COOLING MICROELECTRONIC DEVICES USING OPTIMAL MICROCHANNEL HEAT SINKS

This article deals with the design of optimum microchannel heat sinks through Unified Particle Swarm Optimisation (UPSO) and Harmony Search (HS). These heat sinks are used for the thermal management of electronic devices, and we analyse the performance of UPSO and HS in their design, both, systemati...

Full description

Autores:
Cruz Duarte, Jorge Mario
Amaya Contreras, Iván Mauricio
Correa Cely, Carlos Rodrigo
Tipo de recurso:
Article of journal
Fecha de publicación:
2016
Institución:
Universidad EIA .
Repositorio:
Repositorio EIA .
Idioma:
spa
OAI Identifier:
oai:repository.eia.edu.co:11190/4964
Acceso en línea:
https://repository.eia.edu.co/handle/11190/4964
https://doi.org/10.24050/reia.v12i24.880
Palabra clave:
Entropy Generation Minimisation
Global Optimization Algorithm
Microchannel Heat Sink
Optimal Design
Rights
openAccess
License
Revista EIA - 2015
Description
Summary:This article deals with the design of optimum microchannel heat sinks through Unified Particle Swarm Optimisation (UPSO) and Harmony Search (HS). These heat sinks are used for the thermal management of electronic devices, and we analyse the performance of UPSO and HS in their design, both, systematically and thoroughly. The objective function was created using the entropy generation minimisation criterion. In this study, we fixed the geometry of the microchannel, the amount of heat to be removed, and the properties of the cooling fluid. Moreover, we calculated the entropy generation rate, the volume flow rate of air, the channel width, the channel height, and the Knudsen number. The results of several simulation optimizations indicate that both global optimisation strategies yielded similar results, about 0.032 W/K, and that HS required five times more iterations than UPSO, but only about a nineteenth of its computation time. In addition, HS revealed a greater chance (about three times) of finding a better solution than UPSO, but with a higher dispersion rate (about five times). Nonetheless, both algorithms successfully optimised the design for different scenarios, even when varying the material of the heat sink, and for different heat transfer rates.