TEXTILES FUNCIONALES COMO BARRERA DE PROTECCIÓN ANTE INFECCIONES ASOCIADAS A LA ATENCIÓN EN SALUD

Los tejidos reforzados con nanoestructuras se ha convertido en un área de la investigación que busca contener la transmisión de microorganismos relacionados con las infecciones asociadas a la atención en salud, un problema de salud pública conlleva una alta carga de morbi-mortalidad en la población...

Full description

Autores:
Zapata Giraldo, Jenniffer
Botero Palacio, Luz Elena
Mejía Suaza, Mónica Liliana
Escobar Mora, Nelson
Ortiz Trujillo, Isabel
Galeano, Beatriz
Hoyos Palacio, Lina
Cuesta, Diana
Tipo de recurso:
Article of journal
Fecha de publicación:
2018
Institución:
Universidad EIA .
Repositorio:
Repositorio EIA .
Idioma:
spa
OAI Identifier:
oai:repository.eia.edu.co:11190/5028
Acceso en línea:
https://repository.eia.edu.co/handle/11190/5028
https://doi.org/10.24050/reia.v15i29.1166
Palabra clave:
Rights
openAccess
License
Revista EIA - 2018
id REIA2_6c171e8c14e91874a3a1af55fef25824
oai_identifier_str oai:repository.eia.edu.co:11190/5028
network_acronym_str REIA2
network_name_str Repositorio EIA .
repository_id_str
dc.title.spa.fl_str_mv TEXTILES FUNCIONALES COMO BARRERA DE PROTECCIÓN ANTE INFECCIONES ASOCIADAS A LA ATENCIÓN EN SALUD
dc.title.translated.eng.fl_str_mv TEXTILES FUNCIONALES COMO BARRERA DE PROTECCIÓN ANTE INFECCIONES ASOCIADAS A LA ATENCIÓN EN SALUD
title TEXTILES FUNCIONALES COMO BARRERA DE PROTECCIÓN ANTE INFECCIONES ASOCIADAS A LA ATENCIÓN EN SALUD
spellingShingle TEXTILES FUNCIONALES COMO BARRERA DE PROTECCIÓN ANTE INFECCIONES ASOCIADAS A LA ATENCIÓN EN SALUD
title_short TEXTILES FUNCIONALES COMO BARRERA DE PROTECCIÓN ANTE INFECCIONES ASOCIADAS A LA ATENCIÓN EN SALUD
title_full TEXTILES FUNCIONALES COMO BARRERA DE PROTECCIÓN ANTE INFECCIONES ASOCIADAS A LA ATENCIÓN EN SALUD
title_fullStr TEXTILES FUNCIONALES COMO BARRERA DE PROTECCIÓN ANTE INFECCIONES ASOCIADAS A LA ATENCIÓN EN SALUD
title_full_unstemmed TEXTILES FUNCIONALES COMO BARRERA DE PROTECCIÓN ANTE INFECCIONES ASOCIADAS A LA ATENCIÓN EN SALUD
title_sort TEXTILES FUNCIONALES COMO BARRERA DE PROTECCIÓN ANTE INFECCIONES ASOCIADAS A LA ATENCIÓN EN SALUD
dc.creator.fl_str_mv Zapata Giraldo, Jenniffer
Botero Palacio, Luz Elena
Mejía Suaza, Mónica Liliana
Escobar Mora, Nelson
Ortiz Trujillo, Isabel
Galeano, Beatriz
Hoyos Palacio, Lina
Cuesta, Diana
dc.contributor.author.spa.fl_str_mv Zapata Giraldo, Jenniffer
Botero Palacio, Luz Elena
Mejía Suaza, Mónica Liliana
Escobar Mora, Nelson
Ortiz Trujillo, Isabel
Galeano, Beatriz
Hoyos Palacio, Lina
Cuesta, Diana
description Los tejidos reforzados con nanoestructuras se ha convertido en un área de la investigación que busca contener la transmisión de microorganismos relacionados con las infecciones asociadas a la atención en salud, un problema de salud pública conlleva una alta carga de morbi-mortalidad en la población y pérdidas millonarias de recursos económicos. Las nanopartículas metálicas y óxido metálicas son agentes antimicrobianos que han cobrado importancia por su amplia aplicación. Esta revisión narrativa examina la evidencia científica de textiles funcionales con propiedades antimicrobianas como una estrategia para contener la transmisión de microorganismos relacionados con infecciones asociadas a la atención en salud, a partir del contexto de los textiles como fuente de contaminación e infección y los mecanismos antimicrobianos de las diferentes nanopartículas usadas como reforzantes para lograr un textil funcional. El desarrollo de la nanotecnología permite el progreso en diferentes campos de la ciencia y oportunidades en el ámbito de textiles funcionales.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2018-04-30 00:00:00
2022-06-17T20:19:44Z
dc.date.available.none.fl_str_mv 2018-04-30 00:00:00
2022-06-17T20:19:44Z
dc.date.issued.none.fl_str_mv 2018-04-30
dc.type.spa.fl_str_mv Artículo de revista
dc.type.eng.fl_str_mv Journal article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_6501
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 1794-1237
dc.identifier.uri.none.fl_str_mv https://repository.eia.edu.co/handle/11190/5028
dc.identifier.doi.none.fl_str_mv 10.24050/reia.v15i29.1166
dc.identifier.eissn.none.fl_str_mv 2463-0950
dc.identifier.url.none.fl_str_mv https://doi.org/10.24050/reia.v15i29.1166
identifier_str_mv 1794-1237
10.24050/reia.v15i29.1166
2463-0950
url https://repository.eia.edu.co/handle/11190/5028
https://doi.org/10.24050/reia.v15i29.1166
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Aashis S. Roy, A.P. (2010) Effect of Nano - Titanium Dioxide with Different Antibiotics against Methicillin- Resistant Staphylococcus Aureus. Journal of Biomaterials and Nanobiotechnology. [Online] 1 (1), 37. Available from: doi:10.4236/jbnb.2010.11005.
Ahmad, T., Wani, I.A., Lone, I.H., Ganguly, A., et al. (2013) Antifungal activity of gold nanoparticles prepared by solvothermal method. Materials Research Bulletin. [Online] 48 (1), 12–20. Available from: doi:10.1016/j.materresbull.2012.09.069.
Allahverdiyev, A.M., Abamor, E.S., Bagirova, M., Baydar, S.Y., et al. (2013) Investigation of antileishmanial activities of Tio2@Ag nanoparticles on biological properties of L. tropica and L. infantum parasites, in vitro. Experimental Parasitology. [Online] 135 (1), 55–63. Available from: doi:10.1016/j.exppara.2013.06.001.
Allegranzi, B., Bagheri Nejad, S., Combescure, C., Graafmans, W., et al. (2011) Burden of endemic health-care-associated infection in developing countries: systematic review and meta-analysis. Lancet (London, England). [Online] 377 (9761), 228–241. Available from: doi:10.1016/S0140-6736(10)61458-4.
Álvarez-Paino, M., Muñoz-Bonilla, A. & Fernández-García, M. (2017) Antimicrobial Polymers in the Nano-World. Nanomaterials (Basel, Switzerland). [Online] 7 (2). Available from: doi:10.3390/nano7020048.
Antoine, T.E., Mishra, Y.K., Trigilio, J., Tiwari, V., et al. (2012) Prophylactic, therapeutic and neutralizing effects of zinc oxide tetrapod structures against herpes simplex virus type-2 infection. Antiviral Research. [Online] 96 (3), 363–375. Available from: doi:10.1016/j.antiviral.2012.09.020.
Arshi, N., Ahmed, F., Kumar, S., Anwar, M.S., et al. (2011) Microwave assisted synthesis of gold nanoparticles and their antibacterial activity against Escherichia coli (E. coli). Current Applied Physics. [Online] 11 (1, Supplement), S360–S363. Available from: doi:10.1016/j.cap.2010.11.102.
Artunduaga Bonilla, J.J., Paredes Guerrero, D.J., Sánchez Suárez, C.I., Ortiz López, C.C., et al. (2015) In vitro antifungal activity of silver nanoparticles against fluconazole-resistant Candida species. World Journal of Microbiology & Biotechnology. [Online] 31 (11), 1801–1809. Available from: doi:10.1007/s11274-015-1933-z.
Azam, A., Ahmed, A.S., Oves, M., Khan, M.S., et al. (2012) Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: A comparative study. International Journal of Nanomedicine. [Online] 7, 6003–6009. Available from: doi:10.2147/IJN.S35347.
Azam, A., Ahmed, F., Arshi, N., Chaman, M., et al. (2009) One step synthesis and characterization of gold nanoparticles and their antibacterial activities against E. coli (ATCC 25922 strain). Int J Theor Appl Sci. 1 (2), 1–4.
Badwaik, V.D., Vangala, L.M., Pender, D.S., Willis, C.B., et al. (2012) Size-dependent antimicrobial properties of sugar-encapsulated gold nanoparticles synthesized by a green method. Nanoscale Research Letters. [Online] 7 (1), 623. Available from: doi:10.1186/1556-276X-7-623.
Balakumaran, M.D., Ramachandran, R., Jagadeeswari, S. & Kalaichelvan, P.T. (2016) In vitro biological properties and characterization of nanosilver coated cotton fabrics – An application for antimicrobial textile finishing. International Biodeterioration & Biodegradation. [Online] 107, 48–55. Available from: doi:10.1016/j.ibiod.2015.11.011.
Banerjee, S., Gopal, J., Muraleedharan, P., Tyagi, A.K., et al. (2006) Physics and chemistry of photocatalytic titanium dioxide: visualization of bactericidal activity using atomic force microscopy. Current Science. 90 (10), 1378–1383.
Bera, R.K., Mandal, S.M. & Raj, C.R. (2014) Antimicrobial activity of fluorescent Ag nanoparticles. Letters in Applied Microbiology. [Online] 58 (6), 520–526. Available from: doi:10.1111/lam.12222.
Bogdan, J., Zarzyńska, J. & Pławińska-Czarnak, J. (2015) Comparison of Infectious Agents Susceptibility to Photocatalytic Effects of Nanosized Titanium and Zinc Oxides: A Practical Approach. Nanoscale Research Letters. [Online] 10. Available from: doi:10.1186/s11671-015-1023-z.
Borkow, G. & Gabbay, J. (2008) Biocidal textiles can help fight nosocomial infections. Medical Hypotheses. [Online] 70 (5), 990–994. Available from: doi:10.1016/j.mehy.2007.08.025.
Boyce, J.M. (2007) Environmental contamination makes an important contribution to hospital infection. The Journal of Hospital Infection. [Online] 65 Suppl 2, 50–54. Available from: doi:10.1016/S0195-6701(07)60015-2.
Brown, A.N., Smith, K., Samuels, T.A., Lu, J., et al. (2012) Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus. Applied and Environmental Microbiology. [Online] 78 (8), 2768–2774. Available from: doi:10.1128/AEM.06513-11.
Callaghan, I. (1998) Bacterial contamination of nurses’ uniforms: a study. Nursing Standard (Royal College of Nursing (Great Britain): 1987). [Online] 13 (1), 37–42. Available from: doi:10.7748/ns1998.09.13.1.37.c2525.
Carré, G., Hamon, E., Ennahar, S., Estner, M., et al. (2014) TiO2 Photocatalysis Damages Lipids and Proteins in Escherichia coli. Applied and Environmental Microbiology. [Online] 80 (8), 2573–2581. Available from: doi:10.1128/AEM.03995-13.
Cataño, O, J.C., Echeverri, L.M., Szela, C., et al. (2012) Bacterial Contamination of Clothes and Environmental Items in a Third-Level Hospital in Colombia, Bacterial Contamination of Clothes and Environmental Items in a Third-Level Hospital in Colombia. Interdisciplinary Perspectives on Infectious Diseases, Interdisciplinary Perspectives on Infectious Diseases. [Online] 2012, 2012, e507640. Available from: doi:10.1155/2012/507640, 10.1155/2012/507640.
Cui, H., Jiang, J., Gu, W., Sun, C., et al. (2010) Photocatalytic Inactivation Efficiency of Anatase Nano-TiO2 Sol on the H9N2 Avian Influenza Virus. Photochemistry and Photobiology. [Online] 86 (5), 1135–1139. Available from: doi:10.1111/j.1751-1097.2010.00763.x.
Cui, Y., Zhao, Y., Tian, Y., Zhang, W., et al. (2012) The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials. [Online] 33 (7), 2327–2333. Available from: doi:10.1016/j.biomaterials.2011.11.057.
Damani, N. (2012) Manual of Infection Prevention and Control. 3 edition. Oxford University Press.
Dastjerdi, R., Mojtahedi, M.R.M., Shoshtari, A.M. & Khosroshahi, A. (2010) Investigating the production and properties of Ag/TiO2/PP antibacterial nanocomposite filament yarns. The Journal of The Textile Institute. [Online] 101 (3), 204–213. Available from: doi:10.1080/00405000802346388.
Delavari, M., Dalimi, A., Ghaffarifar, F. & Sadraei, J. (2014) In Vitro Study on Cytotoxic Effects of ZnO Nanoparticles on Promastigote and Amastigote Forms of Leishmania major (MRHO/IR/75/ER). Iranian Journal of Parasitology. 9 (1), 6–13.
Dodd, A.C., McKinley, A.J., Saunders, M. & Tsuzuki, T. (2006) Effect of Particle Size on the Photocatalytic Activity of Nanoparticulate Zinc Oxide. Journal of Nanoparticle Research. [Online] 8 (1), 43–51. Available from: doi:10.1007/s11051-005-5131-z.
Dohmae, S., Okubo, T., Higuchi, W., Takano, T., et al. (2008) Bacillus cereus nosocomial infection from reused towels in Japan. The Journal of Hospital Infection. [Online] 69 (4), 361–367. Available from: doi:10.1016/j.jhin.2008.04.014.
Eremenko, A.M., Petrik, I.S., Smirnova, N.P., Rudenko, A.V., et al. (2016) Antibacterial and Antimycotic Activity of Cotton Fabrics, Impregnated with Silver and Binary Silver/Copper Nanoparticles. Nanoscale Research Letters. [Online] 11. Available from: doi:10.1186/s11671-016-1240-0.
Esteves, D.C., Pereira, V.C., Souza, J.M., Keller, R., et al. (2016) Influence of biological fluids in bacterial viability on different hospital surfaces and fomites. American Journal of Infection Control. [Online] 44 (3), 311–314. Available from: doi:10.1016/j.ajic.2015.09.033.
Fijan, S. & Turk, S.Š. (2012) Hospital textiles, are they a possible vehicle for healthcare-associated infections? International Journal of Environmental Research and Public Health. [Online] 9 (9), 3330–3343. Available from: doi:10.3390/ijerph9093330.
Fu, G., Vary, P.S. & Lin, C.-T. (2005) Anatase TiO2 Nanocomposites for Antimicrobial Coatings. The Journal of Physical Chemistry B. [Online] 109 (18), 8889–8898. Available from: doi:10.1021/jp0502196.
Gaikwad, S., Ingle, A., Gade, A., Rai, M., et al. (2013) Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. International Journal of Nanomedicine. [Online] 8, 4303–4314. Available from: doi:10.2147/IJN.S50070.
Gondal, M.A., Alzahrani, A.J., Randhawa, M.A. & Siddiqui, M.N. (2012) Morphology and antifungal effect of nano-ZnO and nano-Pd-doped nano-ZnO against Aspergillus and Candida. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering. [Online] 47 (10), 1413–1418. Available from: doi:10.1080/10934529.2012.672384.
Hernández-Sierra, J.F., Ruiz, F., Pena, D.C.C., Martínez-Gutiérrez, F., et al. (2008) The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold. Nanomedicine: Nanotechnology, Biology, and Medicine. [Online] 4 (3), 237–240. Available from: doi:10.1016/j.nano.2008.04.005.
Huang, Z., Zheng, X., Yan, D., Yin, G., et al. (2008) Toxicological Effect of ZnO Nanoparticles Based on Bacteria. Langmuir. [Online] 24 (8), 4140–4144. Available from: doi:10.1021/la7035949.
Hwang, I., Lee, J., Hwang, J.H., Kim, K.-J., et al. (2012) Silver nanoparticles induce apoptotic cell death in Candida albicans through the increase of hydroxyl radicals. The FEBS journal. [Online] 279 (7), 1327–1338. Available from: doi:10.1111/j.1742-4658.2012.08527.x.
Jacobson, K.H., Gunsolus, I.L., Kuech, T.R., Troiano, J.M., et al. (2015) Lipopolysaccharide Density and Structure Govern the Extent and Distance of Nanoparticle Interaction with Actual and Model Bacterial Outer Membranes. Environmental Science & Technology. [Online] 49 (17), 10642–10650. Available from: doi:10.1021/acs.est.5b01841.
Jiang, J.F., Cui, H.X., Yang, T., Cai, H.C., et al. (2009) Inactivation efficiency of nano-Cu2+/TiO2 on avian influenza (H9N2). Journal of Funtional Materials. 40, 1403–1406.
Kairyte, K., Kadys, A. & Luksiene, Z. (2013) Antibacterial and antifungal activity of photoactivated ZnO nanoparticles in suspension. Journal of Photochemistry and Photobiology. B, Biology. [Online] 128, 78–84. Available from: doi:10.1016/j.jphotobiol.2013.07.017.
Karunakaran, C., Rajeswari, V. & Gomathisankar, P. (2011) Enhanced photocatalytic and antibacterial activities of sol–gel synthesized ZnO and Ag-ZnO. Materials Science in Semiconductor Processing. [Online] 14 (2), 133–138. Available from: doi:10.1016/j.mssp.2011.01.017.
Kim, J.S., Kuk, E., Yu, K.N., Kim, J.-H., et al. (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine. [Online] 3 (1), 95–101. Available from: doi:10.1016/j.nano.2006.12.001.
Kim, K.-J., Sung, W.S., Moon, S.-K., Choi, J.-S., et al. (2008) Antifungal effect of silver nanoparticles on dermatophytes. Journal of Microbiology and Biotechnology. 18 (8), 1482–1484.
Kim, K.-J., Sung, W.S., Suh, B.K., Moon, S.-K., et al. (2009) Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals: An International Journal on the Role of Metal Ions in Biology, Biochemistry, and Medicine. [Online] 22 (2), 235–242. Available from: doi:10.1007/s10534-008-9159-2.
Klevens, R.M., Edwards, J.R., Richards, C.L., Horan, T.C., et al. (2007) Estimating health care-associated infections and deaths in U.S. hospitals, 2002. Public Health Reports (Washington, D.C.: 1974). 122 (2), 160–166.
Knetsch, M.L.W. & Koole, L.H. (2011) New strategies in the development of antimicrobial coatings: The example of increasing usage of silver and silver nanoparticles. Polymers. [Online] 3 (1), 340–366. Available from: doi:10.3390/polym3010340.
Kotsanas, D., Wijesooriya, W.R.P.L.I., Sloane, T., Stuart, R.L., et al. (2014) The silver lining of disposable sporicidal privacy curtains in an intensive care unit. American Journal of Infection Control. [Online] 42 (4), 366–370. Available from: doi:10.1016/j.ajic.2013.11.013.
Lara, H.H., Ayala-Nuñez, N.V., Ixtepan-Turrent, L. & Rodriguez-Padilla, C. (2010) Mode of antiviral action of silver nanoparticles against HIV-1. Journal of Nanobiotechnology. [Online] 8, 1. Available from: doi:10.1186/1477-3155-8-1.
Lara, H.H., Ayala-Núñez, N.V., Turrent, L. del C.I. & Padilla, C.R. (2009) Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World Journal of Microbiology and Biotechnology. [Online] 26 (4), 615–621. Available from: doi:10.1007/s11274-009-0211-3.
Li, S., Zhu, T., Huang, J., Guo, Q., et al. (2017) Durable antibacterial and UV-protective Ag/TiO2@ fabrics for sustainable biomedical application. International Journal of Nanomedicine. [Online] 12, 2593–2606. Available from: doi:10.2147/IJN.S132035.
Ling, M.L., Apisarnthanarak, A., Thu, L.T.A., Villanueva, V., et al. (2015) APSIC Guidelines for environmental cleaning and decontamination. Antimicrobial Resistance and Infection Control. [Online] 4. Available from: doi:10.1186/s13756-015-0099-7.
Lok, C.-N., Ho, C.-M., Chen, R., He, Q.-Y., et al. (2007) Silver nanoparticles: partial oxidation and antibacterial activities. Journal of biological inorganic chemistry: JBIC: a publication of the Society of Biological Inorganic Chemistry. [Online] 12 (4), 527–534. Available from: doi:10.1007/s00775-007-0208-z.
Mishra, Y.K., Adelung, R., Röhl, C., Shukla, D., et al. (2011) Virostatic potential of micro–nano filopodia-like ZnO structures against herpes simplex virus-1. Antiviral Research. [Online] 92 (2), 305–312. Available from: doi:10.1016/j.antiviral.2011.08.017.
Montazer, M. & Maali Amiri, M. (2014) ZnO nano reactor on textiles and polymers: ex situ and in situ synthesis, application, and characterization. The Journal of Physical Chemistry. B. [Online] 118 (6), 1453–1470. Available from: doi:10.1021/jp408532r.
Monteiro, D.R., Gorup, L.F., Silva, S., Negri, M., et al. (2011) Silver colloidal nanoparticles: antifungal effect against adhered cells and biofilms of Candida albicans and Candida glabrata. Biofouling. [Online] 27 (7), 711–719. Available from: doi:10.1080/08927014.2011.599101.
Mu, H., Tang, J., Liu, Q., Sun, C., et al. (2016) Potent Antibacterial Nanoparticles against Biofilm and Intracellular Bacteria. Scientific Reports. [Online] 6, 18877. Available from: doi:10.1038/srep18877.
Oćwieja, M., Adamczyk, Z., Morga, M. & Kubiak, K. (2015) Silver particle monolayers — Formation, stability, applications. Advances in Colloid and Interface Science. [Online] 222, 530–563. Available from: doi:10.1016/j.cis.2014.07.001.
Ohl, M., Schweizer, M., Graham, M., Heilmann, K., et al. (2012) Hospital privacy curtains are frequently and rapidly contaminated with potentially pathogenic bacteria. American Journal of Infection Control. [Online] 40 (10), 904–906. Available from: doi:10.1016/j.ajic.2011.12.017.
OMS (n.d.) Carga mundial de infecciones asociadas a la atención sanitaria. [Online]. WHO. Available from: http://www.who.int/gpsc/country_work/burden_hcai/es/ [Accessed: 13 January 2016].
Padmavathy, N. & Vijayaraghavan, R. (2008) Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Science and Technology of Advanced Materials. [Online] 9 (3), 35004. Available from: doi:10.1088/1468-6996/9/3/035004.
PAHO (2012) Vigilancia epidemiológica de las infecciones asociadas a la atención en salud. [Online]. p.54. Available from: http://www.paho.org/hq/index.php?option=com_docman&task=doc_view&gid=19272&Itemid=.
Pal, S., Tak, Y.K. & Song, J.M. (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Applied and Environmental Microbiology. [Online] 73 (6), 1712–1720. Available from: doi:10.1128/AEM.02218-06.
Palza, H. (2015) Antimicrobial Polymers with Metal Nanoparticles. International Journal of Molecular Sciences. [Online] 16 (1), 2099–2116. Available from: doi:10.3390/ijms16012099.
Panácek, A., Kolár, M., Vecerová, R., Prucek, R., et al. (2009) Antifungal activity of silver nanoparticles against Candida spp. Biomaterials. [Online] 30 (31), 6333–6340. Available from: doi:10.1016/j.biomaterials.2009.07.065.
Panagea, S., Winstanley, C., Walshaw, M.J., Ledson, M.J., et al. (2005) Environmental contamination with an epidemic strain of Pseudomonas aeruginosa in a Liverpool cystic fibrosis centre, and study of its survival on dry surfaces. The Journal of Hospital Infection. [Online] 59 (2), 102–107. Available from: doi:10.1016/j.jhin.2004.09.018.
Perelshtein, I., Applerot, G., Perkas, N., Grinblat, J., et al. (2012) A one-step process for the antimicrobial finishing of textiles with crystalline TiO2 nanoparticles. Chemistry (Weinheim an Der Bergstrasse, Germany). [Online] 18 (15), 4575–4582. Available from: doi:10.1002/chem.201101683.
Perera, S., Bhushan, B., Bandara, R., Rajapakse, G., et al. (2013) Morphological, antimicrobial, durability, and physical properties of untreated and treated textiles using silver-nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects. [Online] 436, 975–989. Available from: doi:10.1016/j.colsurfa.2013.08.038.
Perry, C., Marshall, R. & Jones, E. (2001) Bacterial contamination of uniforms. The Journal of Hospital Infection. [Online] 48 (3), 238–241. Available from: doi:10.1053/jhin.2001.0962.
Petkova, P., Francesko, A., Perelshtein, I., Gedanken, A., et al. (2016) Simultaneous sonochemical-enzymatic coating of medical textiles with antibacterial ZnO nanoparticles. Ultrasonics Sonochemistry. [Online] 29, 244–250. Available from: doi:10.1016/j.ultsonch.2015.09.021.
Pollini, M., Russo, M., Licciulli, A., Sannino, A., et al. (2009) Characterization of antibacterial silver coated yarns. Journal of Materials Science. Materials in Medicine. [Online] 20 (11), 2361–2366. Available from: doi:10.1007/s10856-009-3796-z.
Rahimi, M.T., Ahmadpour, E., Rahimi Esboei, B., Spotin, A., et al. (2015) Scolicidal activity of biosynthesized silver nanoparticles against Echinococcus granulosus protoscolices. International Journal of Surgery. [Online] 19, 128–133. Available from: doi:10.1016/j.ijsu.2015.05.043.
Ramani, M., Ponnusamy, S., Muthamizhchelvan, C., Cullen, J., et al. (2013) Morphology-directed synthesis of ZnO nanostructures and their antibacterial activity. Colloids and Surfaces. B, Biointerfaces. [Online] 105, 24–30. Available from: doi:10.1016/j.colsurfb.2012.12.056.
Ramasamy, M., Lee, J.-H. & Lee, J. (2016) Potent antimicrobial and antibiofilm activities of bacteriogenically synthesized gold-silver nanoparticles against pathogenic bacteria and their physiochemical characterizations. Journal of Biomaterials Applications. [Online] 31 (3), 366–378. Available from: doi:10.1177/0885328216646910.
Reddy, L.S., Nisha, M.M., Joice, M. & Shilpa, P.N. (2014) Antimicrobial activity of zinc oxide (ZnO) nanoparticle against Klebsiella pneumoniae. Pharmaceutical Biology. [Online] 52 (11), 1388–1397. Available from: doi:10.3109/13880209.2014.893001.
Saini, P., Saha, S.K., Roy, P., Chowdhury, P., et al. (2016) Evidence of reactive oxygen species (ROS) mediated apoptosis in Setaria cervi induced by green silver nanoparticles from Acacia auriculiformis at a very low dose. Experimental Parasitology. [Online] 160, 39–48. Available from: doi:10.1016/j.exppara.2015.11.004.
Sarkar, S., Guibal, E., Quignard, F. & SenGupta, A.K. (2012) Polymer-supported metals and metal oxide nanoparticles: synthesis, characterization, and applications. Journal of Nanoparticle Research. [Online] 14 (2), 1–24. Available from: doi:10.1007/s11051-011-0715-2.
Sasahara, T., Hayashi, S., Morisawa, Y., Sakihama, T., et al. (2011) Bacillus cereus bacteremia outbreak due to contaminated hospital linens. European Journal of Clinical Microbiology & Infectious Diseases: Official Publication of the European Society of Clinical Microbiology. [Online] 30 (2), 219–226. Available from: doi:10.1007/s10096-010-1072-2.
Sattar, S.A., Springthorpe, S., Mani, S., Gallant, M., et al. (2001) Transfer of bacteria from fabrics to hands and other fabrics: development and application of a quantitative method using Staphylococcus aureus as a model. Journal of Applied Microbiology. 90 (6), 962–970.
Schweizer, M., Graham, M., Ohl, M., Heilmann, K., et al. (2012) Novel hospital curtains with antimicrobial properties: a randomized, controlled trial. Infection Control and Hospital Epidemiology. [Online] 33 (11), 1081–1085. Available from: doi:10.1086/668022.
Sehulster, L.M., Chinn, R.Y.W., Arduino, M.J., Carpenter, J., et al. (2004) Guidelines for environmental infection control in health-care facilities. Recommendations from CDC and the Healthcare Infection Control Practices Advisory Committee (HICPAC).p.235.
Sexton, T., Clarke, P., O’Neill, E., Dillane, T., et al. (2006) Environmental reservoirs of methicillin-resistant Staphylococcus aureus in isolation rooms: correlation with patient isolates and implications for hospital hygiene. The Journal of Hospital Infection. [Online] 62 (2), 187–194. Available from: doi:10.1016/j.jhin.2005.07.017.
Shaheen, T.I., El-Naggar, M.E., Abdelgawad, A.M. & Hebeish, A. (2016) Durable antibacterial and UV protections of in situ synthesized zinc oxide nanoparticles onto cotton fabrics. International Journal of Biological Macromolecules. [Online] 83 (Supplement C), 426–432. Available from: doi:10.1016/j.ijbiomac.2015.11.003.
Shahid-ul-Islam, Butola, B.S. & Mohammad, F. (2016) Silver nanomaterials as future colorants and potential antimicrobial agents for natural and synthetic textile materials. RSC Advances. [Online] 6 (50), 44232–44247. Available from: doi:10.1039/C6RA05799C.
Shamaila, S., Zafar, N., Riaz, S., Sharif, R., et al. (2016) Gold Nanoparticles: An Efficient Antimicrobial Agent against Enteric Bacterial Human Pathogen. Nanomaterials (Basel, Switzerland). [Online] 6 (4). Available from: doi:10.3390/nano6040071.
Sharma, D., Rajput, J., Kaith, B.S., Kaur, M., et al. (2010) Synthesis of ZnO nanoparticles and study of their antibacterial and antifungal properties. Thin Solid Films. [Online] 519 (3), 1224–1229. Available from: doi:10.1016/j.tsf.2010.08.073.
Sreelakshmi, C., Datta, K.K.R., Yadav, J.S. & Reddy, B.V.S. (2011) Honey derivatized Au and Ag nanoparticles and evaluation of its antimicrobial activity. Journal of Nanoscience and Nanotechnology. 11 (8), 6995–7000.
Thabet, S., Simonet, F., Lemaire, M., Guillard, C., et al. (2014) Impact of photocatalysis on fungal cells: depiction of cellular and molecular effects on Saccharomyces cerevisiae. Applied and Environmental Microbiology. [Online] 80 (24), 7527–7535. Available from: doi:10.1128/AEM.02416-14.
Tran Thi, V.H. & Lee, B.-K. (2017) Development of multifunctional self-cleaning and UV blocking cotton fabric with modification of photoactive ZnO coating via microwave method. Journal of Photochemistry and Photobiology A: Chemistry. [Online] 338 (Supplement C), 13–22. Available from: doi:10.1016/j.jphotochem.2017.01.020.
Treakle, A.M., Thom, K.A., Furuno, J.P., Strauss, S.M., et al. (2009) Bacterial contamination of health care workers’ white coats. American Journal of Infection Control. [Online] 37 (2), 101–105. Available from: doi:10.1016/j.ajic.2008.03.009.
Trillis, F., Eckstein, E.C., Budavich, R., Pultz, M.J., et al. (2008) Contamination of hospital curtains with healthcare-associated pathogens. Infection Control and Hospital Epidemiology. [Online] 29 (11), 1074–1076. Available from: doi:10.1086/591863.
Uğur, S.S., Sarıışık, M., Aktaş, A.H., Uçar, M.C., et al. (2010) Modifying of Cotton Fabric Surface with Nano-ZnO Multilayer Films by Layer-by-Layer Deposition Method. Nanoscale Research Letters. [Online] 5 (7), 1204–1210. Available from: doi:10.1007/s11671-010-9627-9.
Valderrama Beltran, S.L., Ariza Ayala, B.E. & Osorio Pinzon, J.V. (2010) Medio ambiente e infección. In: Infecciones Hospitalarias. 3rd edition. Bogota, Editorial Medica Internacional. pp. 126–147.
Vazquez-Muñoz, R., Avalos-Borja, M. & Castro-Longoria, E. (2014) Ultrastructural Analysis of Candida albicans When Exposed to Silver Nanoparticles. PLoS ONE. [Online] 9 (10). Available from: doi:10.1371/journal.pone.0108876 [Accessed: 2 March 2017].
Wani, I.A., Ahmad, T. & Manzoor, N. (2013) Size and shape dependant antifungal activity of gold nanoparticles: a case study of Candida. Colloids and Surfaces. B, Biointerfaces. [Online] 101, 162–170. Available from: doi:10.1016/j.colsurfb.2012.06.005.
WHO (2011) Report on the burden of health care-associated infection worldwide. [Online]. p.40. Available from: http://www.who.int/gpsc/country_work/burden_hcai/en/ [Accessed: 13 January 2016].
Wiener-Well, Y., Galuty, M., Rudensky, B., Schlesinger, Y., et al. (2011) Nursing and physician attire as possible source of nosocomial infections. American Journal of Infection Control. [Online] 39 (7), 555–559. Available from: doi:10.1016/j.ajic.2010.12.016.
Windler, L., Height, M. & Nowack, B. (2013) Comparative evaluation of antimicrobials for textile applications. Environment International. [Online] 53, 62–73. Available from: doi:10.1016/j.envint.2012.12.010.
Xiang, D., Zheng, Y., Duan, W., Li, X., et al. (2013) Inhibition of A/Human/Hubei/3/2005 (H3N2) influenza virus infection by silver nanoparticles in vitro and in vivo. International Journal of Nanomedicine. [Online] 8, 4103–4114. Available from: doi:10.2147/IJN.S53622.
Xiao, G., Zhang, X., Zhao, Y., Su, H., et al. (2014) The behavior of active bactericidal and antifungal coating under visible light irradiation. Applied Surface Science. [Online] 292, 756–763. Available from: doi:10.1016/j.apsusc.2013.12.044.
Xie, Y., He, Y., Irwin, P.L., Jin, T., et al. (2011) Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Applied and Environmental Microbiology. [Online] 77 (7), 2325–2331. Available from: doi:10.1128/AEM.02149-10.
Zarrindokht Emami-Karvani, P.C. (2012) Antibacterial activity of ZnO nanoparticle on Gram-positive and Gram-negative bacteria. African Journal of Microbiology Research. [Online] 5 (18). Available from: doi:10.5897/AJMR10.159.
Zhang, L., Ding, Y., Povey, M. & York, D. (2008) ZnO nanofluids – A potential antibacterial agent. Progress in Natural Science. [Online] 18 (8), 939–944. Available from: doi:10.1016/j.pnsc.2008.01.026.
Zhang, Y., Shareena Dasari, T.P., Deng, H. & Yu, H. (2015) Antimicrobial Activity of Gold Nanoparticles and Ionic Gold. Journal of Environmental Science and Health. Part C, Environmental Carcinogenesis & Ecotoxicology Reviews. [Online] 33 (3), 286–327. Available from: doi:10.1080/10590501.2015.1055161.
dc.relation.bitstream.none.fl_str_mv https://revistas.eia.edu.co/index.php/reveia/article/download/1166/1173
dc.relation.citationedition.spa.fl_str_mv Núm. 29 , Año 2018
dc.relation.citationendpage.none.fl_str_mv 29
dc.relation.citationissue.spa.fl_str_mv 29
dc.relation.citationstartpage.none.fl_str_mv 13
dc.relation.citationvolume.spa.fl_str_mv 15
dc.relation.ispartofjournal.spa.fl_str_mv Revista EIA
dc.rights.spa.fl_str_mv Revista EIA - 2018
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Revista EIA - 2018
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Fondo Editorial EIA - Universidad EIA
dc.source.spa.fl_str_mv https://revistas.eia.edu.co/index.php/reveia/article/view/1166
institution Universidad EIA .
bitstream.url.fl_str_mv https://repository.eia.edu.co/bitstreams/aa8ef3b9-a54e-4d4f-9570-e0b49dc11753/download
bitstream.checksum.fl_str_mv 3806c5470682f3267b6d46919b67dd13
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EIA
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808400287531008000
spelling Zapata Giraldo, Jenniffere69f134dca7fc77712f53cc4fc817228300Botero Palacio, Luz Elena7eaa2fcbac476c27a1cb3c03cb9a6831300Mejía Suaza, Mónica Lilianae3ec03325e88d505c3d462866a5f6592300Escobar Mora, Nelson9a8803f3bf0083c6c7193e319020c31e300Ortiz Trujillo, Isabelc77495b4d2e747b4e1b3d1051aff903f300Galeano, Beatriza16628e979d41d01b006590d8e34d9c6300Hoyos Palacio, Lina2d7e29d4cca44f9e9d4799a29cb3970b300Cuesta, Dianabe7aee59f263dfc11c3d98c9f85590a23002018-04-30 00:00:002022-06-17T20:19:44Z2018-04-30 00:00:002022-06-17T20:19:44Z2018-04-301794-1237https://repository.eia.edu.co/handle/11190/502810.24050/reia.v15i29.11662463-0950https://doi.org/10.24050/reia.v15i29.1166Los tejidos reforzados con nanoestructuras se ha convertido en un área de la investigación que busca contener la transmisión de microorganismos relacionados con las infecciones asociadas a la atención en salud, un problema de salud pública conlleva una alta carga de morbi-mortalidad en la población y pérdidas millonarias de recursos económicos. Las nanopartículas metálicas y óxido metálicas son agentes antimicrobianos que han cobrado importancia por su amplia aplicación. Esta revisión narrativa examina la evidencia científica de textiles funcionales con propiedades antimicrobianas como una estrategia para contener la transmisión de microorganismos relacionados con infecciones asociadas a la atención en salud, a partir del contexto de los textiles como fuente de contaminación e infección y los mecanismos antimicrobianos de las diferentes nanopartículas usadas como reforzantes para lograr un textil funcional. El desarrollo de la nanotecnología permite el progreso en diferentes campos de la ciencia y oportunidades en el ámbito de textiles funcionales.Los tejidos reforzados con nanoestructuras se ha convertido en un área de la investigación que busca contener la transmisión de microorganismos relacionados con las infecciones asociadas a la atención en salud, un problema de salud pública conlleva una alta carga de morbi-mortalidad en la población y pérdidas millonarias de recursos económicos. Las nanopartículas metálicas y óxido metálicas son agentes antimicrobianos que han cobrado importancia por su amplia aplicación. Esta revisión narrativa examina la evidencia científica de textiles funcionales con propiedades antimicrobianas como una estrategia para contener la transmisión de microorganismos relacionados con infecciones asociadas a la atención en salud, a partir del contexto de los textiles como fuente de contaminación e infección y los mecanismos antimicrobianos de las diferentes nanopartículas usadas como reforzantes para lograr un textil funcional. El desarrollo de la nanotecnología permite el progreso en diferentes campos de la ciencia y oportunidades en el ámbito de textiles funcionales.application/pdfspaFondo Editorial EIA - Universidad EIARevista EIA - 2018https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://revistas.eia.edu.co/index.php/reveia/article/view/1166TEXTILES FUNCIONALES COMO BARRERA DE PROTECCIÓN ANTE INFECCIONES ASOCIADAS A LA ATENCIÓN EN SALUDTEXTILES FUNCIONALES COMO BARRERA DE PROTECCIÓN ANTE INFECCIONES ASOCIADAS A LA ATENCIÓN EN SALUDArtículo de revistaJournal articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionTexthttp://purl.org/redcol/resource_type/ARTREFhttp://purl.org/coar/version/c_970fb48d4fbd8a85Aashis S. Roy, A.P. (2010) Effect of Nano - Titanium Dioxide with Different Antibiotics against Methicillin- Resistant Staphylococcus Aureus. Journal of Biomaterials and Nanobiotechnology. [Online] 1 (1), 37. Available from: doi:10.4236/jbnb.2010.11005.Ahmad, T., Wani, I.A., Lone, I.H., Ganguly, A., et al. (2013) Antifungal activity of gold nanoparticles prepared by solvothermal method. Materials Research Bulletin. [Online] 48 (1), 12–20. Available from: doi:10.1016/j.materresbull.2012.09.069.Allahverdiyev, A.M., Abamor, E.S., Bagirova, M., Baydar, S.Y., et al. (2013) Investigation of antileishmanial activities of Tio2@Ag nanoparticles on biological properties of L. tropica and L. infantum parasites, in vitro. Experimental Parasitology. [Online] 135 (1), 55–63. Available from: doi:10.1016/j.exppara.2013.06.001.Allegranzi, B., Bagheri Nejad, S., Combescure, C., Graafmans, W., et al. (2011) Burden of endemic health-care-associated infection in developing countries: systematic review and meta-analysis. Lancet (London, England). [Online] 377 (9761), 228–241. Available from: doi:10.1016/S0140-6736(10)61458-4.Álvarez-Paino, M., Muñoz-Bonilla, A. & Fernández-García, M. (2017) Antimicrobial Polymers in the Nano-World. Nanomaterials (Basel, Switzerland). [Online] 7 (2). Available from: doi:10.3390/nano7020048.Antoine, T.E., Mishra, Y.K., Trigilio, J., Tiwari, V., et al. (2012) Prophylactic, therapeutic and neutralizing effects of zinc oxide tetrapod structures against herpes simplex virus type-2 infection. Antiviral Research. [Online] 96 (3), 363–375. Available from: doi:10.1016/j.antiviral.2012.09.020.Arshi, N., Ahmed, F., Kumar, S., Anwar, M.S., et al. (2011) Microwave assisted synthesis of gold nanoparticles and their antibacterial activity against Escherichia coli (E. coli). Current Applied Physics. [Online] 11 (1, Supplement), S360–S363. Available from: doi:10.1016/j.cap.2010.11.102.Artunduaga Bonilla, J.J., Paredes Guerrero, D.J., Sánchez Suárez, C.I., Ortiz López, C.C., et al. (2015) In vitro antifungal activity of silver nanoparticles against fluconazole-resistant Candida species. World Journal of Microbiology & Biotechnology. [Online] 31 (11), 1801–1809. Available from: doi:10.1007/s11274-015-1933-z.Azam, A., Ahmed, A.S., Oves, M., Khan, M.S., et al. (2012) Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: A comparative study. International Journal of Nanomedicine. [Online] 7, 6003–6009. Available from: doi:10.2147/IJN.S35347.Azam, A., Ahmed, F., Arshi, N., Chaman, M., et al. (2009) One step synthesis and characterization of gold nanoparticles and their antibacterial activities against E. coli (ATCC 25922 strain). Int J Theor Appl Sci. 1 (2), 1–4.Badwaik, V.D., Vangala, L.M., Pender, D.S., Willis, C.B., et al. (2012) Size-dependent antimicrobial properties of sugar-encapsulated gold nanoparticles synthesized by a green method. Nanoscale Research Letters. [Online] 7 (1), 623. Available from: doi:10.1186/1556-276X-7-623.Balakumaran, M.D., Ramachandran, R., Jagadeeswari, S. & Kalaichelvan, P.T. (2016) In vitro biological properties and characterization of nanosilver coated cotton fabrics – An application for antimicrobial textile finishing. International Biodeterioration & Biodegradation. [Online] 107, 48–55. Available from: doi:10.1016/j.ibiod.2015.11.011.Banerjee, S., Gopal, J., Muraleedharan, P., Tyagi, A.K., et al. (2006) Physics and chemistry of photocatalytic titanium dioxide: visualization of bactericidal activity using atomic force microscopy. Current Science. 90 (10), 1378–1383.Bera, R.K., Mandal, S.M. & Raj, C.R. (2014) Antimicrobial activity of fluorescent Ag nanoparticles. Letters in Applied Microbiology. [Online] 58 (6), 520–526. Available from: doi:10.1111/lam.12222.Bogdan, J., Zarzyńska, J. & Pławińska-Czarnak, J. (2015) Comparison of Infectious Agents Susceptibility to Photocatalytic Effects of Nanosized Titanium and Zinc Oxides: A Practical Approach. Nanoscale Research Letters. [Online] 10. Available from: doi:10.1186/s11671-015-1023-z.Borkow, G. & Gabbay, J. (2008) Biocidal textiles can help fight nosocomial infections. Medical Hypotheses. [Online] 70 (5), 990–994. Available from: doi:10.1016/j.mehy.2007.08.025.Boyce, J.M. (2007) Environmental contamination makes an important contribution to hospital infection. The Journal of Hospital Infection. [Online] 65 Suppl 2, 50–54. Available from: doi:10.1016/S0195-6701(07)60015-2.Brown, A.N., Smith, K., Samuels, T.A., Lu, J., et al. (2012) Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus. Applied and Environmental Microbiology. [Online] 78 (8), 2768–2774. Available from: doi:10.1128/AEM.06513-11.Callaghan, I. (1998) Bacterial contamination of nurses’ uniforms: a study. Nursing Standard (Royal College of Nursing (Great Britain): 1987). [Online] 13 (1), 37–42. Available from: doi:10.7748/ns1998.09.13.1.37.c2525.Carré, G., Hamon, E., Ennahar, S., Estner, M., et al. (2014) TiO2 Photocatalysis Damages Lipids and Proteins in Escherichia coli. Applied and Environmental Microbiology. [Online] 80 (8), 2573–2581. Available from: doi:10.1128/AEM.03995-13.Cataño, O, J.C., Echeverri, L.M., Szela, C., et al. (2012) Bacterial Contamination of Clothes and Environmental Items in a Third-Level Hospital in Colombia, Bacterial Contamination of Clothes and Environmental Items in a Third-Level Hospital in Colombia. Interdisciplinary Perspectives on Infectious Diseases, Interdisciplinary Perspectives on Infectious Diseases. [Online] 2012, 2012, e507640. Available from: doi:10.1155/2012/507640, 10.1155/2012/507640.Cui, H., Jiang, J., Gu, W., Sun, C., et al. (2010) Photocatalytic Inactivation Efficiency of Anatase Nano-TiO2 Sol on the H9N2 Avian Influenza Virus. Photochemistry and Photobiology. [Online] 86 (5), 1135–1139. Available from: doi:10.1111/j.1751-1097.2010.00763.x.Cui, Y., Zhao, Y., Tian, Y., Zhang, W., et al. (2012) The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials. [Online] 33 (7), 2327–2333. Available from: doi:10.1016/j.biomaterials.2011.11.057.Damani, N. (2012) Manual of Infection Prevention and Control. 3 edition. Oxford University Press.Dastjerdi, R., Mojtahedi, M.R.M., Shoshtari, A.M. & Khosroshahi, A. (2010) Investigating the production and properties of Ag/TiO2/PP antibacterial nanocomposite filament yarns. The Journal of The Textile Institute. [Online] 101 (3), 204–213. Available from: doi:10.1080/00405000802346388.Delavari, M., Dalimi, A., Ghaffarifar, F. & Sadraei, J. (2014) In Vitro Study on Cytotoxic Effects of ZnO Nanoparticles on Promastigote and Amastigote Forms of Leishmania major (MRHO/IR/75/ER). Iranian Journal of Parasitology. 9 (1), 6–13.Dodd, A.C., McKinley, A.J., Saunders, M. & Tsuzuki, T. (2006) Effect of Particle Size on the Photocatalytic Activity of Nanoparticulate Zinc Oxide. Journal of Nanoparticle Research. [Online] 8 (1), 43–51. Available from: doi:10.1007/s11051-005-5131-z.Dohmae, S., Okubo, T., Higuchi, W., Takano, T., et al. (2008) Bacillus cereus nosocomial infection from reused towels in Japan. The Journal of Hospital Infection. [Online] 69 (4), 361–367. Available from: doi:10.1016/j.jhin.2008.04.014.Eremenko, A.M., Petrik, I.S., Smirnova, N.P., Rudenko, A.V., et al. (2016) Antibacterial and Antimycotic Activity of Cotton Fabrics, Impregnated with Silver and Binary Silver/Copper Nanoparticles. Nanoscale Research Letters. [Online] 11. Available from: doi:10.1186/s11671-016-1240-0.Esteves, D.C., Pereira, V.C., Souza, J.M., Keller, R., et al. (2016) Influence of biological fluids in bacterial viability on different hospital surfaces and fomites. American Journal of Infection Control. [Online] 44 (3), 311–314. Available from: doi:10.1016/j.ajic.2015.09.033.Fijan, S. & Turk, S.Š. (2012) Hospital textiles, are they a possible vehicle for healthcare-associated infections? International Journal of Environmental Research and Public Health. [Online] 9 (9), 3330–3343. Available from: doi:10.3390/ijerph9093330.Fu, G., Vary, P.S. & Lin, C.-T. (2005) Anatase TiO2 Nanocomposites for Antimicrobial Coatings. The Journal of Physical Chemistry B. [Online] 109 (18), 8889–8898. Available from: doi:10.1021/jp0502196.Gaikwad, S., Ingle, A., Gade, A., Rai, M., et al. (2013) Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. International Journal of Nanomedicine. [Online] 8, 4303–4314. Available from: doi:10.2147/IJN.S50070.Gondal, M.A., Alzahrani, A.J., Randhawa, M.A. & Siddiqui, M.N. (2012) Morphology and antifungal effect of nano-ZnO and nano-Pd-doped nano-ZnO against Aspergillus and Candida. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering. [Online] 47 (10), 1413–1418. Available from: doi:10.1080/10934529.2012.672384.Hernández-Sierra, J.F., Ruiz, F., Pena, D.C.C., Martínez-Gutiérrez, F., et al. (2008) The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold. Nanomedicine: Nanotechnology, Biology, and Medicine. [Online] 4 (3), 237–240. Available from: doi:10.1016/j.nano.2008.04.005.Huang, Z., Zheng, X., Yan, D., Yin, G., et al. (2008) Toxicological Effect of ZnO Nanoparticles Based on Bacteria. Langmuir. [Online] 24 (8), 4140–4144. Available from: doi:10.1021/la7035949.Hwang, I., Lee, J., Hwang, J.H., Kim, K.-J., et al. (2012) Silver nanoparticles induce apoptotic cell death in Candida albicans through the increase of hydroxyl radicals. The FEBS journal. [Online] 279 (7), 1327–1338. Available from: doi:10.1111/j.1742-4658.2012.08527.x.Jacobson, K.H., Gunsolus, I.L., Kuech, T.R., Troiano, J.M., et al. (2015) Lipopolysaccharide Density and Structure Govern the Extent and Distance of Nanoparticle Interaction with Actual and Model Bacterial Outer Membranes. Environmental Science & Technology. [Online] 49 (17), 10642–10650. Available from: doi:10.1021/acs.est.5b01841.Jiang, J.F., Cui, H.X., Yang, T., Cai, H.C., et al. (2009) Inactivation efficiency of nano-Cu2+/TiO2 on avian influenza (H9N2). Journal of Funtional Materials. 40, 1403–1406.Kairyte, K., Kadys, A. & Luksiene, Z. (2013) Antibacterial and antifungal activity of photoactivated ZnO nanoparticles in suspension. Journal of Photochemistry and Photobiology. B, Biology. [Online] 128, 78–84. Available from: doi:10.1016/j.jphotobiol.2013.07.017.Karunakaran, C., Rajeswari, V. & Gomathisankar, P. (2011) Enhanced photocatalytic and antibacterial activities of sol–gel synthesized ZnO and Ag-ZnO. Materials Science in Semiconductor Processing. [Online] 14 (2), 133–138. Available from: doi:10.1016/j.mssp.2011.01.017.Kim, J.S., Kuk, E., Yu, K.N., Kim, J.-H., et al. (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine. [Online] 3 (1), 95–101. Available from: doi:10.1016/j.nano.2006.12.001.Kim, K.-J., Sung, W.S., Moon, S.-K., Choi, J.-S., et al. (2008) Antifungal effect of silver nanoparticles on dermatophytes. Journal of Microbiology and Biotechnology. 18 (8), 1482–1484.Kim, K.-J., Sung, W.S., Suh, B.K., Moon, S.-K., et al. (2009) Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals: An International Journal on the Role of Metal Ions in Biology, Biochemistry, and Medicine. [Online] 22 (2), 235–242. Available from: doi:10.1007/s10534-008-9159-2.Klevens, R.M., Edwards, J.R., Richards, C.L., Horan, T.C., et al. (2007) Estimating health care-associated infections and deaths in U.S. hospitals, 2002. Public Health Reports (Washington, D.C.: 1974). 122 (2), 160–166.Knetsch, M.L.W. & Koole, L.H. (2011) New strategies in the development of antimicrobial coatings: The example of increasing usage of silver and silver nanoparticles. Polymers. [Online] 3 (1), 340–366. Available from: doi:10.3390/polym3010340.Kotsanas, D., Wijesooriya, W.R.P.L.I., Sloane, T., Stuart, R.L., et al. (2014) The silver lining of disposable sporicidal privacy curtains in an intensive care unit. American Journal of Infection Control. [Online] 42 (4), 366–370. Available from: doi:10.1016/j.ajic.2013.11.013.Lara, H.H., Ayala-Nuñez, N.V., Ixtepan-Turrent, L. & Rodriguez-Padilla, C. (2010) Mode of antiviral action of silver nanoparticles against HIV-1. Journal of Nanobiotechnology. [Online] 8, 1. Available from: doi:10.1186/1477-3155-8-1.Lara, H.H., Ayala-Núñez, N.V., Turrent, L. del C.I. & Padilla, C.R. (2009) Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World Journal of Microbiology and Biotechnology. [Online] 26 (4), 615–621. Available from: doi:10.1007/s11274-009-0211-3.Li, S., Zhu, T., Huang, J., Guo, Q., et al. (2017) Durable antibacterial and UV-protective Ag/TiO2@ fabrics for sustainable biomedical application. International Journal of Nanomedicine. [Online] 12, 2593–2606. Available from: doi:10.2147/IJN.S132035.Ling, M.L., Apisarnthanarak, A., Thu, L.T.A., Villanueva, V., et al. (2015) APSIC Guidelines for environmental cleaning and decontamination. Antimicrobial Resistance and Infection Control. [Online] 4. Available from: doi:10.1186/s13756-015-0099-7.Lok, C.-N., Ho, C.-M., Chen, R., He, Q.-Y., et al. (2007) Silver nanoparticles: partial oxidation and antibacterial activities. Journal of biological inorganic chemistry: JBIC: a publication of the Society of Biological Inorganic Chemistry. [Online] 12 (4), 527–534. Available from: doi:10.1007/s00775-007-0208-z.Mishra, Y.K., Adelung, R., Röhl, C., Shukla, D., et al. (2011) Virostatic potential of micro–nano filopodia-like ZnO structures against herpes simplex virus-1. Antiviral Research. [Online] 92 (2), 305–312. Available from: doi:10.1016/j.antiviral.2011.08.017.Montazer, M. & Maali Amiri, M. (2014) ZnO nano reactor on textiles and polymers: ex situ and in situ synthesis, application, and characterization. The Journal of Physical Chemistry. B. [Online] 118 (6), 1453–1470. Available from: doi:10.1021/jp408532r.Monteiro, D.R., Gorup, L.F., Silva, S., Negri, M., et al. (2011) Silver colloidal nanoparticles: antifungal effect against adhered cells and biofilms of Candida albicans and Candida glabrata. Biofouling. [Online] 27 (7), 711–719. Available from: doi:10.1080/08927014.2011.599101.Mu, H., Tang, J., Liu, Q., Sun, C., et al. (2016) Potent Antibacterial Nanoparticles against Biofilm and Intracellular Bacteria. Scientific Reports. [Online] 6, 18877. Available from: doi:10.1038/srep18877.Oćwieja, M., Adamczyk, Z., Morga, M. & Kubiak, K. (2015) Silver particle monolayers — Formation, stability, applications. Advances in Colloid and Interface Science. [Online] 222, 530–563. Available from: doi:10.1016/j.cis.2014.07.001.Ohl, M., Schweizer, M., Graham, M., Heilmann, K., et al. (2012) Hospital privacy curtains are frequently and rapidly contaminated with potentially pathogenic bacteria. American Journal of Infection Control. [Online] 40 (10), 904–906. Available from: doi:10.1016/j.ajic.2011.12.017.OMS (n.d.) Carga mundial de infecciones asociadas a la atención sanitaria. [Online]. WHO. Available from: http://www.who.int/gpsc/country_work/burden_hcai/es/ [Accessed: 13 January 2016].Padmavathy, N. & Vijayaraghavan, R. (2008) Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Science and Technology of Advanced Materials. [Online] 9 (3), 35004. Available from: doi:10.1088/1468-6996/9/3/035004.PAHO (2012) Vigilancia epidemiológica de las infecciones asociadas a la atención en salud. [Online]. p.54. Available from: http://www.paho.org/hq/index.php?option=com_docman&task=doc_view&gid=19272&Itemid=.Pal, S., Tak, Y.K. & Song, J.M. (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Applied and Environmental Microbiology. [Online] 73 (6), 1712–1720. Available from: doi:10.1128/AEM.02218-06.Palza, H. (2015) Antimicrobial Polymers with Metal Nanoparticles. International Journal of Molecular Sciences. [Online] 16 (1), 2099–2116. Available from: doi:10.3390/ijms16012099.Panácek, A., Kolár, M., Vecerová, R., Prucek, R., et al. (2009) Antifungal activity of silver nanoparticles against Candida spp. Biomaterials. [Online] 30 (31), 6333–6340. Available from: doi:10.1016/j.biomaterials.2009.07.065.Panagea, S., Winstanley, C., Walshaw, M.J., Ledson, M.J., et al. (2005) Environmental contamination with an epidemic strain of Pseudomonas aeruginosa in a Liverpool cystic fibrosis centre, and study of its survival on dry surfaces. The Journal of Hospital Infection. [Online] 59 (2), 102–107. Available from: doi:10.1016/j.jhin.2004.09.018.Perelshtein, I., Applerot, G., Perkas, N., Grinblat, J., et al. (2012) A one-step process for the antimicrobial finishing of textiles with crystalline TiO2 nanoparticles. Chemistry (Weinheim an Der Bergstrasse, Germany). [Online] 18 (15), 4575–4582. Available from: doi:10.1002/chem.201101683.Perera, S., Bhushan, B., Bandara, R., Rajapakse, G., et al. (2013) Morphological, antimicrobial, durability, and physical properties of untreated and treated textiles using silver-nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects. [Online] 436, 975–989. Available from: doi:10.1016/j.colsurfa.2013.08.038.Perry, C., Marshall, R. & Jones, E. (2001) Bacterial contamination of uniforms. The Journal of Hospital Infection. [Online] 48 (3), 238–241. Available from: doi:10.1053/jhin.2001.0962.Petkova, P., Francesko, A., Perelshtein, I., Gedanken, A., et al. (2016) Simultaneous sonochemical-enzymatic coating of medical textiles with antibacterial ZnO nanoparticles. Ultrasonics Sonochemistry. [Online] 29, 244–250. Available from: doi:10.1016/j.ultsonch.2015.09.021.Pollini, M., Russo, M., Licciulli, A., Sannino, A., et al. (2009) Characterization of antibacterial silver coated yarns. Journal of Materials Science. Materials in Medicine. [Online] 20 (11), 2361–2366. Available from: doi:10.1007/s10856-009-3796-z.Rahimi, M.T., Ahmadpour, E., Rahimi Esboei, B., Spotin, A., et al. (2015) Scolicidal activity of biosynthesized silver nanoparticles against Echinococcus granulosus protoscolices. International Journal of Surgery. [Online] 19, 128–133. Available from: doi:10.1016/j.ijsu.2015.05.043.Ramani, M., Ponnusamy, S., Muthamizhchelvan, C., Cullen, J., et al. (2013) Morphology-directed synthesis of ZnO nanostructures and their antibacterial activity. Colloids and Surfaces. B, Biointerfaces. [Online] 105, 24–30. Available from: doi:10.1016/j.colsurfb.2012.12.056.Ramasamy, M., Lee, J.-H. & Lee, J. (2016) Potent antimicrobial and antibiofilm activities of bacteriogenically synthesized gold-silver nanoparticles against pathogenic bacteria and their physiochemical characterizations. Journal of Biomaterials Applications. [Online] 31 (3), 366–378. Available from: doi:10.1177/0885328216646910.Reddy, L.S., Nisha, M.M., Joice, M. & Shilpa, P.N. (2014) Antimicrobial activity of zinc oxide (ZnO) nanoparticle against Klebsiella pneumoniae. Pharmaceutical Biology. [Online] 52 (11), 1388–1397. Available from: doi:10.3109/13880209.2014.893001.Saini, P., Saha, S.K., Roy, P., Chowdhury, P., et al. (2016) Evidence of reactive oxygen species (ROS) mediated apoptosis in Setaria cervi induced by green silver nanoparticles from Acacia auriculiformis at a very low dose. Experimental Parasitology. [Online] 160, 39–48. Available from: doi:10.1016/j.exppara.2015.11.004.Sarkar, S., Guibal, E., Quignard, F. & SenGupta, A.K. (2012) Polymer-supported metals and metal oxide nanoparticles: synthesis, characterization, and applications. Journal of Nanoparticle Research. [Online] 14 (2), 1–24. Available from: doi:10.1007/s11051-011-0715-2.Sasahara, T., Hayashi, S., Morisawa, Y., Sakihama, T., et al. (2011) Bacillus cereus bacteremia outbreak due to contaminated hospital linens. European Journal of Clinical Microbiology & Infectious Diseases: Official Publication of the European Society of Clinical Microbiology. [Online] 30 (2), 219–226. Available from: doi:10.1007/s10096-010-1072-2.Sattar, S.A., Springthorpe, S., Mani, S., Gallant, M., et al. (2001) Transfer of bacteria from fabrics to hands and other fabrics: development and application of a quantitative method using Staphylococcus aureus as a model. Journal of Applied Microbiology. 90 (6), 962–970.Schweizer, M., Graham, M., Ohl, M., Heilmann, K., et al. (2012) Novel hospital curtains with antimicrobial properties: a randomized, controlled trial. Infection Control and Hospital Epidemiology. [Online] 33 (11), 1081–1085. Available from: doi:10.1086/668022.Sehulster, L.M., Chinn, R.Y.W., Arduino, M.J., Carpenter, J., et al. (2004) Guidelines for environmental infection control in health-care facilities. Recommendations from CDC and the Healthcare Infection Control Practices Advisory Committee (HICPAC).p.235.Sexton, T., Clarke, P., O’Neill, E., Dillane, T., et al. (2006) Environmental reservoirs of methicillin-resistant Staphylococcus aureus in isolation rooms: correlation with patient isolates and implications for hospital hygiene. The Journal of Hospital Infection. [Online] 62 (2), 187–194. Available from: doi:10.1016/j.jhin.2005.07.017.Shaheen, T.I., El-Naggar, M.E., Abdelgawad, A.M. & Hebeish, A. (2016) Durable antibacterial and UV protections of in situ synthesized zinc oxide nanoparticles onto cotton fabrics. International Journal of Biological Macromolecules. [Online] 83 (Supplement C), 426–432. Available from: doi:10.1016/j.ijbiomac.2015.11.003.Shahid-ul-Islam, Butola, B.S. & Mohammad, F. (2016) Silver nanomaterials as future colorants and potential antimicrobial agents for natural and synthetic textile materials. RSC Advances. [Online] 6 (50), 44232–44247. Available from: doi:10.1039/C6RA05799C.Shamaila, S., Zafar, N., Riaz, S., Sharif, R., et al. (2016) Gold Nanoparticles: An Efficient Antimicrobial Agent against Enteric Bacterial Human Pathogen. Nanomaterials (Basel, Switzerland). [Online] 6 (4). Available from: doi:10.3390/nano6040071.Sharma, D., Rajput, J., Kaith, B.S., Kaur, M., et al. (2010) Synthesis of ZnO nanoparticles and study of their antibacterial and antifungal properties. Thin Solid Films. [Online] 519 (3), 1224–1229. Available from: doi:10.1016/j.tsf.2010.08.073.Sreelakshmi, C., Datta, K.K.R., Yadav, J.S. & Reddy, B.V.S. (2011) Honey derivatized Au and Ag nanoparticles and evaluation of its antimicrobial activity. Journal of Nanoscience and Nanotechnology. 11 (8), 6995–7000.Thabet, S., Simonet, F., Lemaire, M., Guillard, C., et al. (2014) Impact of photocatalysis on fungal cells: depiction of cellular and molecular effects on Saccharomyces cerevisiae. Applied and Environmental Microbiology. [Online] 80 (24), 7527–7535. Available from: doi:10.1128/AEM.02416-14.Tran Thi, V.H. & Lee, B.-K. (2017) Development of multifunctional self-cleaning and UV blocking cotton fabric with modification of photoactive ZnO coating via microwave method. Journal of Photochemistry and Photobiology A: Chemistry. [Online] 338 (Supplement C), 13–22. Available from: doi:10.1016/j.jphotochem.2017.01.020.Treakle, A.M., Thom, K.A., Furuno, J.P., Strauss, S.M., et al. (2009) Bacterial contamination of health care workers’ white coats. American Journal of Infection Control. [Online] 37 (2), 101–105. Available from: doi:10.1016/j.ajic.2008.03.009.Trillis, F., Eckstein, E.C., Budavich, R., Pultz, M.J., et al. (2008) Contamination of hospital curtains with healthcare-associated pathogens. Infection Control and Hospital Epidemiology. [Online] 29 (11), 1074–1076. Available from: doi:10.1086/591863.Uğur, S.S., Sarıışık, M., Aktaş, A.H., Uçar, M.C., et al. (2010) Modifying of Cotton Fabric Surface with Nano-ZnO Multilayer Films by Layer-by-Layer Deposition Method. Nanoscale Research Letters. [Online] 5 (7), 1204–1210. Available from: doi:10.1007/s11671-010-9627-9.Valderrama Beltran, S.L., Ariza Ayala, B.E. & Osorio Pinzon, J.V. (2010) Medio ambiente e infección. In: Infecciones Hospitalarias. 3rd edition. Bogota, Editorial Medica Internacional. pp. 126–147.Vazquez-Muñoz, R., Avalos-Borja, M. & Castro-Longoria, E. (2014) Ultrastructural Analysis of Candida albicans When Exposed to Silver Nanoparticles. PLoS ONE. [Online] 9 (10). Available from: doi:10.1371/journal.pone.0108876 [Accessed: 2 March 2017].Wani, I.A., Ahmad, T. & Manzoor, N. (2013) Size and shape dependant antifungal activity of gold nanoparticles: a case study of Candida. Colloids and Surfaces. B, Biointerfaces. [Online] 101, 162–170. Available from: doi:10.1016/j.colsurfb.2012.06.005.WHO (2011) Report on the burden of health care-associated infection worldwide. [Online]. p.40. Available from: http://www.who.int/gpsc/country_work/burden_hcai/en/ [Accessed: 13 January 2016].Wiener-Well, Y., Galuty, M., Rudensky, B., Schlesinger, Y., et al. (2011) Nursing and physician attire as possible source of nosocomial infections. American Journal of Infection Control. [Online] 39 (7), 555–559. Available from: doi:10.1016/j.ajic.2010.12.016.Windler, L., Height, M. & Nowack, B. (2013) Comparative evaluation of antimicrobials for textile applications. Environment International. [Online] 53, 62–73. Available from: doi:10.1016/j.envint.2012.12.010.Xiang, D., Zheng, Y., Duan, W., Li, X., et al. (2013) Inhibition of A/Human/Hubei/3/2005 (H3N2) influenza virus infection by silver nanoparticles in vitro and in vivo. International Journal of Nanomedicine. [Online] 8, 4103–4114. Available from: doi:10.2147/IJN.S53622.Xiao, G., Zhang, X., Zhao, Y., Su, H., et al. (2014) The behavior of active bactericidal and antifungal coating under visible light irradiation. Applied Surface Science. [Online] 292, 756–763. Available from: doi:10.1016/j.apsusc.2013.12.044.Xie, Y., He, Y., Irwin, P.L., Jin, T., et al. (2011) Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Applied and Environmental Microbiology. [Online] 77 (7), 2325–2331. Available from: doi:10.1128/AEM.02149-10.Zarrindokht Emami-Karvani, P.C. (2012) Antibacterial activity of ZnO nanoparticle on Gram-positive and Gram-negative bacteria. African Journal of Microbiology Research. [Online] 5 (18). Available from: doi:10.5897/AJMR10.159.Zhang, L., Ding, Y., Povey, M. & York, D. (2008) ZnO nanofluids – A potential antibacterial agent. Progress in Natural Science. [Online] 18 (8), 939–944. Available from: doi:10.1016/j.pnsc.2008.01.026.Zhang, Y., Shareena Dasari, T.P., Deng, H. & Yu, H. (2015) Antimicrobial Activity of Gold Nanoparticles and Ionic Gold. Journal of Environmental Science and Health. Part C, Environmental Carcinogenesis & Ecotoxicology Reviews. [Online] 33 (3), 286–327. Available from: doi:10.1080/10590501.2015.1055161.https://revistas.eia.edu.co/index.php/reveia/article/download/1166/1173Núm. 29 , Año 201829291315Revista EIAPublicationOREORE.xmltext/xml2929https://repository.eia.edu.co/bitstreams/aa8ef3b9-a54e-4d4f-9570-e0b49dc11753/download3806c5470682f3267b6d46919b67dd13MD5111190/5028oai:repository.eia.edu.co:11190/50282023-07-25 16:48:48.502https://creativecommons.org/licenses/by-nc-sa/4.0/Revista EIA - 2018metadata.onlyhttps://repository.eia.edu.coRepositorio Institucional Universidad EIAbdigital@metabiblioteca.com