COOLING MICROELECTRONIC DEVICES USING OPTIMAL MICROCHANNEL HEAT SINKS
This article deals with the design of optimum microchannel heat sinks through Unified Particle Swarm Optimisation (UPSO) and Harmony Search (HS). These heat sinks are used for the thermal management of electronic devices, and we analyse the performance of UPSO and HS in their design, both, systemati...
- Autores:
-
Cruz Duarte, Jorge Mario
Amaya Contreras, Iván Mauricio
Correa Cely, Carlos Rodrigo
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2016
- Institución:
- Universidad EIA .
- Repositorio:
- Repositorio EIA .
- Idioma:
- spa
- OAI Identifier:
- oai:repository.eia.edu.co:11190/4964
- Acceso en línea:
- https://repository.eia.edu.co/handle/11190/4964
https://doi.org/10.24050/reia.v12i24.880
- Palabra clave:
- Entropy Generation Minimisation
Global Optimization Algorithm
Microchannel Heat Sink
Optimal Design
- Rights
- openAccess
- License
- Revista EIA - 2015
id |
REIA2_6b8fe281159ff1460b99a4b5698a9ca9 |
---|---|
oai_identifier_str |
oai:repository.eia.edu.co:11190/4964 |
network_acronym_str |
REIA2 |
network_name_str |
Repositorio EIA . |
repository_id_str |
|
dc.title.spa.fl_str_mv |
COOLING MICROELECTRONIC DEVICES USING OPTIMAL MICROCHANNEL HEAT SINKS |
dc.title.translated.eng.fl_str_mv |
COOLING MICROELECTRONIC DEVICES USING OPTIMAL MICROCHANNEL HEAT SINKS |
title |
COOLING MICROELECTRONIC DEVICES USING OPTIMAL MICROCHANNEL HEAT SINKS |
spellingShingle |
COOLING MICROELECTRONIC DEVICES USING OPTIMAL MICROCHANNEL HEAT SINKS Entropy Generation Minimisation Global Optimization Algorithm Microchannel Heat Sink Optimal Design |
title_short |
COOLING MICROELECTRONIC DEVICES USING OPTIMAL MICROCHANNEL HEAT SINKS |
title_full |
COOLING MICROELECTRONIC DEVICES USING OPTIMAL MICROCHANNEL HEAT SINKS |
title_fullStr |
COOLING MICROELECTRONIC DEVICES USING OPTIMAL MICROCHANNEL HEAT SINKS |
title_full_unstemmed |
COOLING MICROELECTRONIC DEVICES USING OPTIMAL MICROCHANNEL HEAT SINKS |
title_sort |
COOLING MICROELECTRONIC DEVICES USING OPTIMAL MICROCHANNEL HEAT SINKS |
dc.creator.fl_str_mv |
Cruz Duarte, Jorge Mario Amaya Contreras, Iván Mauricio Correa Cely, Carlos Rodrigo |
dc.contributor.author.spa.fl_str_mv |
Cruz Duarte, Jorge Mario Amaya Contreras, Iván Mauricio Correa Cely, Carlos Rodrigo |
dc.subject.spa.fl_str_mv |
Entropy Generation Minimisation Global Optimization Algorithm Microchannel Heat Sink Optimal Design |
topic |
Entropy Generation Minimisation Global Optimization Algorithm Microchannel Heat Sink Optimal Design |
description |
This article deals with the design of optimum microchannel heat sinks through Unified Particle Swarm Optimisation (UPSO) and Harmony Search (HS). These heat sinks are used for the thermal management of electronic devices, and we analyse the performance of UPSO and HS in their design, both, systematically and thoroughly. The objective function was created using the entropy generation minimisation criterion. In this study, we fixed the geometry of the microchannel, the amount of heat to be removed, and the properties of the cooling fluid. Moreover, we calculated the entropy generation rate, the volume flow rate of air, the channel width, the channel height, and the Knudsen number. The results of several simulation optimizations indicate that both global optimisation strategies yielded similar results, about 0.032 W/K, and that HS required five times more iterations than UPSO, but only about a nineteenth of its computation time. In addition, HS revealed a greater chance (about three times) of finding a better solution than UPSO, but with a higher dispersion rate (about five times). Nonetheless, both algorithms successfully optimised the design for different scenarios, even when varying the material of the heat sink, and for different heat transfer rates. |
publishDate |
2016 |
dc.date.accessioned.none.fl_str_mv |
2016-02-25 00:00:00 2022-06-17T20:19:03Z |
dc.date.available.none.fl_str_mv |
2016-02-25 00:00:00 2022-06-17T20:19:03Z |
dc.date.issued.none.fl_str_mv |
2016-02-25 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.eng.fl_str_mv |
Journal article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_6501 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ARTREF |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
1794-1237 |
dc.identifier.uri.none.fl_str_mv |
https://repository.eia.edu.co/handle/11190/4964 |
dc.identifier.doi.none.fl_str_mv |
10.24050/reia.v12i24.880 |
dc.identifier.eissn.none.fl_str_mv |
2463-0950 |
dc.identifier.url.none.fl_str_mv |
https://doi.org/10.24050/reia.v12i24.880 |
identifier_str_mv |
1794-1237 10.24050/reia.v12i24.880 2463-0950 |
url |
https://repository.eia.edu.co/handle/11190/4964 https://doi.org/10.24050/reia.v12i24.880 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.bitstream.none.fl_str_mv |
https://revistas.eia.edu.co/index.php/reveia/article/download/880/785 |
dc.relation.citationedition.spa.fl_str_mv |
Núm. 24 , Año 2015 |
dc.relation.citationendpage.none.fl_str_mv |
166 |
dc.relation.citationissue.spa.fl_str_mv |
24 |
dc.relation.citationstartpage.none.fl_str_mv |
151 |
dc.relation.citationvolume.spa.fl_str_mv |
12 |
dc.relation.ispartofjournal.spa.fl_str_mv |
Revista EIA |
dc.rights.spa.fl_str_mv |
Revista EIA - 2015 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0 |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Revista EIA - 2015 https://creativecommons.org/licenses/by-nc-nd/4.0 http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Fondo Editorial EIA - Universidad EIA |
dc.source.spa.fl_str_mv |
https://revistas.eia.edu.co/index.php/reveia/article/view/880 |
institution |
Universidad EIA . |
bitstream.url.fl_str_mv |
https://repository.eia.edu.co/bitstreams/fd78de66-f69b-4f42-a845-c43220d0610e/download |
bitstream.checksum.fl_str_mv |
911efb0a002fe436088f24dc9ea94c0b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EIA |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814100894992564224 |
spelling |
Cruz Duarte, Jorge Mario6518ea1499399813cfca202afa1d605e300Amaya Contreras, Iván Mauricio2959113adfed9b48c1062303f20c82d4300Correa Cely, Carlos Rodrigo35967aa4f77cca47442ea326a0fa4aa13002016-02-25 00:00:002022-06-17T20:19:03Z2016-02-25 00:00:002022-06-17T20:19:03Z2016-02-251794-1237https://repository.eia.edu.co/handle/11190/496410.24050/reia.v12i24.8802463-0950https://doi.org/10.24050/reia.v12i24.880This article deals with the design of optimum microchannel heat sinks through Unified Particle Swarm Optimisation (UPSO) and Harmony Search (HS). These heat sinks are used for the thermal management of electronic devices, and we analyse the performance of UPSO and HS in their design, both, systematically and thoroughly. The objective function was created using the entropy generation minimisation criterion. In this study, we fixed the geometry of the microchannel, the amount of heat to be removed, and the properties of the cooling fluid. Moreover, we calculated the entropy generation rate, the volume flow rate of air, the channel width, the channel height, and the Knudsen number. The results of several simulation optimizations indicate that both global optimisation strategies yielded similar results, about 0.032 W/K, and that HS required five times more iterations than UPSO, but only about a nineteenth of its computation time. In addition, HS revealed a greater chance (about three times) of finding a better solution than UPSO, but with a higher dispersion rate (about five times). Nonetheless, both algorithms successfully optimised the design for different scenarios, even when varying the material of the heat sink, and for different heat transfer rates.This article deals with the design of optimum microchannel heat sinks through Unified Particle Swarm Optimisation (UPSO) and Harmony Search (HS). These heat sinks are used for the thermal management of electronic devices, and we analyse the performance of UPSO and HS in their design, both, systematically and thoroughly. The objective function was created using the entropy generation minimisation criterion. In this study, we fixed the geometry of the microchannel, the amount of heat to be removed, and the properties of the cooling fluid. Moreover, we calculated the entropy generation rate, the volume flow rate of air, the channel width, the channel height, and the Knudsen number. The results of several simulation optimizations indicate that both global optimisation strategies yielded similar results, about 0.032 W/K, and that HS required five times more iterations than UPSO, but only about a nineteenth of its computation time. In addition, HS revealed a greater chance (about three times) of finding a better solution than UPSO, but with a higher dispersion rate (about five times). Nonetheless, both algorithms successfully optimised the design for different scenarios, even when varying the material of the heat sink, and for different heat transfer rates.application/pdfspaFondo Editorial EIA - Universidad EIARevista EIA - 2015https://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.http://purl.org/coar/access_right/c_abf2https://revistas.eia.edu.co/index.php/reveia/article/view/880Entropy Generation MinimisationGlobal Optimization AlgorithmMicrochannel Heat SinkOptimal DesignCOOLING MICROELECTRONIC DEVICES USING OPTIMAL MICROCHANNEL HEAT SINKSCOOLING MICROELECTRONIC DEVICES USING OPTIMAL MICROCHANNEL HEAT SINKSArtículo de revistaJournal articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionTexthttp://purl.org/redcol/resource_type/ARTREFhttp://purl.org/coar/version/c_970fb48d4fbd8a85https://revistas.eia.edu.co/index.php/reveia/article/download/880/785Núm. 24 , Año 20151662415112Revista EIAPublicationOREORE.xmltext/xml2617https://repository.eia.edu.co/bitstreams/fd78de66-f69b-4f42-a845-c43220d0610e/download911efb0a002fe436088f24dc9ea94c0bMD5111190/4964oai:repository.eia.edu.co:11190/49642023-07-25 17:04:52.594https://creativecommons.org/licenses/by-nc-nd/4.0Revista EIA - 2015metadata.onlyhttps://repository.eia.edu.coRepositorio Institucional Universidad EIAbdigital@metabiblioteca.com |