An Environmental Evaluation of the Cut-Flower Supply Chain (Dendranthema grandiflora) Through a Life Cycle Assessment

Colombia is a major flower exporter of a wide variety of species, among which the chrysanthemum plays a major role due to its exporting volume and profitability on the international market. This study examines the major environmental impacts of the chrysanthemum supply chain through a life cycle ass...

Full description

Autores:
Moreno, Carmen Alicia Parrado
Hernández, Ricardo Esteba Ricardo
Arredondo, Héctor Iván Velásquez
Castro, Sergio Hernando Lopera
--, Christian Hasenstab
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Universidad EIA .
Repositorio:
Repositorio EIA .
Idioma:
spa
OAI Identifier:
oai:repository.eia.edu.co:11190/4943
Acceso en línea:
https://repository.eia.edu.co/handle/11190/4943
https://doi.org/10.24050/reia.v16i31.747
Palabra clave:
Environmental analysis
floriculture
chrysanthemum
energy
certification systems
agroecosystem
Environmental analysis
energy use
Environmental analysis
floriculture
chrysanthemum
energy
certification systems
agroecosystem
Environmental impact
energy flows
Rights
openAccess
License
Revista EIA - 2019
id REIA2_486884d1d1c5f857ae860c6817558f86
oai_identifier_str oai:repository.eia.edu.co:11190/4943
network_acronym_str REIA2
network_name_str Repositorio EIA .
repository_id_str
dc.title.spa.fl_str_mv An Environmental Evaluation of the Cut-Flower Supply Chain (Dendranthema grandiflora) Through a Life Cycle Assessment
dc.title.translated.eng.fl_str_mv An environmental evaluation of the cut-flower supply chain (Dendranthema grandiflora) through a life cycle assessment
title An Environmental Evaluation of the Cut-Flower Supply Chain (Dendranthema grandiflora) Through a Life Cycle Assessment
spellingShingle An Environmental Evaluation of the Cut-Flower Supply Chain (Dendranthema grandiflora) Through a Life Cycle Assessment
Environmental analysis
floriculture
chrysanthemum
energy
certification systems
agroecosystem
Environmental analysis
energy use
Environmental analysis
floriculture
chrysanthemum
energy
certification systems
agroecosystem
Environmental impact
energy flows
title_short An Environmental Evaluation of the Cut-Flower Supply Chain (Dendranthema grandiflora) Through a Life Cycle Assessment
title_full An Environmental Evaluation of the Cut-Flower Supply Chain (Dendranthema grandiflora) Through a Life Cycle Assessment
title_fullStr An Environmental Evaluation of the Cut-Flower Supply Chain (Dendranthema grandiflora) Through a Life Cycle Assessment
title_full_unstemmed An Environmental Evaluation of the Cut-Flower Supply Chain (Dendranthema grandiflora) Through a Life Cycle Assessment
title_sort An Environmental Evaluation of the Cut-Flower Supply Chain (Dendranthema grandiflora) Through a Life Cycle Assessment
dc.creator.fl_str_mv Moreno, Carmen Alicia Parrado
Hernández, Ricardo Esteba Ricardo
Arredondo, Héctor Iván Velásquez
Castro, Sergio Hernando Lopera
--, Christian Hasenstab
dc.contributor.author.spa.fl_str_mv Moreno, Carmen Alicia Parrado
Hernández, Ricardo Esteba Ricardo
Arredondo, Héctor Iván Velásquez
Castro, Sergio Hernando Lopera
--, Christian Hasenstab
dc.subject.eng.fl_str_mv Environmental analysis
floriculture
chrysanthemum
energy
certification systems
agroecosystem
Environmental analysis
energy use
topic Environmental analysis
floriculture
chrysanthemum
energy
certification systems
agroecosystem
Environmental analysis
energy use
Environmental analysis
floriculture
chrysanthemum
energy
certification systems
agroecosystem
Environmental impact
energy flows
dc.subject.spa.fl_str_mv Environmental analysis
floriculture
chrysanthemum
energy
certification systems
agroecosystem
Environmental impact
energy flows
description Colombia is a major flower exporter of a wide variety of species, among which the chrysanthemum plays a major role due to its exporting volume and profitability on the international market. This study examines the major environmental impacts of the chrysanthemum supply chain through a life cycle assessment (LCA). One kg of stems export quality was used as the functional unit (FU). The study examines cut-flowers systems from raw material extraction to final product commercialization for two markets (London and Miami) and analyzes two agroecosystems: one certified system and one uncertified system. The transport phase to London resulted in more significant environmental impacts than the transport phase to Miami, and climate change (GWP100) category was significant in both cities, generating values of 9.10E+00 and 2.51E+00 kg CO2-eq*FU for London and Miami, respectively. Furthermore, when exclusively considering pre-export phases, the uncertified system was found to have a greater impact than the certified system with respect to fertilizer use (certified 1,448E-02 kg*FU, uncertified 2.23E-01 kg*FU) and pesticide use (certified 1.24 E-04 kg*FU, uncertified 2.24E-03 kg*FU). With respect to the crop management, eutrophication (EP) and acidification (AP) processes imposed the greatest level of environmental impact. Strategies that would significantly reduce the environmental impact of this supply chain are considered, including the use of shipping and a 50% reduction in fertilizer use.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-01-20 00:00:00
2022-06-17T20:18:49Z
dc.date.available.none.fl_str_mv 2019-01-20 00:00:00
2022-06-17T20:18:49Z
dc.date.issued.none.fl_str_mv 2019-01-20
dc.type.spa.fl_str_mv Artículo de revista
dc.type.eng.fl_str_mv Journal article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_6501
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 1794-1237
dc.identifier.uri.none.fl_str_mv https://repository.eia.edu.co/handle/11190/4943
dc.identifier.doi.none.fl_str_mv 10.24050/reia.v16i31.747
dc.identifier.eissn.none.fl_str_mv 2463-0950
dc.identifier.url.none.fl_str_mv https://doi.org/10.24050/reia.v16i31.747
identifier_str_mv 1794-1237
10.24050/reia.v16i31.747
2463-0950
url https://repository.eia.edu.co/handle/11190/4943
https://doi.org/10.24050/reia.v16i31.747
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Audsley, E. 1997. Harmonisation of environmental life cycle assessment. European Commision DG VI Agriculture. Final report concerted action AIRCT94-2028.
Baranowska, I., Barchańska, H. and Pyrsz, A. 2005.Distribution of pesticides and heavy metals in trophic chain. Chemosphere 60 (11), 1590–1599. doi:10.1016/j.chemosphere.2005.02.053
Blengini, G.A. and Busto, M., 2009. The life cycle of rice: LCA of alternative agri-food chain management systems in Vercelli (Italy). Journal of Environmental Management 90 (3), 512-1522. doi:10.1016/j.jenvman.2008.10.006
Bojacá, C. and Schrevens, E. 2010. Parameter uncertainty in LCA: stochastic sampling under correlation. The International Journal of Life Cycle Assessment 15, 3, 238-246. doi:10.1007/s11367-010-0150-0
Bojacá, C.R., Wyckhuys, K.A.G. and Schrevens, E. 2014. Life cycle assessment of Colombian greenhouse tomato production based on farmer-level survey data. Journal of Cleaner Production 69, 26-33. doi: 10.1016/j.jclepro.2014.01.078
Brentrup F., Kusters, J., Lammel, J. and Kuchlmann, H. (2000). Methods to estimate On-field Nitrogen emissions from crop production as an input to LCA studies in the agricultural sector. The International Journal of Life Cycle Assessment 5 (6), 349-357. doi: 10.1007/BF02978670
Guinée, J.B., Gorree, M., Heijungs, R., Huppes, G., Kleijn, R., De Koning, A., Wegener Sleeswijk, A., Suh, S., Udo de Haes, H.A., De Bruijn, J.A., Van Duin, R. and Huijbregts, M.A.J. 2002. Handbook on Life Cycle Assessment. Operational Guide to the ISO Standards. Kluwer, The Netherlands. doi: 10.1007/BF02978784
Hauschild, M., 2000. Estimating pesticide emissions for LCA of agricultural products. In: Weidama, B., Meeusen, M.J.G. (Eds.), Agricultural Data for Life Cycle Assessments, 2. LEI, The Hague, pp. 64–79
Heathwaite, L. (2000). Flows of phosphourous in the environment: identifying pathways of loss from agricultural land. In M. M. J. G. (Ed.), Agricultural data for Life Cycle Assessment, Volume 2. (pp. 25-38). The Hague: Agricultural Economics Research Institute (LEI).
Hospido, A., Davis, J., Berlin, J. and Sonesson, U. 2010.A review of methodological issues affecting LCA of novel food products. The International Journal of Life cycle assessment 15, 44–52. doi: 10.1007/s11367-009-0130-4
ISO 14040, 2006. Environmental managementelife cycle assessment e principles and framework.
Iriarte, A., Rieradevall, J. and Gabarrell, X. 2010. Life cycle assessment of sunflower and rapeseed as energy crops Ander Chilean conditions. Journal of Cleaner Production 18, 336-345. doi: 10.1016/j.jclepro.2009.11.004
Landis, A., Miller, S. and Theis, T. 2007. Life cycle of the corn–soybean agroecosystem for biobased production. Environmental Science and Technology, 41 (4), 1457–1464. doi: 10.1021/es0606125
Medina, A. Cooman, A., Parrado, C.A. and Schrevens, E. 2006. Evaluation of energy use and some environmental impacts for greenhouse tomato production in the high altitude tropics. Acta Hort, 718, 415-422.
Mourad, A., Coltro, L., Oliveira, PAPLV, Kletecke, R.M, Baddini, J. 2007. A Simple Methodology for Elaborating the Life Cycle Inventory of Agricultural Products. The International Journal of Life Cycle Assessment 12, 6, 408-413. doi: 10.1065/lca2006.09.272.
Michael, D. 2011. Life Cycle Assessment of Waxflowers (Chamelaucium spp.). Australian Life Cycle Assessment Society (ALCAS) Conference. 9 p.
Murty, K.G. 2000. Greenhouse Gas Pollution in the Stratosphere Due to Increasing Airplane Traffic, Effects on Environment. Department of Industrial and Operations Engineering, University of Michigan, 5 p.
Ntiamoah, A. and Afrane, G.2008. Environmental impacts of cocoa production and processing in Ghana: life cycle assessment approach. Journal of Cleaner Production 16, 1735-1740. Doi: 10.1016/j.jclepro.2007.11.004.
Panichelli, L. 2006. Análisis de ciclo de Vida (ACV) de la producción de biodiesel (B100) en argentina. Universidad de Buenos Aires. Buenos Aires, 90 p.
Parrado, C.A and Leiva, F. 2011. Huella de Carbono (HC) en cadenas de suministro de flores de corte colombianas, rosas y claveles, para mercados internacionales. Revista Asocolflores 77, 26-33.
Parrado, C.A. and Bojacá C.R. 2009. Environmental impact of greenhouse tomato production strategies using life cycle assessment approach. Acta Hort. 821,125-132.
Pervanchon, F., Bockstallerb, C. and Girardin, P. 2002. Assessment of energy use in arable farming systems by means of an agro-ecological indicator: the energy indicator. Agricultural Systems 72, 149-172. doi:10.1016/S0308-521X(01)00073-7
Queiroz, A.G.,França, L. and Ponte, M.X. 2012.The life cycle assessment of biodiesel from palm oil “dendeˆ” in the Amazon. Biomass and Bioenergy 36, 50-59. doi:10.1016/j.biombioe.2011.10.007
Roy, P., Nei, D., Orikasa, T., Xu, Q. and Okadome, H. 2009. A review of life cycle assessment (LCA) on some food products. Journal of Food Engineering 90, 1-10. doi:10.1016/j.jfoodeng.2008.06.016.
Sahle, A. and Potting, J. 2013. Environmental life cycle assessment of Ethiopian rose cultivation. Science of The Total Environment 443,163-172. doi:10.1016/j.scitotenv.2012.10.048
Shau, E.M. and Fet, A.M. 2008. LCA studies of food products as background for environmental product declarations. The International Journal of Life Cycle Assessment 13, 255-264. doi: 10.1065/lca2007.12.372
Udo de Haes, H.A., Jolliet O., Finnveden G., Hauschild M., Krewitt W. and Müller-Wenk R. 1999. Best available practice regarding impact categories and category indicators in life cycle impact assessment, Background Document for the Second Working Group on Life Cycle Impact Assessment of SETACEurope (WIA-2). The International Journal of Life Cycle Assessment 4 (3), 167- 174. doi: 10.1007/BF02979453
Vringer, K. and Blok, K. 2000.The energy requirement of cut flowers and consumer options to reduce it. Resources, Conservation and Recycling 28, 3-28. doi:10.1016/S0921-3449(99)00024-5
Walter, C. and Hartmut, H. 2009. A new method for assessing the sustainability of land-use systems (I): Identifying the relevant issues. Ecological Economics 68, 1275-1287. doi:10.1016/j.ecolecon.2008.11.016
Weidema B. and Meeusen M. (Eds.). 2000. Agricultural data for life cycle assessment, vol. II. The Hague: Agricultural Economics Research Institute. 169 p.
Williams, A. 2007. Comparative Study of Cut Roses for the British Market Produced in Kenya and the Netherlands. Report for World Flowers, 7 p.
Yañez, E., Silva, E., Da Costa, R. and Andrade, E. 2007.The energy balance in the Palm Oil-Derived Methyl Ester (PME) life cycle for the cases in Brazil and Colombia. Renewable Energy 34, 2905-291. doi: doi:10.1016/j.renene.2009.05.007.
dc.relation.bitstream.none.fl_str_mv https://revistas.eia.edu.co/index.php/reveia/article/download/747/1217
dc.relation.citationedition.spa.fl_str_mv Núm. 31 , Año 2019
dc.relation.citationendpage.none.fl_str_mv 42
dc.relation.citationissue.spa.fl_str_mv 31
dc.relation.citationstartpage.none.fl_str_mv 27
dc.relation.citationvolume.spa.fl_str_mv 16
dc.relation.ispartofjournal.spa.fl_str_mv Revista EIA
dc.rights.spa.fl_str_mv Revista EIA - 2019
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Revista EIA - 2019
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Fondo Editorial EIA - Universidad EIA
dc.source.spa.fl_str_mv https://revistas.eia.edu.co/index.php/reveia/article/view/747
institution Universidad EIA .
bitstream.url.fl_str_mv https://repository.eia.edu.co/bitstreams/0c12cc19-ebb1-4da6-ac21-5b2d4dd2cb1c/download
bitstream.checksum.fl_str_mv 6ff55c8245af43cc8b3afa1bee357de5
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EIA
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814100904590180352
spelling Moreno, Carmen Alicia Parrado0806916ffb8b8b65023f31a757b3456b300Hernández, Ricardo Esteba Ricardo1ef6319a601835127419b264fd7891a8300Arredondo, Héctor Iván Velásquezc3cea9ccd4f3b620b0afb2eeb26ea198300Castro, Sergio Hernando Loperaca19afdcffd3ed8777be615665356c15300--, Christian Hasenstabe7cdaa2d3f1a10c567508c223b2069a13002019-01-20 00:00:002022-06-17T20:18:49Z2019-01-20 00:00:002022-06-17T20:18:49Z2019-01-201794-1237https://repository.eia.edu.co/handle/11190/494310.24050/reia.v16i31.7472463-0950https://doi.org/10.24050/reia.v16i31.747Colombia is a major flower exporter of a wide variety of species, among which the chrysanthemum plays a major role due to its exporting volume and profitability on the international market. This study examines the major environmental impacts of the chrysanthemum supply chain through a life cycle assessment (LCA). One kg of stems export quality was used as the functional unit (FU). The study examines cut-flowers systems from raw material extraction to final product commercialization for two markets (London and Miami) and analyzes two agroecosystems: one certified system and one uncertified system. The transport phase to London resulted in more significant environmental impacts than the transport phase to Miami, and climate change (GWP100) category was significant in both cities, generating values of 9.10E+00 and 2.51E+00 kg CO2-eq*FU for London and Miami, respectively. Furthermore, when exclusively considering pre-export phases, the uncertified system was found to have a greater impact than the certified system with respect to fertilizer use (certified 1,448E-02 kg*FU, uncertified 2.23E-01 kg*FU) and pesticide use (certified 1.24 E-04 kg*FU, uncertified 2.24E-03 kg*FU). With respect to the crop management, eutrophication (EP) and acidification (AP) processes imposed the greatest level of environmental impact. Strategies that would significantly reduce the environmental impact of this supply chain are considered, including the use of shipping and a 50% reduction in fertilizer use.Colombia is a major flower exporter of a wide variety of species, among which the chrysanthemum plays a major role due to its exporting volume and profitability on the international market. This study examines the major environmental impacts of the chrysanthemum supply chain through a life cycle assessment (LCA). One kg of stems export quality was used as the functional unit (FU). The study examines cut-flowers systems from raw material extraction to final product commercialization for two markets (London and Miami) and analyzes two agroecosystems: one certified system and one uncertified system. The transport phase to London resulted in more significant environmental impacts than the transport phase to Miami, and climate change (GWP100) category was significant in both cities, generating values of 9.10E+00 and 2.51E+00 kg CO2-eq*FU for London and Miami, respectively. Furthermore, when exclusively considering pre-export phases, the uncertified system was found to have a greater impact than the certified system with respect to fertilizer use (certified 1,448E-02 kg*FU, uncertified 2.23E-01 kg*FU) and pesticide use (certified 1.24 E-04 kg*FU, uncertified 2.24E-03 kg*FU). With respect to the crop management, eutrophication (EP) and acidification (AP) processes imposed the greatest level of environmental impact. Strategies that would significantly reduce the environmental impact of this supply chain are considered, including the use of shipping and a 50% reduction in fertilizer use.application/pdfspaFondo Editorial EIA - Universidad EIARevista EIA - 2019https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://revistas.eia.edu.co/index.php/reveia/article/view/747Environmental analysisfloriculturechrysanthemumenergycertification systemsagroecosystemEnvironmental analysisenergy useEnvironmental analysisfloriculturechrysanthemumenergycertification systemsagroecosystemEnvironmental impactenergy flowsAn Environmental Evaluation of the Cut-Flower Supply Chain (Dendranthema grandiflora) Through a Life Cycle AssessmentAn environmental evaluation of the cut-flower supply chain (Dendranthema grandiflora) through a life cycle assessmentArtículo de revistaJournal articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionTexthttp://purl.org/redcol/resource_type/ARTREFhttp://purl.org/coar/version/c_970fb48d4fbd8a85Audsley, E. 1997. Harmonisation of environmental life cycle assessment. European Commision DG VI Agriculture. Final report concerted action AIRCT94-2028.Baranowska, I., Barchańska, H. and Pyrsz, A. 2005.Distribution of pesticides and heavy metals in trophic chain. Chemosphere 60 (11), 1590–1599. doi:10.1016/j.chemosphere.2005.02.053Blengini, G.A. and Busto, M., 2009. The life cycle of rice: LCA of alternative agri-food chain management systems in Vercelli (Italy). Journal of Environmental Management 90 (3), 512-1522. doi:10.1016/j.jenvman.2008.10.006Bojacá, C. and Schrevens, E. 2010. Parameter uncertainty in LCA: stochastic sampling under correlation. The International Journal of Life Cycle Assessment 15, 3, 238-246. doi:10.1007/s11367-010-0150-0Bojacá, C.R., Wyckhuys, K.A.G. and Schrevens, E. 2014. Life cycle assessment of Colombian greenhouse tomato production based on farmer-level survey data. Journal of Cleaner Production 69, 26-33. doi: 10.1016/j.jclepro.2014.01.078Brentrup F., Kusters, J., Lammel, J. and Kuchlmann, H. (2000). Methods to estimate On-field Nitrogen emissions from crop production as an input to LCA studies in the agricultural sector. The International Journal of Life Cycle Assessment 5 (6), 349-357. doi: 10.1007/BF02978670Guinée, J.B., Gorree, M., Heijungs, R., Huppes, G., Kleijn, R., De Koning, A., Wegener Sleeswijk, A., Suh, S., Udo de Haes, H.A., De Bruijn, J.A., Van Duin, R. and Huijbregts, M.A.J. 2002. Handbook on Life Cycle Assessment. Operational Guide to the ISO Standards. Kluwer, The Netherlands. doi: 10.1007/BF02978784Hauschild, M., 2000. Estimating pesticide emissions for LCA of agricultural products. In: Weidama, B., Meeusen, M.J.G. (Eds.), Agricultural Data for Life Cycle Assessments, 2. LEI, The Hague, pp. 64–79Heathwaite, L. (2000). Flows of phosphourous in the environment: identifying pathways of loss from agricultural land. In M. M. J. G. (Ed.), Agricultural data for Life Cycle Assessment, Volume 2. (pp. 25-38). The Hague: Agricultural Economics Research Institute (LEI).Hospido, A., Davis, J., Berlin, J. and Sonesson, U. 2010.A review of methodological issues affecting LCA of novel food products. The International Journal of Life cycle assessment 15, 44–52. doi: 10.1007/s11367-009-0130-4ISO 14040, 2006. Environmental managementelife cycle assessment e principles and framework.Iriarte, A., Rieradevall, J. and Gabarrell, X. 2010. Life cycle assessment of sunflower and rapeseed as energy crops Ander Chilean conditions. Journal of Cleaner Production 18, 336-345. doi: 10.1016/j.jclepro.2009.11.004Landis, A., Miller, S. and Theis, T. 2007. Life cycle of the corn–soybean agroecosystem for biobased production. Environmental Science and Technology, 41 (4), 1457–1464. doi: 10.1021/es0606125Medina, A. Cooman, A., Parrado, C.A. and Schrevens, E. 2006. Evaluation of energy use and some environmental impacts for greenhouse tomato production in the high altitude tropics. Acta Hort, 718, 415-422.Mourad, A., Coltro, L., Oliveira, PAPLV, Kletecke, R.M, Baddini, J. 2007. A Simple Methodology for Elaborating the Life Cycle Inventory of Agricultural Products. The International Journal of Life Cycle Assessment 12, 6, 408-413. doi: 10.1065/lca2006.09.272.Michael, D. 2011. Life Cycle Assessment of Waxflowers (Chamelaucium spp.). Australian Life Cycle Assessment Society (ALCAS) Conference. 9 p.Murty, K.G. 2000. Greenhouse Gas Pollution in the Stratosphere Due to Increasing Airplane Traffic, Effects on Environment. Department of Industrial and Operations Engineering, University of Michigan, 5 p.Ntiamoah, A. and Afrane, G.2008. Environmental impacts of cocoa production and processing in Ghana: life cycle assessment approach. Journal of Cleaner Production 16, 1735-1740. Doi: 10.1016/j.jclepro.2007.11.004.Panichelli, L. 2006. Análisis de ciclo de Vida (ACV) de la producción de biodiesel (B100) en argentina. Universidad de Buenos Aires. Buenos Aires, 90 p.Parrado, C.A and Leiva, F. 2011. Huella de Carbono (HC) en cadenas de suministro de flores de corte colombianas, rosas y claveles, para mercados internacionales. Revista Asocolflores 77, 26-33.Parrado, C.A. and Bojacá C.R. 2009. Environmental impact of greenhouse tomato production strategies using life cycle assessment approach. Acta Hort. 821,125-132.Pervanchon, F., Bockstallerb, C. and Girardin, P. 2002. Assessment of energy use in arable farming systems by means of an agro-ecological indicator: the energy indicator. Agricultural Systems 72, 149-172. doi:10.1016/S0308-521X(01)00073-7Queiroz, A.G.,França, L. and Ponte, M.X. 2012.The life cycle assessment of biodiesel from palm oil “dendeˆ” in the Amazon. Biomass and Bioenergy 36, 50-59. doi:10.1016/j.biombioe.2011.10.007Roy, P., Nei, D., Orikasa, T., Xu, Q. and Okadome, H. 2009. A review of life cycle assessment (LCA) on some food products. Journal of Food Engineering 90, 1-10. doi:10.1016/j.jfoodeng.2008.06.016.Sahle, A. and Potting, J. 2013. Environmental life cycle assessment of Ethiopian rose cultivation. Science of The Total Environment 443,163-172. doi:10.1016/j.scitotenv.2012.10.048Shau, E.M. and Fet, A.M. 2008. LCA studies of food products as background for environmental product declarations. The International Journal of Life Cycle Assessment 13, 255-264. doi: 10.1065/lca2007.12.372Udo de Haes, H.A., Jolliet O., Finnveden G., Hauschild M., Krewitt W. and Müller-Wenk R. 1999. Best available practice regarding impact categories and category indicators in life cycle impact assessment, Background Document for the Second Working Group on Life Cycle Impact Assessment of SETACEurope (WIA-2). The International Journal of Life Cycle Assessment 4 (3), 167- 174. doi: 10.1007/BF02979453Vringer, K. and Blok, K. 2000.The energy requirement of cut flowers and consumer options to reduce it. Resources, Conservation and Recycling 28, 3-28. doi:10.1016/S0921-3449(99)00024-5Walter, C. and Hartmut, H. 2009. A new method for assessing the sustainability of land-use systems (I): Identifying the relevant issues. Ecological Economics 68, 1275-1287. doi:10.1016/j.ecolecon.2008.11.016Weidema B. and Meeusen M. (Eds.). 2000. Agricultural data for life cycle assessment, vol. II. The Hague: Agricultural Economics Research Institute. 169 p.Williams, A. 2007. Comparative Study of Cut Roses for the British Market Produced in Kenya and the Netherlands. Report for World Flowers, 7 p.Yañez, E., Silva, E., Da Costa, R. and Andrade, E. 2007.The energy balance in the Palm Oil-Derived Methyl Ester (PME) life cycle for the cases in Brazil and Colombia. Renewable Energy 34, 2905-291. doi: doi:10.1016/j.renene.2009.05.007.https://revistas.eia.edu.co/index.php/reveia/article/download/747/1217Núm. 31 , Año 201942312716Revista EIAPublicationOREORE.xmltext/xml2847https://repository.eia.edu.co/bitstreams/0c12cc19-ebb1-4da6-ac21-5b2d4dd2cb1c/download6ff55c8245af43cc8b3afa1bee357de5MD5111190/4943oai:repository.eia.edu.co:11190/49432023-07-25 17:11:04.46https://creativecommons.org/licenses/by-nc-sa/4.0/Revista EIA - 2019metadata.onlyhttps://repository.eia.edu.coRepositorio Institucional Universidad EIAbdigital@metabiblioteca.com