Efecto de la incorporación de pasto estrella sobre el mejoramiento del proceso y la calidad del producto del compostaje de biorresiduos
La predominancia orgánica de los Biorresiduos (BOM) presentes en los Residuos Sólidos Municipales, favorece su aprovechamiento mediante estrategias como el compostaje; sin embargo, presentan deficiencias que pueden ser mitigadas con la incorporación de materiales acondicionadores. En este estudio se...
- Autores:
-
Torres Lozada, Patricia
Marmolejo Rebellón, Luis Fernando
Arias Giraldo, Cielo
Foronda Zapata, Kevin
Soto Paz, Jonathan
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Universidad EIA .
- Repositorio:
- Repositorio EIA .
- Idioma:
- spa
- OAI Identifier:
- oai:repository.eia.edu.co:11190/5098
- Acceso en línea:
- https://repository.eia.edu.co/handle/11190/5098
https://doi.org/10.24050/reia.v17i33.1352
- Palabra clave:
- Biorresiduos - BOM
Compostaje
Co-compostaje
Material de soporte
Pasto Estrella
Biowaste
Co-composting
Star Grass
Support material
Composting
- Rights
- openAccess
- License
- Revista EIA - 2020
id |
REIA2_51db4a3e3df3a1b3ef4b103c1c25e373 |
---|---|
oai_identifier_str |
oai:repository.eia.edu.co:11190/5098 |
network_acronym_str |
REIA2 |
network_name_str |
Repositorio EIA . |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Efecto de la incorporación de pasto estrella sobre el mejoramiento del proceso y la calidad del producto del compostaje de biorresiduos |
dc.title.translated.eng.fl_str_mv |
Effect of grass star incorporation on the composting biowaste process and on the quality of the product |
title |
Efecto de la incorporación de pasto estrella sobre el mejoramiento del proceso y la calidad del producto del compostaje de biorresiduos |
spellingShingle |
Efecto de la incorporación de pasto estrella sobre el mejoramiento del proceso y la calidad del producto del compostaje de biorresiduos Biorresiduos - BOM Compostaje Co-compostaje Material de soporte Pasto Estrella Biowaste Co-composting Star Grass Support material Composting |
title_short |
Efecto de la incorporación de pasto estrella sobre el mejoramiento del proceso y la calidad del producto del compostaje de biorresiduos |
title_full |
Efecto de la incorporación de pasto estrella sobre el mejoramiento del proceso y la calidad del producto del compostaje de biorresiduos |
title_fullStr |
Efecto de la incorporación de pasto estrella sobre el mejoramiento del proceso y la calidad del producto del compostaje de biorresiduos |
title_full_unstemmed |
Efecto de la incorporación de pasto estrella sobre el mejoramiento del proceso y la calidad del producto del compostaje de biorresiduos |
title_sort |
Efecto de la incorporación de pasto estrella sobre el mejoramiento del proceso y la calidad del producto del compostaje de biorresiduos |
dc.creator.fl_str_mv |
Torres Lozada, Patricia Marmolejo Rebellón, Luis Fernando Arias Giraldo, Cielo Foronda Zapata, Kevin Soto Paz, Jonathan |
dc.contributor.author.spa.fl_str_mv |
Torres Lozada, Patricia Marmolejo Rebellón, Luis Fernando Arias Giraldo, Cielo Foronda Zapata, Kevin Soto Paz, Jonathan |
dc.subject.spa.fl_str_mv |
Biorresiduos - BOM Compostaje Co-compostaje Material de soporte Pasto Estrella |
topic |
Biorresiduos - BOM Compostaje Co-compostaje Material de soporte Pasto Estrella Biowaste Co-composting Star Grass Support material Composting |
dc.subject.eng.fl_str_mv |
Biowaste Co-composting Star Grass Support material Composting |
description |
La predominancia orgánica de los Biorresiduos (BOM) presentes en los Residuos Sólidos Municipales, favorece su aprovechamiento mediante estrategias como el compostaje; sin embargo, presentan deficiencias que pueden ser mitigadas con la incorporación de materiales acondicionadores. En este estudio se evaluó el efecto de la incorporación de Pasto Estrella (PE) como material de soporte, sobre el compostaje de BOM (proporciones BOM:PE A1 90:10, A2 80:20 y A3 70:30), evidenciándose efectos favorables. A2 mantuvo las mayores temperaturas; A2 y A3 registraron la mayor reducción de sólidos volátiles (SV) y concentración final de nitrógeno total (NT). Los productos finales de A2 y A3 también presentaron mejor calidad en términos de capacidad de intercambio catiónico, contenido de nutrientes (fósforo, potasio y nitrógeno totales), densidad aparente, capacidad de retención de humedad y contenido de materia orgánica, siendo el producto de A2 el de mayor valor agronómico, de acuerdo con la Norma Técnica Colombiana 5167. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-02-03 00:00:00 2022-06-17T20:20:35Z |
dc.date.available.none.fl_str_mv |
2020-02-03 00:00:00 2022-06-17T20:20:35Z |
dc.date.issued.none.fl_str_mv |
2020-02-03 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.eng.fl_str_mv |
Journal article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_6501 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ARTREF |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
1794-1237 |
dc.identifier.uri.none.fl_str_mv |
https://repository.eia.edu.co/handle/11190/5098 |
dc.identifier.doi.none.fl_str_mv |
10.24050/reia.v17i33.1352 |
dc.identifier.eissn.none.fl_str_mv |
2463-0950 |
dc.identifier.url.none.fl_str_mv |
https://doi.org/10.24050/reia.v17i33.1352 |
identifier_str_mv |
1794-1237 10.24050/reia.v17i33.1352 2463-0950 |
url |
https://repository.eia.edu.co/handle/11190/5098 https://doi.org/10.24050/reia.v17i33.1352 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Acosta-Durán, C. M.; Solís-Pérez, O.;Villegas-Torres, O. G.; Cardoso-Vigueros, L. (2013). Precomposteo de residuos orgánicos y su efecto En la dinámica poblacional de einsenia foetida. Agronomía Costarricense, 37 (1), pp. 127-139. Ali, U.; Khalid, A.; Mahmood, T; Aziz, I. (2013). Accelerated Biodegradation of Solid Organic Waste through Biostimulation. Proceedings of the Pakistan Academy of Sciences, 50 (1), pp. 37-46. Barrena, R.; Vázquez, F.; Sánchez, A. (2006). The use of respiration indices in the composting process: a review. Waste Management & Research, 24 (1), pp. 24-37. https://doi.org/10.1177 / 0734242X06062385 Bernal, M. P.; Alburquerque; J. A.; Moral, R. (2009). Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresource technology, 100 (22), pp. 5444-5453. https://doi.org/10.1016/j.biortech.2008.11.027 Bohórquez, A.; Puentes, Y.; Menjivar, J. C. (2014). Evaluación de la calidad del compost producido a partir de subproductos agroindustriales de caña de azúcar. Corpoica Ciencia y Tecnología Agropecuaria, 15 (1), pp 73-81 Cáceres, R., Malińska, K. y Marfà, O. (2018). Nitrification within composting: A review. Waste Management, 72, pp. 119-137. https://doi.org/10.1016/j.wasman.2017.10.049 Chanpla, M.; Kullavanijaya, P.; Janejadkarn, A.; Chavalparit, O. (2017) Effect of harvesting age and performance evaluation on biogasification from Napier grass in separated stages process. KSCE Journal of Civil Engineering, pp. 1–6. https://doi.org/10.1007/s12205-017-1164-y Campuzano, R.; González-Martínez, S. (2016). Characteristics of the organic fraction of municipal solid waste and methane production: A review. Waste Management, pp. 54: 3-12. https://doi.org/10.1016/j.wasman.2016.05.016 Cesaro, A.; Belgiorno, V.; Guida, M. (2015). Compost from organic solid waste: Quality assessment and European regulations for its sustainable use. Resources, Conservation and Recycling ,94(0), pp. 72-79. https://doi.org/10.1016/j.resconrec.2014.11.003 De Guardia, A.; Mallard, P.; Teglia, C.; Marin, A.; Le Pape, C.; Launay, M.; Benoist, J. C.; Petiot, C. (2010). Comparison of five organic wastes regarding their behaviour during composting: Part 1, biodegradability, stabilization kinetics and temperature rise. Waste Management, 30(3), pp. 402-414. https://doi.org/10.1016/j.wasman.2009.10.019 Faverial, J.; Boval, M.; Sierra, J.; Sauvant, D. (2016). End-product quality of composts produced under tropical and temperate climates using different raw materials: A meta-analysis. Journal of Environmental Management, 183, pp. 909-916. https://doi.org/10.1016 / j.jenvman.2016.09.057 Götze, R.; Boldrin, A.; Scheutz, C.; Astrup, T. F. (2016). Physico-chemical characterisation of material fractions in household waste: Overview of data in literature. Waste Management, 49, pp. 3-14. https://doi.org/10.1016 / j.wasman.2016.01.008 Haynes, R.J.; Belyaeva, O. N.; Zhou, Y. F. (2015). Particle size fractionation as a method for characterizing the nutrient content of municipal green waste used for composting. Waste Management, 35, pp. 48-54. https://doi.org/10.1016/j.wasman.2014.10.002 Hemidat, S.; Jaar, M.; Nassour, A.; Nelles, M. (2018). Monitoring of Composting Process Parameters: A Case Study in Jordan. Waste and Biomass Valorization, 9(12), pp. 2257-2274. https://doi.org/10.1007 / s12649-018-0197-x ICONTEC (2011). Norma Técnica Colombiana 5167. Productos para la Industria Agrícola, Productos Orgánicos Usados como Abonos o Fertilizantes y Enmiendas de Suelo. Jiang T., Schuchardt F., Li G., Guo R. y Zhao Y. (2011). Effect of C/N ratio, aeration rate and moisture content on ammonia and greenhouse gas emission during the composting. Journal of Environmental Sciences, 23 (10), 1754-1760. https://doi.org/10.1016/S1001-0742(10)60591-8 J Jiang-Ming, Z. (2017). Effect of turning frequency on co-composting pig manure and fungus residue. Journal of the Air & Waste Management Association, 67 (3), 313-321. https://doi.org/10.1080 / 10962247.2016.1232666 Kalemelawa, F., Nishihara, E., Endo, T., Ahmad, Z., Yeasmin, R., Tenywa, M. M. y Yamamoto, S. (2012). An evaluation of aerobic and anaerobic composting of banana peels treated with different inoculums for soil nutrient replenishment. Bioresource Technology, 126, 375-382. https://doi.org/10.1016/j.biortech.2012.04.030 Kumar, M., Ou, Y. y Lin, J. (2010). Co-composting of green and food waste at low C/N ratio. Waste Management, 30(4), 602-609. https://doi.org/10.1016/j.wasman.2009.11.023 Lasaridi, K., Protopapa, I., Kotsou, M., Pilidis, G., Manios, T. y Kyriacou, A. (2006). Quality assessment of composts in the Greek market: The need for standards and quality assurance. Journal of Environmental Management, 80 (1), 58-65. https://doi.org/10.1016 / j.jenvman.2005.08.011 Li, Z.; Lu, H.; Ren, L.; He, L. (2013). Experimental and modeling approaches for food waste composting: A review. Chemosphere, 93(7), pp. 1247-1257. https://doi.org/10.1016/j.chemosphere.2013.06.064 Martínez-Salgado, M.M.; Ortega-Blu, R.; Janssens, M.; Fincheira, P. (2019). Grape pomace compost as a source of organic matter: Evolution of quality parameters to evaluate maturity and stability. Journal of Cleaner Production, 216, pp. 56-63. https://doi.org/10.1016/j.jclepro.2019.01.156 Navia-Cuetia, C. A.; Zemanate-Cordoba, Y.; Morales-Velasco, S.; Alonso Prado, F.; Albán López, N. (2013). Evaluation of different formulations From waste composting crop tomato (solanum lycopersicum). Biotecnología en el Sector Agropecuario y Agroindustrial, 2, pp. 165 - 173. NCh -Norma chilena de compost 2880- 2004. (2015). Compost - Clasificación y requisitos, 23. Santiago de Chile, 27. Nigussie, A., Bruun, S., Kuyper, T. W. y De Neergaard, A. (2017). Delayed addition of nitrogen-rich substrates during composting of municipal waste: Effects on nitrogen loss, greenhouse gas emissions and compost stability. Chemosphere, 166, 352-362. https://doi.org/10.1016/j.chemosphere.2016.09.123 Onwosi, C. O., Igbokwe, V. C., Odimba, J. N., Eke, I. E., Nwankwoala, M. O., Iroh, I. N. y Ezeogu, L. I. (2017). Composting technology in waste stabilization: On the methods, challenges and future prospects. Journal of Environmental Management, 190, 140-157. https://doi.org/10.1016/j.jenvman.2016.12.051 Oudart, D., Robin, P., Paillat, J.-M. y Paul, E. J. W. M. 2015. Modelling nitrogen and carbon interactions in composting of animal manure in naturally aerated piles. 46, 588-598. https://doi.org/10.1016/j.wasman.2015.07.044 Oviedo, R.; Marmolejo, L.; Torres, P. (2017). Advances in research on biowaste composting in small municipalities of developing countries. Lessons from Colombia. Revista Ingenieria Investigacion y Tecnologia, 18(01), pp. 31-42. Parkinson, R., Gibbs, P., Burchett, S. y Misselbrook, T. (2004). Effect of turning regime and seasonal weather conditions on nitrogen and phosphorus losses during aerobic composting of cattle manure. Bioresource Technology, 91 (2), 171-178. https://doi.org/10.1016/S0960-8524(03)00174-3 Ponsá, S., Gea, T. y Sánchez, A. (2010). Different Indices to Express Biodegradability in Organic Solid Wastes. Waste Managament, 39 (2), 706-712. https://doi.org/10.2134 / jeq2009.0294 Reyes-Torres, M., Oviedo-Ocaña, E. R., Dominguez, I., Komilis, D. y Sánchez, A. (2018). A systematic review on the composting of green waste: Feedstock quality and optimization strategies. Waste Management, 77, 486-499. https://doi.org/10.1016/j.wasman.2018.04.037 Richardson, A. E. y Simpson, R. J. (2011). Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol, 156 (3), 989-996. https://doi.org/10.1104 / pp.111.175448 Soobhany, N. (2018). Assessing the physicochemical properties and quality parameters during composting of different organic constituents of Municipal Solid Waste. Journal of Environmental Chemical Engineering, 6 (2), 1979-1988. https://doi.org/10.1016/j.jece.2018.02.049 Soto-Paz, J., Oviedo-Ocaña, R., Marmolejo-Rebellón, L. F. y Manyoma-Velásquez, P. C. (2017). Compostaje de biorresiduos: Tendencias de investigación y pertinencia en países en desarrollo. DYNA, 84(203), pp. 334-342. https://doi.org/10.15446/dyna.v84n203.61549 Sundberg, C., Yu, D., Franke-Whittle, I., Kauppi, S., Smårs, S., Insam, H., Romantschuk, M. y Jönsson, H. (2013). Effects of pH and microbial composition on odour in food waste composting. Waste Management, 33 (1), 204-211. https://doi.org/10.1016/j.wasman.2012.09.017 Thi, N., Kumar, G. y Lin, C.Y. (2015). An overview of food waste management in developing countries: Current status and future perspective. Journal of Environmental Management, 157, 220-229. https://doi.org/10.1016/j.jenvman.2015.04.022 Torres, P.; Imery, R.; Perez, A.; Uribe, I. E.; Escobar Rivera, J. C. (2007). Compostaje de biosólidos de Plantas de Tratamiento de Aguas Residuales. Engenharia Agricola, 27 (1), pp.267 - 275. https://doi.org/10.1590 / S0100-69162007000100021 Vandecasteele, B., Boogaerts, C. y Vandaele, E. (2016). Combining woody biomass for combustion with green waste composting: Effect of removal of woody biomass on compost quality. Waste Management, 58, 169-180. https://doi.org/10.1016/j.wasman.2016.09.012 Van Soest, PJ.; Wine, R.; (1967). Uso de detergentes en el análisis de alimentos fibrosos. IV. Determinación de permanganato. Assoc. Oficial Anal. Chem 50(1): 6. Waqas, M., Nizami, A. S., Aburiazaiza, A. S., Barakat, M. A., Rashid, M. I. y Ismail, I. M. I. (2018). Optimizing the process of food waste compost and valorizing its applications: A case study of Saudi Arabia. Journal of Cleaner Production, 176, 426-438. https://doi.org/10.1016/j.jclepro.2017.12.165 Zhang, L. y Sun, X. (2016). Influence of bulking agents on physical, chemical, and microbiological properties during the two-stage composting of green waste. Waste Management, 48, 115-126. https://doi.org/10.1016/j.wasman.2015.11.032 Zhou, H., Zhao, Y., Yang, H., Zhu, L., Cai, B., Luo, S., Cao, J. y Wei, Z. (2018). Transformation of organic nitrogen fractions with different molecular weights during different organic wastes composting. Bioresource Technology, 262, 221-228. https://doi.org/10.1016 / j.biortech.2018.04.088. |
dc.relation.bitstream.none.fl_str_mv |
https://revistas.eia.edu.co/index.php/reveia/article/download/1352/1284 |
dc.relation.citationedition.spa.fl_str_mv |
Núm. 33 , Año 2020 |
dc.relation.citationendpage.none.fl_str_mv |
11 |
dc.relation.citationissue.spa.fl_str_mv |
33 |
dc.relation.citationstartpage.none.fl_str_mv |
33011 pp. 1 |
dc.relation.citationvolume.spa.fl_str_mv |
17 |
dc.relation.ispartofjournal.spa.fl_str_mv |
Revista EIA |
dc.rights.spa.fl_str_mv |
Revista EIA - 2020 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0 |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Revista EIA - 2020 https://creativecommons.org/licenses/by-nc-nd/4.0 http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Fondo Editorial EIA - Universidad EIA |
dc.source.spa.fl_str_mv |
https://revistas.eia.edu.co/index.php/reveia/article/view/1352 |
institution |
Universidad EIA . |
bitstream.url.fl_str_mv |
https://repository.eia.edu.co/bitstreams/2c6f630c-241c-44e1-ae04-0bc8ac3a8532/download |
bitstream.checksum.fl_str_mv |
1616c42860dbe44ce8d7db63f44a676b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EIA |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814100926600839168 |
spelling |
Torres Lozada, Patricia52afe3b33b47c70f1c1ec81942dd157e500Marmolejo Rebellón, Luis Fernandofc97c3513683e7fa4ced7f6bd71008e2300Arias Giraldo, Cielo99f16e62653c1eb8c7dd814ec9a8b11e300Foronda Zapata, Kevin924836959994c7c92d48f14da5ea0418300Soto Paz, Jonathan9e553b1a050823d6c95ca2e98d4cfd3d3002020-02-03 00:00:002022-06-17T20:20:35Z2020-02-03 00:00:002022-06-17T20:20:35Z2020-02-031794-1237https://repository.eia.edu.co/handle/11190/509810.24050/reia.v17i33.13522463-0950https://doi.org/10.24050/reia.v17i33.1352La predominancia orgánica de los Biorresiduos (BOM) presentes en los Residuos Sólidos Municipales, favorece su aprovechamiento mediante estrategias como el compostaje; sin embargo, presentan deficiencias que pueden ser mitigadas con la incorporación de materiales acondicionadores. En este estudio se evaluó el efecto de la incorporación de Pasto Estrella (PE) como material de soporte, sobre el compostaje de BOM (proporciones BOM:PE A1 90:10, A2 80:20 y A3 70:30), evidenciándose efectos favorables. A2 mantuvo las mayores temperaturas; A2 y A3 registraron la mayor reducción de sólidos volátiles (SV) y concentración final de nitrógeno total (NT). Los productos finales de A2 y A3 también presentaron mejor calidad en términos de capacidad de intercambio catiónico, contenido de nutrientes (fósforo, potasio y nitrógeno totales), densidad aparente, capacidad de retención de humedad y contenido de materia orgánica, siendo el producto de A2 el de mayor valor agronómico, de acuerdo con la Norma Técnica Colombiana 5167.The predominantly organic composition of biowaste (BW) present in municipal solid wastes, enhances its use through composting; however, these present physicochemical deficiencies that can be mitigated with the incorporation of conditioning materials as the support materials (SM). On this study, it was evaluated the effect of the incorporation of star grass (SG) on BW composting in four BW:SG ratios (A0-100: 00, A1-90: 10, A2-80: 20, A3-70: 30), showing favorable effects with respect to A0 (100% BOM). A2 maintained the highest temperatures; A2 and A3 recorded the greatest reduction of volatile solids (VS) and final concentration of total nitrogen (TN). The final products of A2 and A3 also presented better quality in terms of cation exchange capacity, nutrient content (total phosphorus, potassium and nitrogen), bulk density, moisture retention capacity and organic matter content; being A2 product, the material with highest agronomic value, in accordance with Colombian Technical Standard. Proportions less or equal to the one evaluated in A1, do not have a significant effect on the process and quality of the final product and, proportions greater than A3 could favor the loss of nitrogen due to the increase in porosity, thus decreasing the agricultural value of the product.application/pdfspaFondo Editorial EIA - Universidad EIARevista EIA - 2020https://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.http://purl.org/coar/access_right/c_abf2https://revistas.eia.edu.co/index.php/reveia/article/view/1352Biorresiduos - BOMCompostajeCo-compostajeMaterial de soportePasto EstrellaBiowasteCo-compostingStar GrassSupport materialCompostingEfecto de la incorporación de pasto estrella sobre el mejoramiento del proceso y la calidad del producto del compostaje de biorresiduosEffect of grass star incorporation on the composting biowaste process and on the quality of the productArtículo de revistaJournal articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionTexthttp://purl.org/redcol/resource_type/ARTREFhttp://purl.org/coar/version/c_970fb48d4fbd8a85Acosta-Durán, C. M.; Solís-Pérez, O.;Villegas-Torres, O. G.; Cardoso-Vigueros, L. (2013). Precomposteo de residuos orgánicos y su efecto En la dinámica poblacional de einsenia foetida. Agronomía Costarricense, 37 (1), pp. 127-139.Ali, U.; Khalid, A.; Mahmood, T; Aziz, I. (2013). Accelerated Biodegradation of Solid Organic Waste through Biostimulation. Proceedings of the Pakistan Academy of Sciences, 50 (1), pp. 37-46.Barrena, R.; Vázquez, F.; Sánchez, A. (2006). The use of respiration indices in the composting process: a review. Waste Management & Research, 24 (1), pp. 24-37. https://doi.org/10.1177 / 0734242X06062385Bernal, M. P.; Alburquerque; J. A.; Moral, R. (2009). Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresource technology, 100 (22), pp. 5444-5453. https://doi.org/10.1016/j.biortech.2008.11.027Bohórquez, A.; Puentes, Y.; Menjivar, J. C. (2014). Evaluación de la calidad del compost producido a partir de subproductos agroindustriales de caña de azúcar. Corpoica Ciencia y Tecnología Agropecuaria, 15 (1), pp 73-81Cáceres, R., Malińska, K. y Marfà, O. (2018). Nitrification within composting: A review. Waste Management, 72, pp. 119-137. https://doi.org/10.1016/j.wasman.2017.10.049Chanpla, M.; Kullavanijaya, P.; Janejadkarn, A.; Chavalparit, O. (2017) Effect of harvesting age and performance evaluation on biogasification from Napier grass in separated stages process. KSCE Journal of Civil Engineering, pp. 1–6. https://doi.org/10.1007/s12205-017-1164-yCampuzano, R.; González-Martínez, S. (2016). Characteristics of the organic fraction of municipal solid waste and methane production: A review. Waste Management, pp. 54: 3-12. https://doi.org/10.1016/j.wasman.2016.05.016Cesaro, A.; Belgiorno, V.; Guida, M. (2015). Compost from organic solid waste: Quality assessment and European regulations for its sustainable use. Resources, Conservation and Recycling ,94(0), pp. 72-79. https://doi.org/10.1016/j.resconrec.2014.11.003De Guardia, A.; Mallard, P.; Teglia, C.; Marin, A.; Le Pape, C.; Launay, M.; Benoist, J. C.; Petiot, C. (2010). Comparison of five organic wastes regarding their behaviour during composting: Part 1, biodegradability, stabilization kinetics and temperature rise. Waste Management, 30(3), pp. 402-414. https://doi.org/10.1016/j.wasman.2009.10.019Faverial, J.; Boval, M.; Sierra, J.; Sauvant, D. (2016). End-product quality of composts produced under tropical and temperate climates using different raw materials: A meta-analysis. Journal of Environmental Management, 183, pp. 909-916. https://doi.org/10.1016 / j.jenvman.2016.09.057Götze, R.; Boldrin, A.; Scheutz, C.; Astrup, T. F. (2016). Physico-chemical characterisation of material fractions in household waste: Overview of data in literature. Waste Management, 49, pp. 3-14. https://doi.org/10.1016 / j.wasman.2016.01.008Haynes, R.J.; Belyaeva, O. N.; Zhou, Y. F. (2015). Particle size fractionation as a method for characterizing the nutrient content of municipal green waste used for composting. Waste Management, 35, pp. 48-54. https://doi.org/10.1016/j.wasman.2014.10.002Hemidat, S.; Jaar, M.; Nassour, A.; Nelles, M. (2018). Monitoring of Composting Process Parameters: A Case Study in Jordan. Waste and Biomass Valorization, 9(12), pp. 2257-2274. https://doi.org/10.1007 / s12649-018-0197-xICONTEC (2011). Norma Técnica Colombiana 5167. Productos para la Industria Agrícola, Productos Orgánicos Usados como Abonos o Fertilizantes y Enmiendas de Suelo.Jiang T., Schuchardt F., Li G., Guo R. y Zhao Y. (2011). Effect of C/N ratio, aeration rate and moisture content on ammonia and greenhouse gas emission during the composting. Journal of Environmental Sciences, 23 (10), 1754-1760. https://doi.org/10.1016/S1001-0742(10)60591-8J Jiang-Ming, Z. (2017). Effect of turning frequency on co-composting pig manure and fungus residue. Journal of the Air & Waste Management Association, 67 (3), 313-321. https://doi.org/10.1080 / 10962247.2016.1232666Kalemelawa, F., Nishihara, E., Endo, T., Ahmad, Z., Yeasmin, R., Tenywa, M. M. y Yamamoto, S. (2012). An evaluation of aerobic and anaerobic composting of banana peels treated with different inoculums for soil nutrient replenishment. Bioresource Technology, 126, 375-382. https://doi.org/10.1016/j.biortech.2012.04.030Kumar, M., Ou, Y. y Lin, J. (2010). Co-composting of green and food waste at low C/N ratio. Waste Management, 30(4), 602-609. https://doi.org/10.1016/j.wasman.2009.11.023Lasaridi, K., Protopapa, I., Kotsou, M., Pilidis, G., Manios, T. y Kyriacou, A. (2006). Quality assessment of composts in the Greek market: The need for standards and quality assurance. Journal of Environmental Management, 80 (1), 58-65. https://doi.org/10.1016 / j.jenvman.2005.08.011Li, Z.; Lu, H.; Ren, L.; He, L. (2013). Experimental and modeling approaches for food waste composting: A review. Chemosphere, 93(7), pp. 1247-1257. https://doi.org/10.1016/j.chemosphere.2013.06.064Martínez-Salgado, M.M.; Ortega-Blu, R.; Janssens, M.; Fincheira, P. (2019). Grape pomace compost as a source of organic matter: Evolution of quality parameters to evaluate maturity and stability. Journal of Cleaner Production, 216, pp. 56-63. https://doi.org/10.1016/j.jclepro.2019.01.156Navia-Cuetia, C. A.; Zemanate-Cordoba, Y.; Morales-Velasco, S.; Alonso Prado, F.; Albán López, N. (2013). Evaluation of different formulations From waste composting crop tomato (solanum lycopersicum). Biotecnología en el Sector Agropecuario y Agroindustrial, 2, pp. 165 - 173.NCh -Norma chilena de compost 2880- 2004. (2015). Compost - Clasificación y requisitos, 23. Santiago de Chile, 27.Nigussie, A., Bruun, S., Kuyper, T. W. y De Neergaard, A. (2017). Delayed addition of nitrogen-rich substrates during composting of municipal waste: Effects on nitrogen loss, greenhouse gas emissions and compost stability. Chemosphere, 166, 352-362. https://doi.org/10.1016/j.chemosphere.2016.09.123Onwosi, C. O., Igbokwe, V. C., Odimba, J. N., Eke, I. E., Nwankwoala, M. O., Iroh, I. N. y Ezeogu, L. I. (2017). Composting technology in waste stabilization: On the methods, challenges and future prospects. Journal of Environmental Management, 190, 140-157. https://doi.org/10.1016/j.jenvman.2016.12.051Oudart, D., Robin, P., Paillat, J.-M. y Paul, E. J. W. M. 2015. Modelling nitrogen and carbon interactions in composting of animal manure in naturally aerated piles. 46, 588-598. https://doi.org/10.1016/j.wasman.2015.07.044Oviedo, R.; Marmolejo, L.; Torres, P. (2017). Advances in research on biowaste composting in small municipalities of developing countries. Lessons from Colombia. Revista Ingenieria Investigacion y Tecnologia, 18(01), pp. 31-42.Parkinson, R., Gibbs, P., Burchett, S. y Misselbrook, T. (2004). Effect of turning regime and seasonal weather conditions on nitrogen and phosphorus losses during aerobic composting of cattle manure. Bioresource Technology, 91 (2), 171-178. https://doi.org/10.1016/S0960-8524(03)00174-3Ponsá, S., Gea, T. y Sánchez, A. (2010). Different Indices to Express Biodegradability in Organic Solid Wastes. Waste Managament, 39 (2), 706-712. https://doi.org/10.2134 / jeq2009.0294Reyes-Torres, M., Oviedo-Ocaña, E. R., Dominguez, I., Komilis, D. y Sánchez, A. (2018). A systematic review on the composting of green waste: Feedstock quality and optimization strategies. Waste Management, 77, 486-499. https://doi.org/10.1016/j.wasman.2018.04.037Richardson, A. E. y Simpson, R. J. (2011). Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol, 156 (3), 989-996. https://doi.org/10.1104 / pp.111.175448Soobhany, N. (2018). Assessing the physicochemical properties and quality parameters during composting of different organic constituents of Municipal Solid Waste. Journal of Environmental Chemical Engineering, 6 (2), 1979-1988. https://doi.org/10.1016/j.jece.2018.02.049Soto-Paz, J., Oviedo-Ocaña, R., Marmolejo-Rebellón, L. F. y Manyoma-Velásquez, P. C. (2017). Compostaje de biorresiduos: Tendencias de investigación y pertinencia en países en desarrollo. DYNA, 84(203), pp. 334-342. https://doi.org/10.15446/dyna.v84n203.61549Sundberg, C., Yu, D., Franke-Whittle, I., Kauppi, S., Smårs, S., Insam, H., Romantschuk, M. y Jönsson, H. (2013). Effects of pH and microbial composition on odour in food waste composting. Waste Management, 33 (1), 204-211. https://doi.org/10.1016/j.wasman.2012.09.017Thi, N., Kumar, G. y Lin, C.Y. (2015). An overview of food waste management in developing countries: Current status and future perspective. Journal of Environmental Management, 157, 220-229. https://doi.org/10.1016/j.jenvman.2015.04.022Torres, P.; Imery, R.; Perez, A.; Uribe, I. E.; Escobar Rivera, J. C. (2007). Compostaje de biosólidos de Plantas de Tratamiento de Aguas Residuales. Engenharia Agricola, 27 (1), pp.267 - 275. https://doi.org/10.1590 / S0100-69162007000100021Vandecasteele, B., Boogaerts, C. y Vandaele, E. (2016). Combining woody biomass for combustion with green waste composting: Effect of removal of woody biomass on compost quality. Waste Management, 58, 169-180. https://doi.org/10.1016/j.wasman.2016.09.012Van Soest, PJ.; Wine, R.; (1967). Uso de detergentes en el análisis de alimentos fibrosos. IV. Determinación de permanganato. Assoc. Oficial Anal. Chem 50(1): 6. Waqas, M., Nizami, A. S., Aburiazaiza, A. S., Barakat, M. A., Rashid, M. I. y Ismail, I. M. I. (2018). Optimizing the process of food waste compost and valorizing its applications: A case study of Saudi Arabia. Journal of Cleaner Production, 176, 426-438. https://doi.org/10.1016/j.jclepro.2017.12.165Zhang, L. y Sun, X. (2016). Influence of bulking agents on physical, chemical, and microbiological properties during the two-stage composting of green waste. Waste Management, 48, 115-126. https://doi.org/10.1016/j.wasman.2015.11.032Zhou, H., Zhao, Y., Yang, H., Zhu, L., Cai, B., Luo, S., Cao, J. y Wei, Z. (2018). Transformation of organic nitrogen fractions with different molecular weights during different organic wastes composting. Bioresource Technology, 262, 221-228. https://doi.org/10.1016 / j.biortech.2018.04.088.https://revistas.eia.edu.co/index.php/reveia/article/download/1352/1284Núm. 33 , Año 2020113333011 pp. 117Revista EIAPublicationOREORE.xmltext/xml2854https://repository.eia.edu.co/bitstreams/2c6f630c-241c-44e1-ae04-0bc8ac3a8532/download1616c42860dbe44ce8d7db63f44a676bMD5111190/5098oai:repository.eia.edu.co:11190/50982023-07-25 17:25:48.498https://creativecommons.org/licenses/by-nc-nd/4.0Revista EIA - 2020metadata.onlyhttps://repository.eia.edu.coRepositorio Institucional Universidad EIAbdigital@metabiblioteca.com |