (1997). Hydrothermal synthesis of cerium aluminophosphate. Journal of Alloys and Compounds, 250(1–2), 532–535. https://doi.org/10.1016/S0925-8388(96)02738-7 Van Der Borght, K., Galvita, V. V., & Marin, G. B. (2015). Reprint of "ethanol to higher hydrocarbons over Ni, Ga, Fe-modified ZSM-5: Effect of metal content. Applied Catalysis A: General, 504, 621–630. https://doi.org/10.1016/j.apcata.2015.06.034 Wei, X.-L., Lu, X.-H., Zhang, T.-J., Chu, X., Zhou, D., Nie, R.-F., & Xia, Q.-H. (2015). Synthesis and catalytic application of SAPO-5 by dry-gel conversion for the epoxidation of styrene with air. Microporous and Mesoporous Materials, 214, 80–87. https://doi.org/10.1016/j.micromeso.2015.04.037 Wu, Q., Oduro, I. N., Huang, Y., & Yunming, F. (2015). Synthesis of hierarchical SAPO-11 via seeded crystallization. Microporous and Mesoporous Materials, 218, 24–32. Young, D., & Young, A. B. (1993). Rapid Analysis of Occluded Pr2NH in the AIPO4-11 and VPI-5 Molecular Sieves by Direct Mass Spectrometry. Materials Chemistry, 3(3), 295–297. Zhou, D., Luo, X. B., Zhang, H. L., Dong, C., Xia, Q. H., Liu, Z. M., & Deng, F. (2009). Synthesis and characterization of organic-functionalized molecular sieves Ph-SAPO-5 and Ph-SAPO-11. Microporous and Mesoporous Materials, 121(1–3), 194–199. https://doi.org/10.1016/j.micromeso.2009.01.033 |
dc.relation.bitstream.none.fl_str_mv |
https://revistas.eia.edu.co/index.php/reveia/article/download/1260/1271 |
dc.relation.citationedition.spa.fl_str_mv |
Núm. 33 , Año 2020 |
dc.relation.citationendpage.none.fl_str_mv |
11 |
dc.relation.citationissue.spa.fl_str_mv |
33 |
dc.relation.citationstartpage.none.fl_str_mv |
33002 pp. 1 |
dc.relation.citationvolume.spa.fl_str_mv |
17 |
dc.relation.ispartofjournal.spa.fl_str_mv |
Revista EIA |
dc.rights.spa.fl_str_mv |
Revista EIA - 2020 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0 |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Revista EIA - 2020 https://creativecommons.org/licenses/by-nc-nd/4.0 http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Fondo Editorial EIA - Universidad EIA |
dc.source.spa.fl_str_mv |
https://revistas.eia.edu.co/index.php/reveia/article/view/1260 |
institution |
Universidad EIA . |
bitstream.url.fl_str_mv |
https://repository.eia.edu.co/bitstreams/1db911a9-ac07-4da6-8edf-a8a9d300aeba/download |
bitstream.checksum.fl_str_mv |
aacab2da5d41511b2f0d5f5dd79e9e1b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EIA |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814100890926186496 |
spelling |
Ruiz Llano, Jorgeb0c6688a01d0f333d6469c5188517739300Arroyave Manco, Juan Camiloe5003ddc92cda04050df5b1af1ec9b90300Arboleda Echavarría, Johana Catalina61b34e578228ca738a7d2fd767a7ba57300Echavarría Izasa, Adriana Patriciaa418c4e9ce6c4b95243a95a8f4f0d24e3002020-02-03 00:00:002022-06-17T20:20:03Z2020-02-03 00:00:002022-06-17T20:20:03Z2020-02-031794-1237https://repository.eia.edu.co/handle/11190/505710.24050/reia.v17i33.12602463-0950https://doi.org/10.24050/reia.v17i33.1260Los aluminofosfatos y silico-aluminofosfatos son familias de mallas moleculares que presentan sistemas de poros ordenados con disposición alternada de AlO4 y PO4. Estas pueden usarse en la reacción de oligomerización de propileno debido a sus propiedades para promover la obtención de hidrocarburos de cadenas más grandes como el Diesel. En el presente trabajo se sintetizó AlPO-5 y SAPO-5 y se evaluó su actividad catalítica en la oligomerización de propileno. Las mallas moleculares obtenidas se caracterizaron por difracción de rayos X (XRD), análisis termogravimétrico (TGA), espectroscopía de absorción atómica (AA), desorción de amoniaco a temperatura programada (NH3-TPD) y microscopía electrónica de barrido (SEM). Los productos de la reacción se analizaron mediante cromatografía de gases (GC). Se obtuvo un mayor rendimiento en la proporción de oligómeros pesados en la reacción luego de las impregnaciones de Cr y Ni al material AlPO-5, siendo el material Cr 3% AlPO-5 el de mayor rendimiento.Aluminophosphates and silicoaluminophospates are molecular sieves families with ordered pore systems with an alternative accommodation of AlO4 and PO4. This molecular sieves can be use like catalyst in propylen oligomerization reaction due their textural properties and selectivity toward some products for contribute to obtaining olefins of carbon chains longer achieving thus the synthesis of sulfur free liquid fuels. In this work, AlPO-5 and SAPO-5 were synthetize and was evaluated its catalytic activity in propylen oligomerization. Molecular sieves obtained were characterized by x-ray diffraction (XRD), thermal gravimetric analysis (TGA), atomic absorption spectrometry (AA), ammonia temperature programmed desorption (NH3-TPD) and scanning electronic microscopy (SEM). The reaction products were analyzed by gas chromatography (GC). A higher yield was obtained in the proportion of heavy oligomers after impregnation of Cr and Ni on AlPO-5, being Cr 3% AlPO-5 the catalyst with the highest yield.application/pdfspaFondo Editorial EIA - Universidad EIARevista EIA - 2020https://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.http://purl.org/coar/access_right/c_abf2https://revistas.eia.edu.co/index.php/reveia/article/view/1260silico-aluminofosfatoimpregnaciónoligomerización de propilenocatálisissilicoaluminophosphateimpregnationpropylen oligomerizationcatalysisSíntesis hidrotermal de AlPO-5 y SAPO-5 y su evaluación catalítica en la oligomerización de propilenoAlPO-5 and SAPO-5 hydrothermal synthesis and catalytic propylen oligomerizationArtículo de revistaJournal articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionTexthttp://purl.org/redcol/resource_type/ARTREFhttp://purl.org/coar/version/c_970fb48d4fbd8a85Amrute, A. P., Mondelli, C., & Pérez-Ramírez, J. (2012). Kinetic aspects and deactivation behaviour of chromia-based catalysts in hydrogen chloride oxidation. Catalysis Science & Technology, 2(10), 2057. https://doi.org/10.1039/c2cy20185bBellussi, G., Mizia, F., Calemma, V., Pollesel, P., & Millini, R. (2012). Oligomerization of olefins from Light Cracking Naphtha over zeolite-based catalyst for the production of high quality diesel fuel. Microporous and Mesoporous Materials, 164, 127–134. https://doi.org/10.1016/j.micromeso.2012.07.020Blas, L., Dorge, S., Dutourni??, P., Lambert, A., Chiche, D., Bertholin, S., & Josien, L. (2015). Study of the performances of an oxygen carrier: Experimental investigation of the binder’s contribution and characterization of its structural modifications. Comptes Rendus Chimie, 18(1), 45–55. https://doi.org/10.1016/j.crci.2014.07.005Buchholz, A., Wang, W., Xu, M., Arnold, A., & Hunger, M. (2002). Thermal stability and dehydroxylation of Brønsted acid sites in silicoaluminophosphates H-SAPO-11, H-SAPO-18, H-SAPO-31 , and H-SAPO-34 investigated by multi-nuclear solid-state NMR spectroscopy, 56, 267–278.Burton, A. W., Ong, K., Rea, T., & Chan, I. Y. (2009). On the estimation of average crystallite size of zeolites from the Scherrer equation: A critical evaluation of its application to zeolites with one-dimensional pore systems. Microporous and Mesoporous Materials, 117(1–2), 75–90. https://doi.org/10.1016/j.micromeso.2008.06.010Cheng, T., Xu, J., Li, X., Li, Y., Zhang, B., Yan, W., … Xu, R. (2012). Molecular engineering of microporous crystals: (IV) Crystallization process of microporous aluminophosphate AlPO 4-11. Microporous and Mesoporous Materials, 152, 190–207. https://doi.org/10.1016/j.micromeso.2011.11.034Dang, T. T. H., Hoang, D.-L., Schneider, M., Hunger, M., & Martin, A. (2014). Impact of Conventional and Microwave Heating on SAPO-5 Formation and Brønsted Acidic Properties. Zeitschrift Für Anorganische Und Allgemeine Chemie, 640(8–9), 1576–1584. https://doi.org/10.1002/zaac.201400014Hu, Z., Xu, M., Shen, Z., & Yu, J. C. (2015). A Nanostructured Chromium(III) Oxide/Tungsten(VI) Oxide p–n Junction Photoanode toward Enhanced Efficiency for Water Oxidation. J. Mater. Chem. A, 3(26), 14046–14053. https://doi.org/10.1039/C5TA02528AJiang, F. Y., Tang, Z. K., Zhai, J. P., Ye, J. T., & Han, J. R. (2006). Synthesis of AlPO4-5 crystals using TBAOH as template. Microporous and Mesoporous Materials, 92(1–3), 129–133. https://doi.org/10.1016/j.micromeso.2005.12.021 Kalbasi, R. J., & Izadi, E. (2011). Synthesis and characterization of polymer/microporous molecular sieve nanocomposite as a shape-selective basic catalyst. Comptes Rendus Chimie, 14(11), 1002–1013. https://doi.org/10.1016/j.crci.2011.05.001Kaydouh, M.-N., El Hassan, N., Davidson, A., Casale, S., El Zakhem, H., & Massiani, P. (2015). Effect of the order of Ni and Ce addition in SBA-15 on the activity in dry reforming of methane. Comptes Rendus Chimie, 18(3), 293–301. https://doi.org/10.1016/j.crci.2015.01.004Li, D., Yao, J., & Wang, H. (2012). Hydrothermal synthesis of AlPO4-5: Effect of precursor gel preparation on the morphology of crystals. Progress in Natural Science: Materials International, 22(6), 684–692. https://doi.org/10.1016/j.pnsc.2012.11.003Liu, Z., Liu, L., Song, H., Wang, C., Xing, W., Komarneni, S., & Yan, Z. (2015). Hierarchical SAPO-11 preparation in the presence of glucose. Materials Letters, 154(66), 116–119. https://doi.org/10.1016/j.matlet.2015.04.067 Mériaudeau, P., Tuan, V. ., Lefebvre, F., Nghiem, V. ., & Naccache, C. (1998). Isomorphous substitution of silicon in the AlPO4 framework with AEL structure: n-octane hydroconversion. Microporous and Mesoporous Materials, 22(1–3), 435–449. https://doi.org/10.1016/S1387-1811(98)00095-XSanta Arango, Alejandra Maria. (2009). Oligomerización De Olefinas Livianas Para La Producción De Diesel Usando Catalizadores Tipo Zeolita. MSc. Thesis, Facultad de Ingeniería, Universidad de Antioquia, Medellín, Colombia.Santa Arango, Alejandra María, Escobar Garcés, C. M., Agudelo Valderrama, J. L., Guzmán Monsalve, A., Palacio Santos, L. A., & Echavarría Isaza, A. (2011). Oligomerization of propene over ZSM-5 modified with Cr and W. Revista Facultad de Ingenieria, (57), 57–65.Shufang, W., Yanji, W., Yang, G., & Xinqiang, Z. (2010). Preparation of SAPO-5 and Its Catalytic Synthesis of p-Aminophenol. Chinese Journal of Catalysis, 31(6), 637–644. https://doi.org/10.1016/S1872-2067(09)60079-6Souza de Araujo, A., Carlos Diniz, J., da Silva, A. O. S., & Alves de Melo, R. a. (1997). Hydrothermal synthesis of cerium aluminophosphate. Journal of Alloys and Compounds, 250(1–2), 532–535. https://doi.org/10.1016/S0925-8388(96)02738-7Van Der Borght, K., Galvita, V. V., & Marin, G. B. (2015). Reprint of "ethanol to higher hydrocarbons over Ni, Ga, Fe-modified ZSM-5: Effect of metal content. Applied Catalysis A: General, 504, 621–630. https://doi.org/10.1016/j.apcata.2015.06.034Wei, X.-L., Lu, X.-H., Zhang, T.-J., Chu, X., Zhou, D., Nie, R.-F., & Xia, Q.-H. (2015). Synthesis and catalytic application of SAPO-5 by dry-gel conversion for the epoxidation of styrene with air. Microporous and Mesoporous Materials, 214, 80–87. https://doi.org/10.1016/j.micromeso.2015.04.037Wu, Q., Oduro, I. N., Huang, Y., & Yunming, F. (2015). Synthesis of hierarchical SAPO-11 via seeded crystallization. Microporous and Mesoporous Materials, 218, 24–32.Young, D., & Young, A. B. (1993). Rapid Analysis of Occluded Pr2NH in the AIPO4-11 and VPI-5 Molecular Sieves by Direct Mass Spectrometry. Materials Chemistry, 3(3), 295–297.Zhou, D., Luo, X. B., Zhang, H. L., Dong, C., Xia, Q. H., Liu, Z. M., & Deng, F. (2009). Synthesis and characterization of organic-functionalized molecular sieves Ph-SAPO-5 and Ph-SAPO-11. Microporous and Mesoporous Materials, 121(1–3), 194–199. https://doi.org/10.1016/j.micromeso.2009.01.033https://revistas.eia.edu.co/index.php/reveia/article/download/1260/1271Núm. 33 , Año 2020113333002 pp. 117Revista EIAPublicationOREORE.xmltext/xml2760https://repository.eia.edu.co/bitstreams/1db911a9-ac07-4da6-8edf-a8a9d300aeba/downloadaacab2da5d41511b2f0d5f5dd79e9e1bMD5111190/5057oai:repository.eia.edu.co:11190/50572023-07-25 17:02:11.741https://creativecommons.org/licenses/by-nc-nd/4.0Revista EIA - 2020metadata.onlyhttps://repository.eia.edu.coRepositorio Institucional Universidad EIAbdigital@metabiblioteca.com |