Comparativo de los Algoritmos de Dimensión Fractal Higuchi, Katz y Multiresolución de Conteo de Cajas en Señales EEG Basadas en Potenciales Relacionados por Eventos
La obtención de información por medio de la medición de señales registradas durante diferentes procesos o condiciones fisiológicas del cerebro es importante para poder desarrollar interfaces computacionales que traduzcan las señales eléctricas cerebrales a comandos computacionales de control. Un ele...
- Autores:
-
FERNANDEZ FRAGA, SANTIAGO
RANGEL MONDRAGON, JAIME
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2017
- Institución:
- Universidad EIA .
- Repositorio:
- Repositorio EIA .
- Idioma:
- spa
- OAI Identifier:
- oai:repository.eia.edu.co:11190/4952
- Acceso en línea:
- https://repository.eia.edu.co/handle/11190/4952
https://doi.org/10.24050/reia.v14i27.864
- Palabra clave:
- Dimensión Fractal
Higuchi
Katz
Multiresolución de Conteo de Cajas
señales EEG.
Inteligencia Artificial
Reconocimiento de Patrones
Bioinformatica
- Rights
- openAccess
- License
- Revista EIA - 2017
id |
REIA2_61507cec270383c452b04d1122bf5aff |
---|---|
oai_identifier_str |
oai:repository.eia.edu.co:11190/4952 |
network_acronym_str |
REIA2 |
network_name_str |
Repositorio EIA . |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Comparativo de los Algoritmos de Dimensión Fractal Higuchi, Katz y Multiresolución de Conteo de Cajas en Señales EEG Basadas en Potenciales Relacionados por Eventos |
dc.title.translated.eng.fl_str_mv |
Comparativo de los Algoritmos de Dimensión Fractal Higuchi, Katz y Multiresolución de Conteo de Cajas en Señales EEG Basadas en Potenciales Relacionados por Eventos |
title |
Comparativo de los Algoritmos de Dimensión Fractal Higuchi, Katz y Multiresolución de Conteo de Cajas en Señales EEG Basadas en Potenciales Relacionados por Eventos |
spellingShingle |
Comparativo de los Algoritmos de Dimensión Fractal Higuchi, Katz y Multiresolución de Conteo de Cajas en Señales EEG Basadas en Potenciales Relacionados por Eventos Dimensión Fractal Higuchi Katz Multiresolución de Conteo de Cajas señales EEG. Inteligencia Artificial Reconocimiento de Patrones Bioinformatica |
title_short |
Comparativo de los Algoritmos de Dimensión Fractal Higuchi, Katz y Multiresolución de Conteo de Cajas en Señales EEG Basadas en Potenciales Relacionados por Eventos |
title_full |
Comparativo de los Algoritmos de Dimensión Fractal Higuchi, Katz y Multiresolución de Conteo de Cajas en Señales EEG Basadas en Potenciales Relacionados por Eventos |
title_fullStr |
Comparativo de los Algoritmos de Dimensión Fractal Higuchi, Katz y Multiresolución de Conteo de Cajas en Señales EEG Basadas en Potenciales Relacionados por Eventos |
title_full_unstemmed |
Comparativo de los Algoritmos de Dimensión Fractal Higuchi, Katz y Multiresolución de Conteo de Cajas en Señales EEG Basadas en Potenciales Relacionados por Eventos |
title_sort |
Comparativo de los Algoritmos de Dimensión Fractal Higuchi, Katz y Multiresolución de Conteo de Cajas en Señales EEG Basadas en Potenciales Relacionados por Eventos |
dc.creator.fl_str_mv |
FERNANDEZ FRAGA, SANTIAGO RANGEL MONDRAGON, JAIME |
dc.contributor.author.spa.fl_str_mv |
FERNANDEZ FRAGA, SANTIAGO RANGEL MONDRAGON, JAIME |
dc.subject.spa.fl_str_mv |
Dimensión Fractal Higuchi Katz Multiresolución de Conteo de Cajas señales EEG. Inteligencia Artificial Reconocimiento de Patrones Bioinformatica |
topic |
Dimensión Fractal Higuchi Katz Multiresolución de Conteo de Cajas señales EEG. Inteligencia Artificial Reconocimiento de Patrones Bioinformatica |
description |
La obtención de información por medio de la medición de señales registradas durante diferentes procesos o condiciones fisiológicas del cerebro es importante para poder desarrollar interfaces computacionales que traduzcan las señales eléctricas cerebrales a comandos computacionales de control. Un electroencefalograma (EEG) registra la actividad eléctrica del cerebro en respuesta al recibir diferentes estímulos externos (potenciales por eventos). El análisis de estas señales permite identificar y distinguir estados específicos de la función fisiológica del cerebro. La Dimensión Fractal se ha utilizado como una herramienta para el análisis de formas de ondas biomédicas, en particular se ha utilizado para determinar la medida de la complejidad en series de tiempo generadas por EEG. El presente documento pretende analizar series de tiempo biomédicas obtenidas por EEG a las cuales se obtendrán la FD por medio de los métodos Higuchi, Katz y Multi-resolución de Conteo de Cajas, que muestre la relación entre el método para la obtención de la Dimensión Fractal y la condición fisiológica de la señal basada en Potenciales Cerebrales Relacionados por Eventos |
publishDate |
2017 |
dc.date.accessioned.none.fl_str_mv |
2017-09-12 00:00:00 2022-06-17T20:18:56Z |
dc.date.available.none.fl_str_mv |
2017-09-12 00:00:00 2022-06-17T20:18:56Z |
dc.date.issued.none.fl_str_mv |
2017-09-12 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.eng.fl_str_mv |
Journal article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_6501 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ARTREF |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
1794-1237 |
dc.identifier.uri.none.fl_str_mv |
https://repository.eia.edu.co/handle/11190/4952 |
dc.identifier.doi.none.fl_str_mv |
10.24050/reia.v14i27.864 |
dc.identifier.eissn.none.fl_str_mv |
2463-0950 |
dc.identifier.url.none.fl_str_mv |
https://doi.org/10.24050/reia.v14i27.864 |
identifier_str_mv |
1794-1237 10.24050/reia.v14i27.864 2463-0950 |
url |
https://repository.eia.edu.co/handle/11190/4952 https://doi.org/10.24050/reia.v14i27.864 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
M. Bachmann, J. Lass, A. Suhhova and H. Hinrikus, (2013). Spectral asymmetry and Higuchi´s Fractal Dimension Measures of Depression Electrencephalogram, Computational and Mathematical Methods in Medicine, Hindawi Publishing Corporation, vol. 2013, 8 pages. P. N. Baljekar and H. A. Patil, (2012). A comparison of waveform fractal dimension techniques for voice pathology classification, IEEE ICASPP ISSN 978-1-4673-0046-9, pp. 4461-4464 T. Bojić, A. Vuckovic, A. Kalauzi, (2010). Modeling EEG fractal dimension changes in wake and drowsy states in humans—a preliminary study, Journal of Theoretical Biology, 262, pp. 214-222. A. Bashashati, R.K. Ward, G.E. Birch, M.R. Hashemi, MA. Khalilzadeh, (2003). Fractal Dimension-Based EEG Biofeedback System, Proceedings of the 25th Annual International Conference of the IEEE EMBS, pp. 2220-2223, 2003. F. Cervantes-De la Torre, J.I. González-Trejo, C.A. Real-Ramirez and L.F. Hoyos-Reyes,(2013). Fractal dimension algorithms and their application to time series associated with natural phenomena, 4th National Meeting in Chaos, Comlex Sustem and Time Series, Journal o Physics: Conference Series, 475, 10 pages. A. Delorme and S. Makeig, (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics. Journal of Neuroscience Methods, 134:9-21. Dubravka R. Jevtić, and Milorad P. Paskaš, (2011). Application of Katz Algorithm for Fractal Dimension in Analysis of Room Impulse Response, 19th Telecommunications forum TELFOR 2011, pp. 1063-1066. D. Easwaramoorthy and R. Uthayakumar, (2010). Analysis of EEG Signals using Advanced Generalized Fractal Dimensions, Second International conference on Computing, Communication and Networking Technologies, 978-1-4244-6589-7, 6 pages. R. Esteller, G. Vachtsevanos, J. Echauz, and B. Litt, (2001). A Comparison of Waveform Fractal Dimension Algorithms, IEEE Transactions on Circuits and Systems-I: fundamental theory and applications, vol. 48, no. 2, pp. 177-183, 2001. G. Gálvez Coyt, A. Muñoz Diosdado, J. A. Balderas López, J. L. del Rio Correa, and F. Angulo Brown, (2013). Higuchi’s Method applied to the detection of periodic components in time series and its application to seismograms, COMPLEX SYSTEMS Revista Méxicana de Física, S 59 (1), pp. 1-6. S. Georgiev, Z. Minchev, C. Christova, D. Philipova, (2009). EEG Fractal Dimension Measurement before and after Human Auditory Stimulation, Bioautomaton, pp. 70-81. B. P. Harne, (2014). Higuchi Fractal Dimension Analysis of EEG Signal before and after OM Chanting to Observe Overall Effect on Brain, International Journal of Electrical and Computer Engineering (IJECE), vol. 4 pp. 585-592. HeadIT, Swartz Center for Computational Neuroscience (SCCN) of the University of California, San Diego. Its development has been funded by U.S. National Institutes of Health grants R01-MH084819 (Makeig, Grethe PIs) and R01-NS047293 (Makeig PI). M. Katz, (1988). Fractals and the analysis of waveforms, Computers in Biology and Medicine, vol. 18, pp. 145-156. T. Q. D. Khoa, V. Q. Ha and V. V. Toi, (2012). Higuchi Fractal Properties of Onset Epilepsy Electroencephalogram, Computational and Mathematical Methods in Medicine, Hindawi Publishing Corporation, vol. 2012, 6 pages. C. K. Loo, A. Samraj and G. C. Lee, (2011). Evaluation of Methods for Estimating Fractal Dimension in Motor Imagery-Based Brain Computer Interface, Hindawi Publishing Corporation, Discrete Dynamics in Nature and Society Vol. 2011, Article ID 724697, 8 pages. W. Lutzenberger, H. Preissl, F. Pulvermüller, (1995). Fractal dimension of electroencephalographic time series and underlying brain processes, Biological Cybernetics Springer-Verlag, vol. 73, pp. 477-482. S. Makeig, A. Delorme, M. Westerfield, T-P. Jung, J. Townsend, E. Courchesne and T. J. Sejnowski, (2004). Electroencephalographic brain dynamics following visual targets requiring manual responses, Public Library of Science Biology, 29 pages. S. Makeig, M. Westerfield, T-P Jung, J. Covington, J. Townsend,T. J. Sejnowski, and E. Courchesne, (1999). Functionally Independent Components of the Late Positive Event-Related Potential during Visual Spatial Attention, The Journal of Neuroscience, 19 (7), pp. 2665-2680. A. S. Martins, L. A. Neves, M. Z. Nascimento, M. F. Godoy, E. L. Flores and G. A. Carrijo, (2012). Multiscale Fractal Descriptors and Polynomial Classifier for Partial Pixels Identification in Regions of Interest of Mammographic Images, IEEE Latin America Transactions, Vol. 10, No. 4, pp. 1999-2005. G. Millán, E. S. Juan and M. Jamett, (2014). Simple Estimator of the Hurst Exponent for Self-Similar Traffic Flows, IEEE Latin America Transactions, Vol. 12, No. 8, pp. 1341-1346. Müller K.R., and Mattia D. (2010). Combining Brain-Computer Interfaces and Assistive Technologies: State-of-the-Art and Challenges. Frontiers in Neuroscience, Vol 4, pp.161. H. H. Mueller, (2010) “QEEG Brain Mapping, Evaluating the rhythms of the Brain”, Edmonton Neurotherapy, 2010, On line http://www.edmontonneurotherapy.com/Edmonton_Neurotherapy_QEEG_brain_mapping.html. P. Paramanathan, R. Uthayakumar, (2008), Application of fractal theory in analysis of human electroencephalographic signals, Computers in Biology and Medicine, no. 38, pp. 372-378 P. Paramanathan and R. Uthayakumar, (2007). Detecting Patterns in Irregular Time Series with Fractal Dimension, International Conference on Computational Intelligence and Multimedia Applications, pp. 323-327. F. R. Perlingeiro, L. L. Ling, (2005). Uma Nova Abordagem para Estimação da Banda Efetiva em Processos Fractais. IEEE Latin America Transactions, Vol. 3, No. 5, pp. 436-446. G. E. Polychronaki, P. Y. Ktonas, S. Gatzonis, A Siatouni, P. A. Asvestas, H. Tsekou, D. Sakas and K. S. Nikita, (2010). Comparison of fractal dimension estimation algorithms for epileptic seizure onset detection, Journal of Neural Engineering, 046007, 18 pages. B. S. Raghavendra, and D. N. Dutt, (2010). Computing Fractal Dimension of Signals using Multiresolution Box-counting Method, International Journal of Information and Mathematical Sciences, 6:1, pp. 50-65. B. S. Raghavendra and D. N. Dutt, (2009). A note on fractal dimensions of biomedical waveforms, Computers in Biology and Medicine, 39, pp. 1006-1012. S. Spasić, Lj. Nikolić, D. Mutavdžić, J. Šaponjić, (2011). Independent complexity patterns in single neuron activity induced by static magnetic field, Computer Methods and Programs in Biomedicine, vol. 104, pp. 212-218. Sabogal S., Arenas G. (2011). Una Introducción a la geometría Fractal, Escuela de Matemáticas, Universidad Industrial de Santander. Bucaramanga, Cap I, pp. 2-15. |
dc.relation.bitstream.none.fl_str_mv |
https://revistas.eia.edu.co/index.php/reveia/article/download/864/1093 |
dc.relation.citationedition.spa.fl_str_mv |
Núm. 27 , Año 2017 |
dc.relation.citationendpage.none.fl_str_mv |
83 |
dc.relation.citationissue.spa.fl_str_mv |
27 |
dc.relation.citationstartpage.none.fl_str_mv |
73 |
dc.relation.citationvolume.spa.fl_str_mv |
14 |
dc.relation.ispartofjournal.spa.fl_str_mv |
Revista EIA |
dc.rights.spa.fl_str_mv |
Revista EIA - 2017 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Revista EIA - 2017 https://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Fondo Editorial EIA - Universidad EIA |
dc.source.spa.fl_str_mv |
https://revistas.eia.edu.co/index.php/reveia/article/view/864 |
institution |
Universidad EIA . |
bitstream.url.fl_str_mv |
https://repository.eia.edu.co/bitstreams/32515472-e9bc-4de4-a993-2fcc5bfa23b7/download |
bitstream.checksum.fl_str_mv |
7806312f4db3207d5c0c99298dd7292d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EIA |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814100894700011520 |
spelling |
FERNANDEZ FRAGA, SANTIAGO5545944caa6b262cc012c7be0b2abad5300RANGEL MONDRAGON, JAIME02bcf40c355ce9cde3448e0640a8fe1d3002017-09-12 00:00:002022-06-17T20:18:56Z2017-09-12 00:00:002022-06-17T20:18:56Z2017-09-121794-1237https://repository.eia.edu.co/handle/11190/495210.24050/reia.v14i27.8642463-0950https://doi.org/10.24050/reia.v14i27.864La obtención de información por medio de la medición de señales registradas durante diferentes procesos o condiciones fisiológicas del cerebro es importante para poder desarrollar interfaces computacionales que traduzcan las señales eléctricas cerebrales a comandos computacionales de control. Un electroencefalograma (EEG) registra la actividad eléctrica del cerebro en respuesta al recibir diferentes estímulos externos (potenciales por eventos). El análisis de estas señales permite identificar y distinguir estados específicos de la función fisiológica del cerebro. La Dimensión Fractal se ha utilizado como una herramienta para el análisis de formas de ondas biomédicas, en particular se ha utilizado para determinar la medida de la complejidad en series de tiempo generadas por EEG. El presente documento pretende analizar series de tiempo biomédicas obtenidas por EEG a las cuales se obtendrán la FD por medio de los métodos Higuchi, Katz y Multi-resolución de Conteo de Cajas, que muestre la relación entre el método para la obtención de la Dimensión Fractal y la condición fisiológica de la señal basada en Potenciales Cerebrales Relacionados por EventosLa obtención de información por medio de la medición de señales registradas durante diferentes procesos o condiciones fisiológicas del cerebro es importante para poder desarrollar interfaces computacionales que traduzcan las señales eléctricas cerebrales a comandos computacionales de control. Un electroencefalograma (EEG) registra la actividad eléctrica del cerebro en respuesta al recibir diferentes estímulos externos (potenciales por eventos). El análisis de estas señales permite identificar y distinguir estados específicos de la función fisiológica del cerebro. La Dimensión Fractal se ha utilizado como una herramienta para el análisis de formas de ondas biomédicas, en particular se ha utilizado para determinar la medida de la complejidad en series de tiempo generadas por EEG. El presente documento pretende analizar series de tiempo biomédicas obtenidas por EEG a las cuales se obtendrán la FD por medio de los métodos Higuchi, Katz y Multi-resolución de Conteo de Cajas, que muestre la relación entre el método para la obtención de la Dimensión Fractal y la condición fisiológica de la señal basada en Potenciales Cerebrales Relacionados por Eventosapplication/pdfspaFondo Editorial EIA - Universidad EIARevista EIA - 2017https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://revistas.eia.edu.co/index.php/reveia/article/view/864Dimensión FractalHiguchiKatzMultiresolución de Conteo de Cajasseñales EEG.Inteligencia ArtificialReconocimiento de PatronesBioinformaticaComparativo de los Algoritmos de Dimensión Fractal Higuchi, Katz y Multiresolución de Conteo de Cajas en Señales EEG Basadas en Potenciales Relacionados por EventosComparativo de los Algoritmos de Dimensión Fractal Higuchi, Katz y Multiresolución de Conteo de Cajas en Señales EEG Basadas en Potenciales Relacionados por EventosArtículo de revistaJournal articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionTexthttp://purl.org/redcol/resource_type/ARTREFhttp://purl.org/coar/version/c_970fb48d4fbd8a85M. Bachmann, J. Lass, A. Suhhova and H. Hinrikus, (2013). Spectral asymmetry and Higuchi´s Fractal Dimension Measures of Depression Electrencephalogram, Computational and Mathematical Methods in Medicine, Hindawi Publishing Corporation, vol. 2013, 8 pages.P. N. Baljekar and H. A. Patil, (2012). A comparison of waveform fractal dimension techniques for voice pathology classification, IEEE ICASPP ISSN 978-1-4673-0046-9, pp. 4461-4464T. Bojić, A. Vuckovic, A. Kalauzi, (2010). Modeling EEG fractal dimension changes in wake and drowsy states in humans—a preliminary study, Journal of Theoretical Biology, 262, pp. 214-222.A. Bashashati, R.K. Ward, G.E. Birch, M.R. Hashemi, MA. Khalilzadeh, (2003). Fractal Dimension-Based EEG Biofeedback System, Proceedings of the 25th Annual International Conference of the IEEE EMBS, pp. 2220-2223, 2003.F. Cervantes-De la Torre, J.I. González-Trejo, C.A. Real-Ramirez and L.F. Hoyos-Reyes,(2013). Fractal dimension algorithms and their application to time series associated with natural phenomena, 4th National Meeting in Chaos, Comlex Sustem and Time Series, Journal o Physics: Conference Series, 475, 10 pages.A. Delorme and S. Makeig, (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics. Journal of Neuroscience Methods, 134:9-21. Dubravka R. Jevtić, and Milorad P. Paskaš, (2011). Application of Katz Algorithm for Fractal Dimension in Analysis of Room Impulse Response, 19th Telecommunications forum TELFOR 2011, pp. 1063-1066.D. Easwaramoorthy and R. Uthayakumar, (2010). Analysis of EEG Signals using Advanced Generalized Fractal Dimensions, Second International conference on Computing, Communication and Networking Technologies, 978-1-4244-6589-7, 6 pages.R. Esteller, G. Vachtsevanos, J. Echauz, and B. Litt, (2001). A Comparison of Waveform Fractal Dimension Algorithms, IEEE Transactions on Circuits and Systems-I: fundamental theory and applications, vol. 48, no. 2, pp. 177-183, 2001.G. Gálvez Coyt, A. Muñoz Diosdado, J. A. Balderas López, J. L. del Rio Correa, and F. Angulo Brown, (2013). Higuchi’s Method applied to the detection of periodic components in time series and its application to seismograms, COMPLEX SYSTEMS Revista Méxicana de Física, S 59 (1), pp. 1-6.S. Georgiev, Z. Minchev, C. Christova, D. Philipova, (2009). EEG Fractal Dimension Measurement before and after Human Auditory Stimulation, Bioautomaton, pp. 70-81. B. P. Harne, (2014). Higuchi Fractal Dimension Analysis of EEG Signal before and after OM Chanting to Observe Overall Effect on Brain, International Journal of Electrical and Computer Engineering (IJECE), vol. 4 pp. 585-592. HeadIT, Swartz Center for Computational Neuroscience (SCCN) of the University of California, San Diego. Its development has been funded by U.S. National Institutes of Health grants R01-MH084819 (Makeig, Grethe PIs) and R01-NS047293 (Makeig PI).M. Katz, (1988). Fractals and the analysis of waveforms, Computers in Biology and Medicine, vol. 18, pp. 145-156. T. Q. D. Khoa, V. Q. Ha and V. V. Toi, (2012). Higuchi Fractal Properties of Onset Epilepsy Electroencephalogram, Computational and Mathematical Methods in Medicine, Hindawi Publishing Corporation, vol. 2012, 6 pages.C. K. Loo, A. Samraj and G. C. Lee, (2011). Evaluation of Methods for Estimating Fractal Dimension in Motor Imagery-Based Brain Computer Interface, Hindawi Publishing Corporation, Discrete Dynamics in Nature and Society Vol. 2011, Article ID 724697, 8 pages.W. Lutzenberger, H. Preissl, F. Pulvermüller, (1995). Fractal dimension of electroencephalographic time series and underlying brain processes, Biological Cybernetics Springer-Verlag, vol. 73, pp. 477-482.S. Makeig, A. Delorme, M. Westerfield, T-P. Jung, J. Townsend, E. Courchesne and T. J. Sejnowski, (2004). Electroencephalographic brain dynamics following visual targets requiring manual responses, Public Library of Science Biology, 29 pages.S. Makeig, M. Westerfield, T-P Jung, J. Covington, J. Townsend,T. J. Sejnowski, and E. Courchesne, (1999). Functionally Independent Components of the Late Positive Event-Related Potential during Visual Spatial Attention, The Journal of Neuroscience, 19 (7), pp. 2665-2680.A. S. Martins, L. A. Neves, M. Z. Nascimento, M. F. Godoy, E. L. Flores and G. A. Carrijo, (2012). Multiscale Fractal Descriptors and Polynomial Classifier for Partial Pixels Identification in Regions of Interest of Mammographic Images, IEEE Latin America Transactions, Vol. 10, No. 4, pp. 1999-2005.G. Millán, E. S. Juan and M. Jamett, (2014). Simple Estimator of the Hurst Exponent for Self-Similar Traffic Flows, IEEE Latin America Transactions, Vol. 12, No. 8, pp. 1341-1346.Müller K.R., and Mattia D. (2010). Combining Brain-Computer Interfaces and Assistive Technologies: State-of-the-Art and Challenges. Frontiers in Neuroscience, Vol 4, pp.161.H. H. Mueller, (2010) “QEEG Brain Mapping, Evaluating the rhythms of the Brain”, Edmonton Neurotherapy, 2010, On line http://www.edmontonneurotherapy.com/Edmonton_Neurotherapy_QEEG_brain_mapping.html.P. Paramanathan, R. Uthayakumar, (2008), Application of fractal theory in analysis of human electroencephalographic signals, Computers in Biology and Medicine, no. 38, pp. 372-378P. Paramanathan and R. Uthayakumar, (2007). Detecting Patterns in Irregular Time Series with Fractal Dimension, International Conference on Computational Intelligence and Multimedia Applications, pp. 323-327.F. R. Perlingeiro, L. L. Ling, (2005). Uma Nova Abordagem para Estimação da Banda Efetiva em Processos Fractais. IEEE Latin America Transactions, Vol. 3, No. 5, pp. 436-446.G. E. Polychronaki, P. Y. Ktonas, S. Gatzonis, A Siatouni, P. A. Asvestas, H. Tsekou, D. Sakas and K. S. Nikita, (2010). Comparison of fractal dimension estimation algorithms for epileptic seizure onset detection, Journal of Neural Engineering, 046007, 18 pages.B. S. Raghavendra, and D. N. Dutt, (2010). Computing Fractal Dimension of Signals using Multiresolution Box-counting Method, International Journal of Information and Mathematical Sciences, 6:1, pp. 50-65.B. S. Raghavendra and D. N. Dutt, (2009). A note on fractal dimensions of biomedical waveforms, Computers in Biology and Medicine, 39, pp. 1006-1012.S. Spasić, Lj. Nikolić, D. Mutavdžić, J. Šaponjić, (2011). Independent complexity patterns in single neuron activity induced by static magnetic field, Computer Methods and Programs in Biomedicine, vol. 104, pp. 212-218.Sabogal S., Arenas G. (2011). Una Introducción a la geometría Fractal, Escuela de Matemáticas, Universidad Industrial de Santander. Bucaramanga, Cap I, pp. 2-15.https://revistas.eia.edu.co/index.php/reveia/article/download/864/1093Núm. 27 , Año 201783277314Revista EIAPublicationOREORE.xmltext/xml2749https://repository.eia.edu.co/bitstreams/32515472-e9bc-4de4-a993-2fcc5bfa23b7/download7806312f4db3207d5c0c99298dd7292dMD5111190/4952oai:repository.eia.edu.co:11190/49522023-07-25 17:04:34.927https://creativecommons.org/licenses/by-nc-sa/4.0/Revista EIA - 2017metadata.onlyhttps://repository.eia.edu.coRepositorio Institucional Universidad EIAbdigital@metabiblioteca.com |