Activación alcalina de residuos de minería aurífera de veta para la fabricación de morteros

Los residuos mineros (RM) generan grandes problemas ambientales debido a la alta y progresiva explotación de minerales y su consecuente disposición. La activación alcalina es un método ampliamente utilizado para la fabricación de materiales de construcción, usando los residuos como materiales cement...

Full description

Autores:
Pardo Álvarez, Nicolás Steven
Penagos García, Guillermo León
López Gómez, María Esperanza
Correa Ochoa, Mauricio Andrés
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Universidad EIA .
Repositorio:
Repositorio EIA .
Idioma:
spa
OAI Identifier:
oai:repository.eia.edu.co:11190/5139
Acceso en línea:
https://repository.eia.edu.co/handle/11190/5139
https://doi.org/10.24050/reia.v18i36.1476
Palabra clave:
Mine tailings
Flotation tails
Alkaline activation
Mortars
Residuos mineros
Colas de flotación
Activación alcalina
Morteros
Rights
openAccess
License
Revista EIA - 2021
id REIA2_6c0e7ab301df133c248cd5963d4a9dd6
oai_identifier_str oai:repository.eia.edu.co:11190/5139
network_acronym_str REIA2
network_name_str Repositorio EIA .
repository_id_str
dc.title.spa.fl_str_mv Activación alcalina de residuos de minería aurífera de veta para la fabricación de morteros
dc.title.translated.eng.fl_str_mv Alkali activation of vein gold tailing wastes for manufacturing mortars
title Activación alcalina de residuos de minería aurífera de veta para la fabricación de morteros
spellingShingle Activación alcalina de residuos de minería aurífera de veta para la fabricación de morteros
Mine tailings
Flotation tails
Alkaline activation
Mortars
Residuos mineros
Colas de flotación
Activación alcalina
Morteros
title_short Activación alcalina de residuos de minería aurífera de veta para la fabricación de morteros
title_full Activación alcalina de residuos de minería aurífera de veta para la fabricación de morteros
title_fullStr Activación alcalina de residuos de minería aurífera de veta para la fabricación de morteros
title_full_unstemmed Activación alcalina de residuos de minería aurífera de veta para la fabricación de morteros
title_sort Activación alcalina de residuos de minería aurífera de veta para la fabricación de morteros
dc.creator.fl_str_mv Pardo Álvarez, Nicolás Steven
Penagos García, Guillermo León
López Gómez, María Esperanza
Correa Ochoa, Mauricio Andrés
dc.contributor.author.spa.fl_str_mv Pardo Álvarez, Nicolás Steven
Penagos García, Guillermo León
López Gómez, María Esperanza
Correa Ochoa, Mauricio Andrés
dc.subject.eng.fl_str_mv Mine tailings
Flotation tails
Alkaline activation
Mortars
topic Mine tailings
Flotation tails
Alkaline activation
Mortars
Residuos mineros
Colas de flotación
Activación alcalina
Morteros
dc.subject.spa.fl_str_mv Residuos mineros
Colas de flotación
Activación alcalina
Morteros
description Los residuos mineros (RM) generan grandes problemas ambientales debido a la alta y progresiva explotación de minerales y su consecuente disposición. La activación alcalina es un método ampliamente utilizado para la fabricación de materiales de construcción, usando los residuos como materiales cementantes suplementarios. En esta investigación se generaron morteros a partir de RM activados alcalinamente. Se estudiaron residuos de la explotación de minería aurífera de veta, activadas mediante una mezcla de solución NaOH y Na2SiO3. Se fabricaron dos tipos de morteros, uno utilizando el residuo con granulometría original y el otro con el residuo molido, para evaluar la influencia del tamaño de partícula. Además, cada tipo de mortero fue fraguado a 24 y 80 ºC. El análisis de las fases presentes en los morteros se llevó a cabo mediante difracción de rayos X (DRX) y el análisis de la morfología de las superficies de fractura después del ensayo de compresión se llevó a cabo mediante microscopía electrónica de barrido (MEB). Los resultados mostraron que la resistencia a la compresión es superior en los morteros preparados con los residuos molidos, frente a los morteros con los residuos de granulometría original. En adición, el incremento de la temperatura de fraguado no presentó influencia en la propiedad evaluada.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-05-31 00:00:00
2022-06-17T20:21:06Z
dc.date.available.none.fl_str_mv 2021-05-31 00:00:00
2022-06-17T20:21:06Z
dc.date.issued.none.fl_str_mv 2021-05-31
dc.type.spa.fl_str_mv Artículo de revista
dc.type.eng.fl_str_mv Journal article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_6501
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 1794-1237
dc.identifier.uri.none.fl_str_mv https://repository.eia.edu.co/handle/11190/5139
dc.identifier.doi.none.fl_str_mv 10.24050/reia.v18i36.1476
dc.identifier.eissn.none.fl_str_mv 2463-0950
dc.identifier.url.none.fl_str_mv https://doi.org/10.24050/reia.v18i36.1476
identifier_str_mv 1794-1237
10.24050/reia.v18i36.1476
2463-0950
url https://repository.eia.edu.co/handle/11190/5139
https://doi.org/10.24050/reia.v18i36.1476
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Al-Shathr, B.; Shamsa, M.; Al-Attar, T. (2018). Relationship between amorphous silica in source materials and compressive strength of geopolymer concrete. MATEC Web of Conferences, 162, 02019. https://doi.org/10.1051/matecconf/201816202019
ASTM C109/C109M - 16a. (2016). Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens)1. https://doi.org/10.1520/C0109
ASTM C33/C33M-18. (2018). Standard Specification for Concrete Aggregates. https://doi.org/10.1520/C0033
ASTM D422-63. (2007). Standard test method for particle-size analysis of soils. https://doi.org/10.1520/D0422-63R07E02.2
Comisión Asesora Permanente Para el Regimen de Construcciones Sismo Resistentes. (2010). NSR-10. Reglamento Colombiano de Construcción Sismo Resistente NSR-10, Ministerio de Ambiente, Vivienda y Desarrollo Territorial.
Consoli, N. C.; Da Silva, A. P.; Nierwinski, H. P.; Sosnoski, J. (2018). Durability, strength, and stiffness of compacted gold tailings – cement mixes. Canadian Geotechnical Journal, 55(4), 486–494. https://doi.org/10.1139/cgj-2016-0391
De Rossi, A.; Simão, L.; Ribeiro, M. J.; Novais, R. M.; Labrincha, J. A.; Hotza, D.; Moreira, R. (2019). In-situ synthesis of zeolites by geopolymerization of biomass fly ash and metakaolin. Materials Letters, 236, 644–648. https://doi.org/10.1016/j.matlet.2018.11.016
Duan, P.; Yan, C.; Zhou, W.; Ren, D. (2016). Fresh properties, compressive strength and microstructure of fly ash geopolymer paste blended with iron ore tailing under thermal cycle. Construction and Building Materials, 118, 76–88. https://doi.org/10.1016/j.conbuildmat.2016.05.059
Gitari, M. W.; Akinyemi, S. A.; Thobakgale, R.; Ngoejana, P. C.; Ramugondo, L.; Matidza, M.; Mhlongo, S. E.; Dacosta, F. A.; Nemapate, N. (2018). Physicochemical and mineralogical characterization of Musina mine copper and New Union gold mine tailings: Implications for fabrication of beneficial geopolymeric construction materials. Journal of African Earth Sciences, 137, 218–228. https://doi.org/10.1016/j.jafrearsci.2017.10.016
Kinnunen, P.; Ismailov, A.; Solismaa, S.; Sreenivasan, H.; Räisänen, M. L.; Levänen, E.; Illikainen, M. (2018). Recycling mine tailings in chemically bonded ceramics – A review. Journal of Cleaner Production, 174, 634–649. https://doi.org/10.1016/j.jclepro.2017.10.280
Kiventerä, J.; Golek, L.; Yliniemi, J.; Ferreira, V.; Deja, J.; Illikainen, M. (2016). Utilization of sulphidic tailings from gold mine as a raw material in geopolymerization. International Journal of Mineral Processing, 149, 104–110. https://doi.org/10.1016/j.minpro.2016.02.012
Król, M.; Mozgawa, W. (2019). Zeolite layer on metakaolin-based support. Microporous and Mesoporous Materials, 282 (February), 109–113. https://doi.org/10.1016/j.micromeso.2019.03.028
Lahoti, M.; Wong, K. K.; Yang, E. H.; Tan, K. H. (2018). Effects of Si/Al molar ratio on strength endurance and volume stability of metakaolin geopolymers subject to elevated temperature. Ceramics International, 44(5), 5726–5734. https://doi.org/10.1016/j.ceramint.2017.12.226
Mermerdaş, K.; Manguri, S.; Nassani, D. E.; Oleiwi, S. M. (2017). Effect of aggregate properties on the mechanical and absorption characteristics of geopolymer mortar. Engineering Science and Technology an International Journal, 20(6), 1642–1652. https://doi.org/10.1016/j.jestch.2017.11.009
Nazari, A., y Sanjayan, J. G. (2017). Handbook of Low Carbon Concrete. Oxford, Butterworth-Heinemann. https://www.elsevier.com/books/handbook-of-low-carbon-concrete/nazari/978-0-12-804524-4
Pacheco-Torgal, F. (2014a). Eco-efficient construction and building materials research under the EU Framework Programme Horizon 2020. Construction and Building Materials, 51, 151–162. https://doi.org/10.1016/j.conbuildmat.2013.10.058
Pacheco-Torgal, F; Labrincha, J. A.; Leonelli, C.; Palomo; A.; Chindaprasirt, P. (2014b). Handbook of Alkali-Activated Cements, Mortars and Concretes. Cambridge, Woodhead Publishing. https://www.elsevier.com/books/handbook-of-alkali-activated-cements-mortars-and-concretes/pacheco-torgal/978-1-78242-276-1
Pacheco-Torgal, F.; Jalali, S.; Labrincha, J. A.; John, V. M. (2013). Eco-Efficient Concrete. Cambridge. Woodhead Publishing Limited. https://www.elsevier.com/books/eco-efficient-concrete/pacheco-torgal/978-0-85709-424-7.
Palomo, A., Krivenko, P., Kavalerova, E., y Maltseva, O. (2018). A review on alkaline activation: New analytical perspectives. Materiales de Construcción, 64 (315), 1–23.
Pandurangan, K.; Thennavan, M.; Muthadhi, A. (2018). Studies on effect of source of flyash on the bond strength of geopolymer concrete. Materials Today: Proceedings, 5(5), 12725–12733. https://doi.org/10.1016/j.matpr.2018.02.256
Provis, J. L. (2017). Alkali-activated materials. Cement and Concrete Research. 114 (2), 40–48. https://doi.org/10.1016/j.cemconres.2017.02.009
Provis, J. L.; Van Deventer, J. S. (2009). Geopolymers: Structures, processing, properties and industrial applications. Australia, Woodhead Publishing. https://www.elsevier.com/books/geopolymers/provis/978-1-84569-449-4.
Ramujee, K.; Potharaju, M. (2017). Mechanical Properties of Geopolymer Concrete Composites. Materials Today: Proceedings, 4 (2), 2937–2945. https://doi.org/10.1016/j.matpr.2017.02.175
Rend, M.; Fern, B. A.; Mart, M.; Andr, M.; José, T. A.; (2015). Desarrollo de nuevos cementos: “Cementos alcalinos y cementos híbridos”, México, Instituto Mexicano del Transporte, 73 p.
Rivera, G. (2013). Dosificación de mezclas de concreto. Concreto simple. Colombia, pp. 169-197. Universidad del Cauca. https://www.academia.edu/13569512/CONCRETO_SIMPLE Solismaa, S.; Ismailov, A.; Karhu, M.; Sreenivasan, H.; Lehtonen, M.; Kinnunen, P.; Illikainen, M.; Räisänen, M. L. (2018). Valorization of Finnish mining tailings for use in the ceramics industry. Bulletin of the Geological Society of Finland, 90 (1), 33–54. https://doi.org/10.17741/bgsf/90.1.002
Spin S.A. (2018). Especificaciones y certificado de calidad Flocsil, Colombia, Centro de investigación Spin S.A, 1 p.
Wei, B., Zhang, Y., y Bao, S. (2017). Preparation of geopolymers from vanadium tailings by mechanical activation. Construction and Building Materials, 145, 236–242. https://doi.org/10.1016/j.conbuildmat.2017.03.234
Wills, B. A.; Finch, J. A. (2016). Wills’ Mineral Processing Technology. Oxford, Butterworth-Heinemann. https://www.elsevier.com/books/wills-mineral-processing-technology/wills/978-0-08-097053-0
dc.relation.bitstream.none.fl_str_mv https://revistas.eia.edu.co/index.php/reveia/article/download/1476/1415
dc.relation.citationedition.spa.fl_str_mv Núm. 36 , Año 2021 :
dc.relation.citationendpage.none.fl_str_mv 17
dc.relation.citationissue.spa.fl_str_mv 36
dc.relation.citationstartpage.none.fl_str_mv 36009 pp. 1
dc.relation.citationvolume.spa.fl_str_mv 18
dc.relation.ispartofjournal.spa.fl_str_mv Revista EIA
dc.rights.spa.fl_str_mv Revista EIA - 2021
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Revista EIA - 2021
https://creativecommons.org/licenses/by-nc-nd/4.0
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Fondo Editorial EIA - Universidad EIA
dc.source.spa.fl_str_mv https://revistas.eia.edu.co/index.php/reveia/article/view/1476
institution Universidad EIA .
bitstream.url.fl_str_mv https://repository.eia.edu.co/bitstreams/56592562-70aa-45f2-86b5-900813898344/download
bitstream.checksum.fl_str_mv 0e145ac3686915a44a5d8565491f2ee2
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EIA
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1828317398860562432
spelling Pardo Álvarez, Nicolás Steven82ae0284ca28647a18d67763241591a3300Penagos García, Guillermo Leónaee0d2438dc9947ad3c1b04c946d6ae3300López Gómez, María Esperanzaf0cc377deb3105a0d76aae87fb58c8fb300Correa Ochoa, Mauricio Andrés6f7588abea4709c716d3f35adbc70e873002021-05-31 00:00:002022-06-17T20:21:06Z2021-05-31 00:00:002022-06-17T20:21:06Z2021-05-311794-1237https://repository.eia.edu.co/handle/11190/513910.24050/reia.v18i36.14762463-0950https://doi.org/10.24050/reia.v18i36.1476Los residuos mineros (RM) generan grandes problemas ambientales debido a la alta y progresiva explotación de minerales y su consecuente disposición. La activación alcalina es un método ampliamente utilizado para la fabricación de materiales de construcción, usando los residuos como materiales cementantes suplementarios. En esta investigación se generaron morteros a partir de RM activados alcalinamente. Se estudiaron residuos de la explotación de minería aurífera de veta, activadas mediante una mezcla de solución NaOH y Na2SiO3. Se fabricaron dos tipos de morteros, uno utilizando el residuo con granulometría original y el otro con el residuo molido, para evaluar la influencia del tamaño de partícula. Además, cada tipo de mortero fue fraguado a 24 y 80 ºC. El análisis de las fases presentes en los morteros se llevó a cabo mediante difracción de rayos X (DRX) y el análisis de la morfología de las superficies de fractura después del ensayo de compresión se llevó a cabo mediante microscopía electrónica de barrido (MEB). Los resultados mostraron que la resistencia a la compresión es superior en los morteros preparados con los residuos molidos, frente a los morteros con los residuos de granulometría original. En adición, el incremento de la temperatura de fraguado no presentó influencia en la propiedad evaluada.The mine tailings cause several environmental impacts, due to high and progressive mineral exploitation and waste management. Alkaline activation to manufacture building materials using waste as supplementary cementitious materials has been a widely used method. In this article, mortars with alkali-activated mine tailings has been studied. Vein gold tailing wastes, were activated by a mixture of NaOH and Na2SiO3 solution. Two types of mortars were analyzed to assess influence of particle size were manufactured, the first by using original granulometry tailing and the second with milled residue. In addition, each type of mortar was set at 24 and 80 °C. Crystalline phases in mortars were identified by X-ray diffraction (XRD), and the morphology of the fracture surfaces after the compression test was analyzed with scanning electron microscopy (SEM). The results show that the compressive strength of the specimens produced from milled residue was higher value in comparison with original granulometry specimens. In addition, setting temperature increase did not have an influence on the property evaluated.application/pdfspaFondo Editorial EIA - Universidad EIARevista EIA - 2021https://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.http://purl.org/coar/access_right/c_abf2https://revistas.eia.edu.co/index.php/reveia/article/view/1476Mine tailingsFlotation tailsAlkaline activationMortarsResiduos minerosColas de flotaciónActivación alcalinaMorterosActivación alcalina de residuos de minería aurífera de veta para la fabricación de morterosAlkali activation of vein gold tailing wastes for manufacturing mortarsArtículo de revistaJournal articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionTexthttp://purl.org/redcol/resource_type/ARTREFhttp://purl.org/coar/version/c_970fb48d4fbd8a85Al-Shathr, B.; Shamsa, M.; Al-Attar, T. (2018). Relationship between amorphous silica in source materials and compressive strength of geopolymer concrete. MATEC Web of Conferences, 162, 02019. https://doi.org/10.1051/matecconf/201816202019ASTM C109/C109M - 16a. (2016). Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens)1. https://doi.org/10.1520/C0109ASTM C33/C33M-18. (2018). Standard Specification for Concrete Aggregates. https://doi.org/10.1520/C0033ASTM D422-63. (2007). Standard test method for particle-size analysis of soils. https://doi.org/10.1520/D0422-63R07E02.2Comisión Asesora Permanente Para el Regimen de Construcciones Sismo Resistentes. (2010). NSR-10. Reglamento Colombiano de Construcción Sismo Resistente NSR-10, Ministerio de Ambiente, Vivienda y Desarrollo Territorial.Consoli, N. C.; Da Silva, A. P.; Nierwinski, H. P.; Sosnoski, J. (2018). Durability, strength, and stiffness of compacted gold tailings – cement mixes. Canadian Geotechnical Journal, 55(4), 486–494. https://doi.org/10.1139/cgj-2016-0391De Rossi, A.; Simão, L.; Ribeiro, M. J.; Novais, R. M.; Labrincha, J. A.; Hotza, D.; Moreira, R. (2019). In-situ synthesis of zeolites by geopolymerization of biomass fly ash and metakaolin. Materials Letters, 236, 644–648. https://doi.org/10.1016/j.matlet.2018.11.016Duan, P.; Yan, C.; Zhou, W.; Ren, D. (2016). Fresh properties, compressive strength and microstructure of fly ash geopolymer paste blended with iron ore tailing under thermal cycle. Construction and Building Materials, 118, 76–88. https://doi.org/10.1016/j.conbuildmat.2016.05.059Gitari, M. W.; Akinyemi, S. A.; Thobakgale, R.; Ngoejana, P. C.; Ramugondo, L.; Matidza, M.; Mhlongo, S. E.; Dacosta, F. A.; Nemapate, N. (2018). Physicochemical and mineralogical characterization of Musina mine copper and New Union gold mine tailings: Implications for fabrication of beneficial geopolymeric construction materials. Journal of African Earth Sciences, 137, 218–228. https://doi.org/10.1016/j.jafrearsci.2017.10.016Kinnunen, P.; Ismailov, A.; Solismaa, S.; Sreenivasan, H.; Räisänen, M. L.; Levänen, E.; Illikainen, M. (2018). Recycling mine tailings in chemically bonded ceramics – A review. Journal of Cleaner Production, 174, 634–649. https://doi.org/10.1016/j.jclepro.2017.10.280Kiventerä, J.; Golek, L.; Yliniemi, J.; Ferreira, V.; Deja, J.; Illikainen, M. (2016). Utilization of sulphidic tailings from gold mine as a raw material in geopolymerization. International Journal of Mineral Processing, 149, 104–110. https://doi.org/10.1016/j.minpro.2016.02.012Król, M.; Mozgawa, W. (2019). Zeolite layer on metakaolin-based support. Microporous and Mesoporous Materials, 282 (February), 109–113. https://doi.org/10.1016/j.micromeso.2019.03.028Lahoti, M.; Wong, K. K.; Yang, E. H.; Tan, K. H. (2018). Effects of Si/Al molar ratio on strength endurance and volume stability of metakaolin geopolymers subject to elevated temperature. Ceramics International, 44(5), 5726–5734. https://doi.org/10.1016/j.ceramint.2017.12.226Mermerdaş, K.; Manguri, S.; Nassani, D. E.; Oleiwi, S. M. (2017). Effect of aggregate properties on the mechanical and absorption characteristics of geopolymer mortar. Engineering Science and Technology an International Journal, 20(6), 1642–1652. https://doi.org/10.1016/j.jestch.2017.11.009Nazari, A., y Sanjayan, J. G. (2017). Handbook of Low Carbon Concrete. Oxford, Butterworth-Heinemann. https://www.elsevier.com/books/handbook-of-low-carbon-concrete/nazari/978-0-12-804524-4Pacheco-Torgal, F. (2014a). Eco-efficient construction and building materials research under the EU Framework Programme Horizon 2020. Construction and Building Materials, 51, 151–162. https://doi.org/10.1016/j.conbuildmat.2013.10.058Pacheco-Torgal, F; Labrincha, J. A.; Leonelli, C.; Palomo; A.; Chindaprasirt, P. (2014b). Handbook of Alkali-Activated Cements, Mortars and Concretes. Cambridge, Woodhead Publishing. https://www.elsevier.com/books/handbook-of-alkali-activated-cements-mortars-and-concretes/pacheco-torgal/978-1-78242-276-1Pacheco-Torgal, F.; Jalali, S.; Labrincha, J. A.; John, V. M. (2013). Eco-Efficient Concrete. Cambridge. Woodhead Publishing Limited. https://www.elsevier.com/books/eco-efficient-concrete/pacheco-torgal/978-0-85709-424-7.Palomo, A., Krivenko, P., Kavalerova, E., y Maltseva, O. (2018). A review on alkaline activation: New analytical perspectives. Materiales de Construcción, 64 (315), 1–23.Pandurangan, K.; Thennavan, M.; Muthadhi, A. (2018). Studies on effect of source of flyash on the bond strength of geopolymer concrete. Materials Today: Proceedings, 5(5), 12725–12733. https://doi.org/10.1016/j.matpr.2018.02.256Provis, J. L. (2017). Alkali-activated materials. Cement and Concrete Research. 114 (2), 40–48. https://doi.org/10.1016/j.cemconres.2017.02.009Provis, J. L.; Van Deventer, J. S. (2009). Geopolymers: Structures, processing, properties and industrial applications. Australia, Woodhead Publishing. https://www.elsevier.com/books/geopolymers/provis/978-1-84569-449-4.Ramujee, K.; Potharaju, M. (2017). Mechanical Properties of Geopolymer Concrete Composites. Materials Today: Proceedings, 4 (2), 2937–2945. https://doi.org/10.1016/j.matpr.2017.02.175Rend, M.; Fern, B. A.; Mart, M.; Andr, M.; José, T. A.; (2015). Desarrollo de nuevos cementos: “Cementos alcalinos y cementos híbridos”, México, Instituto Mexicano del Transporte, 73 p.Rivera, G. (2013). Dosificación de mezclas de concreto. Concreto simple. Colombia, pp. 169-197. Universidad del Cauca. https://www.academia.edu/13569512/CONCRETO_SIMPLE Solismaa, S.; Ismailov, A.; Karhu, M.; Sreenivasan, H.; Lehtonen, M.; Kinnunen, P.; Illikainen, M.; Räisänen, M. L. (2018). Valorization of Finnish mining tailings for use in the ceramics industry. Bulletin of the Geological Society of Finland, 90 (1), 33–54. https://doi.org/10.17741/bgsf/90.1.002Spin S.A. (2018). Especificaciones y certificado de calidad Flocsil, Colombia, Centro de investigación Spin S.A, 1 p.Wei, B., Zhang, Y., y Bao, S. (2017). Preparation of geopolymers from vanadium tailings by mechanical activation. Construction and Building Materials, 145, 236–242. https://doi.org/10.1016/j.conbuildmat.2017.03.234Wills, B. A.; Finch, J. A. (2016). Wills’ Mineral Processing Technology. Oxford, Butterworth-Heinemann. https://www.elsevier.com/books/wills-mineral-processing-technology/wills/978-0-08-097053-0https://revistas.eia.edu.co/index.php/reveia/article/download/1476/1415Núm. 36 , Año 2021 :173636009 pp. 118Revista EIAPublicationOREORE.xmltext/xml2752https://repository.eia.edu.co/bitstreams/56592562-70aa-45f2-86b5-900813898344/download0e145ac3686915a44a5d8565491f2ee2MD5111190/5139oai:repository.eia.edu.co:11190/51392023-07-25 17:09:12.949https://creativecommons.org/licenses/by-nc-nd/4.0Revista EIA - 2021metadata.onlyhttps://repository.eia.edu.coRepositorio Institucional Universidad EIAbdigital@metabiblioteca.com