Modelos de series temporales para pronóstico de la demanda eléctrica del sector de explotación de minas y canteras en Colombia

Pronosticar la demanda eléctrica es de suma importancia para la planeación estratégica de una nación. La literatura ofrece múltiples acercamientos para el desarrollo de modelos de pronóstico enfocados principalmente en la demanda nacional agregada, dejando de lado los análisis sectoriales, en partic...

Full description

Autores:
Mariño, Maria D.
Arango, Adriana
Lotero, Laura
Jimenez, Maritza
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Universidad EIA .
Repositorio:
Repositorio EIA .
Idioma:
spa
OAI Identifier:
oai:repository.eia.edu.co:11190/5130
Acceso en línea:
https://repository.eia.edu.co/handle/11190/5130
https://doi.org/10.24050/reia.v18i35.1458
Palabra clave:
Time Series
Forecasting Models
Electricity Demand
Mining and Quarrying
Holt Winters
SARIMA
Additive Model
Colombia
Planning
Strategy
Series de Tiempo
Modelos de Pronóstico
Demanda Eléctrica
Minas y Canteras
Holt Winters
SARIMA
Modelo de Componentes
Colombia
Planeación
Estrategia
Rights
openAccess
License
Revista EIA - 2020
id REIA2_42f88b5570aecf9e0eddf38d7239263e
oai_identifier_str oai:repository.eia.edu.co:11190/5130
network_acronym_str REIA2
network_name_str Repositorio EIA .
repository_id_str
dc.title.spa.fl_str_mv Modelos de series temporales para pronóstico de la demanda eléctrica del sector de explotación de minas y canteras en Colombia
dc.title.translated.eng.fl_str_mv Time series forecasting for Colombian mining and quarrying electricity demand
title Modelos de series temporales para pronóstico de la demanda eléctrica del sector de explotación de minas y canteras en Colombia
spellingShingle Modelos de series temporales para pronóstico de la demanda eléctrica del sector de explotación de minas y canteras en Colombia
Time Series
Forecasting Models
Electricity Demand
Mining and Quarrying
Holt Winters
SARIMA
Additive Model
Colombia
Planning
Strategy
Series de Tiempo
Modelos de Pronóstico
Demanda Eléctrica
Minas y Canteras
Holt Winters
SARIMA
Modelo de Componentes
Colombia
Planeación
Estrategia
title_short Modelos de series temporales para pronóstico de la demanda eléctrica del sector de explotación de minas y canteras en Colombia
title_full Modelos de series temporales para pronóstico de la demanda eléctrica del sector de explotación de minas y canteras en Colombia
title_fullStr Modelos de series temporales para pronóstico de la demanda eléctrica del sector de explotación de minas y canteras en Colombia
title_full_unstemmed Modelos de series temporales para pronóstico de la demanda eléctrica del sector de explotación de minas y canteras en Colombia
title_sort Modelos de series temporales para pronóstico de la demanda eléctrica del sector de explotación de minas y canteras en Colombia
dc.creator.fl_str_mv Mariño, Maria D.
Arango, Adriana
Lotero, Laura
Jimenez, Maritza
dc.contributor.author.spa.fl_str_mv Mariño, Maria D.
Arango, Adriana
Lotero, Laura
Jimenez, Maritza
dc.subject.eng.fl_str_mv Time Series
Forecasting Models
Electricity Demand
Mining and Quarrying
Holt Winters
SARIMA
Additive Model
Colombia
Planning
Strategy
topic Time Series
Forecasting Models
Electricity Demand
Mining and Quarrying
Holt Winters
SARIMA
Additive Model
Colombia
Planning
Strategy
Series de Tiempo
Modelos de Pronóstico
Demanda Eléctrica
Minas y Canteras
Holt Winters
SARIMA
Modelo de Componentes
Colombia
Planeación
Estrategia
dc.subject.spa.fl_str_mv Series de Tiempo
Modelos de Pronóstico
Demanda Eléctrica
Minas y Canteras
Holt Winters
SARIMA
Modelo de Componentes
Colombia
Planeación
Estrategia
description Pronosticar la demanda eléctrica es de suma importancia para la planeación estratégica de una nación. La literatura ofrece múltiples acercamientos para el desarrollo de modelos de pronóstico enfocados principalmente en la demanda nacional agregada, dejando de lado los análisis sectoriales, en particular a los sectores no residenciales. En este artículo, utilizando la metodología de análisis de Series de Tiempo, se ajustan, validan y comparan tres diferentes modelos para pronosticar la demanda eléctrica del sector minas y canteras, uno de los más representativos en el consumo eléctrico colombiano. Los modelos ajustados incluyen un modelo de componentes aditivo, un SARIMA y un Holt Wiatednters. Los resultados indican que el modelo que presenta un menor error de pronóstico es el modelo Holt Winters.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-12-31 14:30:36
2022-06-17T20:20:59Z
dc.date.available.none.fl_str_mv 2020-12-31 14:30:36
2022-06-17T20:20:59Z
dc.date.issued.none.fl_str_mv 2020-12-31
dc.type.spa.fl_str_mv Artículo de revista
dc.type.eng.fl_str_mv Journal article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_6501
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 1794-1237
dc.identifier.uri.none.fl_str_mv https://repository.eia.edu.co/handle/11190/5130
dc.identifier.doi.none.fl_str_mv 10.24050/reia.v18i35.1458
dc.identifier.eissn.none.fl_str_mv 2463-0950
dc.identifier.url.none.fl_str_mv https://doi.org/10.24050/reia.v18i35.1458
identifier_str_mv 1794-1237
10.24050/reia.v18i35.1458
2463-0950
url https://repository.eia.edu.co/handle/11190/5130
https://doi.org/10.24050/reia.v18i35.1458
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Azadeh, A., Ghaderi, S. F. and Sohrabkhani, S. (2008) ‘A simulated-based neural network algorithm for forecasting electrical energy consumption in Iran’, Energy Policy, 36(7), pp. 2637–2644. https://doi.org/10.1016/j.enpol.2008.02.035.
Barreto, C. and Campo, J. (2012) ‘Relación a largo plazo entre consumo de energía y PIB en América Latina : Una evaluación empírica con datos panel using panel data’, Ecos de Economia, (35), pp. 73–89.
Box, G. E. P. and Jenkins, G. M. (1976) Time series analysis: forecasting and control. Revised Ed. San Francisco : Holden-Day.
Deb, C. et al. (2017) ‘A review on time series forecasting techniques for building energy consumption’, Renewable and Sustainable Energy Reviews. Elsevier Ltd, 74(February), pp. 902–924. https://doi.org/10.1016/j.rser.2017.02.085.
EEA (2017) Final energy consumption of electricity by sector, Final energy consumption by sector and fuel. Available at: https://www.eea.europa.eu/data-and-maps/indicators/final-energy-consumption-by-sector-9/assessment-1.
Franco, C. J., Velásquez, J. D. and Olaya, I. (2008) ‘Caracterización de la demanda mensual de electricidad en Colombia usando un modelo de componentes no observables’, Cuadernos de Administración, 21(36), pp. 221–235. http://www.scielo.org.co/pdf/cadm/v21n36/v21n36a10.pdf.
Garzón Medina, D. O. and Marulanda García, G. A. (2017) ‘Estimación del consumo eléctrico colombiano en el corto y largo plazo empleando regresión multivariable y series temporales’, AVANCES Investigación en Ingeniería, 14, p. 155. https://doi.org/10.18041/1794-4953/avances.1.1294.
Gil, D. (2016) ‘Pronóstico de la demanda mensual de electricidad con series de tiempo’, Revista EIA, 13(26), pp. 111–120. https://doi.org/10.24050/reia.v13i26.749.
Goodarzi, S., Perera, H. N. and Bunn, D. (2019) ‘The impact of renewable energy forecast errors on imbalance volumes and electricity spot prices’, Energy Policy. Elsevier Ltd, 134(March), pp. 110827. https://doi.org/10.1016/j.enpol.2019.06.035.
Gulay, E. (2019) ‘Forecasting the Total Electricity Production in South Africa : Comparative Analysis to Improve the Predictive Modelling Accuracy’, 7(November 2018), pp. 88–110. https://doi.org/10.3934/energy.2019.1.88.
Holt, C. C. (1957) Forecasting seasonals and trends by exponentially weighted moving averages. Pittsburgh, Pa.: Carnegie Institute of Technology, Graduate school of Industrial Administration.
IEA (2017) Electricity information overview, IEA Statistics. https://www.iea.org/publications/freepublications/publication/ElectricityInformation2017Overview.pdf.
Islam, M. A. et al. (2020) ‘Energy demand forecasting’, in Energy for Sustainable Development. Elsevier, pp. 105–123. https://doi.org/10.1016/B978-0-12-814645-3.00005-5.
Jimenez, J. et al. (2019) ‘Multivariate Statistical Analysis based Methodology for Long-Term Demand Forecasting’, IEEE Latin America Transactions, 17(01), pp. 93–101. https://doi.org/10.1109/TLA.2019.8826700.
Jiménez, J., Donado, K. and Quintero, C. G. (2017) ‘A methodology for short-term load forecasting’, IEEE Latin America Transactions, 15(3), pp. 400–407. https://doi.org/10.1109/TLA.2017.7867168.
Kubli, M., Loock, M. and Wüstenhagen, R. (2018) ‘The flexible prosumer: Measuring the willingness to co-create distributed flexibility’, Energy Policy, 114(August 2017), pp. 540–548. https://doi.org/10.1016/j.enpol.2017.12.044.
Mohandes, M. (2002) ‘Support vector machines for short-term electrical load forecasting’, International Journal of Energy Research, 26(4), pp. 335–345. doi: 10.1002/er.787. Nunes Da Silva, I. and Carli Moreira De Andrade, L. (2016) ‘Efficient neurofuzzy model to very short-term load forecasting, IEEE Latin America Transactions, 14(2), pp. 721–728. https://doi.org/10.1109/TLA.2016.7437215.
Percy, S. D., Aldeen, M. and Berry, A. (2018) ‘Residential demand forecasting with solar-battery systems: A survey-less approach’, IEEE Transactions on Sustainable Energy. IEEE, 9(4), pp. 1499–1507. https://doi.org/10.1109/TSTE.2018.2791982.
Pérez Osorno, M. and Betancur Vargas, A. (2017) ‘Gestión del sector minero en el ámbito nacional y su relación entre el accionar gubernamental y empresarial’, Recerca. Revista de pensament i anàlisi., 0(20), pp. 157–184. https://doi.org/10.6035/Recerca.2017.20.8.
R Core Team (2017) ‘R: A Language and Environment for Statistical Computing’. Vienna, Austria: R Foundation for Statistical Computing. https://www.r-project.org/.
Rahman, A. and Ahmar, A. S. (2017) ‘Forecasting of primary energy consumption data in the United States: A comparison between ARIMA and Holter-Winters models’, in AIP Conference Proceedings, p. 020163. https://doi.org/10.1063/1.5002357.
Rocha, H. R. O. et al. (2018) ‘Forecast of distributed electrical generation system capacity based on seasonal micro generators using ELM and PSO’, IEEE Latin America Transactions, 16(4), pp. 1136–1141. https://doi.org/10.1109/TLA.2018.8362148.
Romero, F. T., Hernandez, J. D. C. J. and Lopez, W. G. (2011) ‘Predicting electricity consumption using neural networks’, IEEE Latin America Transactions, 9(7), pp. 1066–1072. https://doi.org/10.1109/TLA.2011.6129704.
Rueda, V. M., Velásquez, J. D. and Franco, C. J. (2011) ‘Avances recientes en la predicción de la demanda de electricidad usando modelos no lineales’, Dyna, 167, pp. 36–43. http://www.scielo.org.co/pdf/dyna/v78n167/a04v78n167.pdf.
Shyh-Jier Huang and Kuang-Rong Shih (2003) ‘Short-term load forecasting via ARMA model identification including non-gaussian process considerations’, IEEE Transactions on Power Systems. IEEE, 18(2), pp. 673–679. https://doi.org/10.1109/tpwrs.2003.811010.
Stoffer, D. (2012) ‘astsa: Applied Statistical Time Series Analysis’.
SUI (2016) Sistema Único de Información de Servicios Públicos (SUI), Consolidado Energía. Available at: http://reportes.sui.gov.co/fabricaReportes/frameSet.jsp?idreporte=ele_com_094.
Velásquez, J. D., Franco, C. J. and García, H. A. (2009) ‘Un modelo no lineal para la predicción de la demanda mensual de electricidad en colombia’, Estudios Gerenciales, 25(112), pp. 37–54. https://doi.org/10.1016/S0123-5923(09)70079-8.
Wang, Y. et al. (2012) ‘Application of residual modification approach in seasonal ARIMA for electricity demand forecasting: A case study of China’, Energy Policy. (Special Section: Frontiers of Sustainability), 48, pp. 284–294. https://doi.org/10.1016/j.enpol.2012.05.026.
Winters, P. R. (1960) ‘Forecasting Sales by Exponentially Weighted Moving Averages’, Management Science, 6(3), pp. 324–342. https://doi.org/10.1287/mnsc.6.3.324.
XM (2018) Información inteligente. http://informacioninteligente10.xm.com.co/demanda/paginas/default.aspx.
Yang, Y. et al. (2016) ‘Modelling a combined method based on ANFIS and neural network improved by DE algorithm: A case study for short-term electricity demand forecasting’, Applied Soft Computing, 49, pp. 663–675. https://doi.org/10.1016/j.asoc.2016.07.053.
dc.relation.bitstream.none.fl_str_mv https://revistas.eia.edu.co/index.php/reveia/article/download/1458/1378
dc.relation.citationedition.spa.fl_str_mv Núm. 35 , Año 2021
dc.relation.citationendpage.none.fl_str_mv 23
dc.relation.citationissue.spa.fl_str_mv 35
dc.relation.citationstartpage.none.fl_str_mv 35007 pp. 1
dc.relation.citationvolume.spa.fl_str_mv 18
dc.relation.ispartofjournal.spa.fl_str_mv Revista EIA
dc.rights.spa.fl_str_mv Revista EIA - 2020
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Revista EIA - 2020
https://creativecommons.org/licenses/by-nc-nd/4.0
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Fondo Editorial EIA - Universidad EIA
dc.source.spa.fl_str_mv https://revistas.eia.edu.co/index.php/reveia/article/view/1458
institution Universidad EIA .
bitstream.url.fl_str_mv https://repository.eia.edu.co/bitstreams/3249ac81-1037-49ea-88b0-775e35982e1f/download
bitstream.checksum.fl_str_mv e3dedbcd8de4a2dbf0994de4f795fea6
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EIA
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814100915191283712
spelling Mariño, Maria D.f3f21f6ff57bb8d46f369e42a3c1512c300Arango, Adriana0f173f1001af62142ec49caf50625ad8300Lotero, Laurafd86148f933cbb991ea0d61671e05233300Jimenez, Maritzaade98aecb457c17a37a608f6b242c41d3002020-12-31 14:30:362022-06-17T20:20:59Z2020-12-31 14:30:362022-06-17T20:20:59Z2020-12-311794-1237https://repository.eia.edu.co/handle/11190/513010.24050/reia.v18i35.14582463-0950https://doi.org/10.24050/reia.v18i35.1458Pronosticar la demanda eléctrica es de suma importancia para la planeación estratégica de una nación. La literatura ofrece múltiples acercamientos para el desarrollo de modelos de pronóstico enfocados principalmente en la demanda nacional agregada, dejando de lado los análisis sectoriales, en particular a los sectores no residenciales. En este artículo, utilizando la metodología de análisis de Series de Tiempo, se ajustan, validan y comparan tres diferentes modelos para pronosticar la demanda eléctrica del sector minas y canteras, uno de los más representativos en el consumo eléctrico colombiano. Los modelos ajustados incluyen un modelo de componentes aditivo, un SARIMA y un Holt Wiatednters. Los resultados indican que el modelo que presenta un menor error de pronóstico es el modelo Holt Winters.Demand forecasting is of utmost importance for strategic decision making of a nation. Literature offers multiple approaches to the development of forecast models focused in aggregate demand, also, little attention has been paid to non-residential sector demand forecasts. In this paper, using Time Series Analysis approach, three different models are fitted, tested and compared to forecast electricity demand in mining and quarrying sector, one of the most representative non-residential sector for colombian electricity demand. Fitted models include an additive model, a SARIMA and a Holt Winters model. Results indicate that better accuracy is provided the by Holt Winters model.application/pdfspaFondo Editorial EIA - Universidad EIARevista EIA - 2020https://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.http://purl.org/coar/access_right/c_abf2https://revistas.eia.edu.co/index.php/reveia/article/view/1458Time SeriesForecasting ModelsElectricity DemandMining and QuarryingHolt WintersSARIMAAdditive ModelColombiaPlanningStrategySeries de TiempoModelos de PronósticoDemanda EléctricaMinas y CanterasHolt WintersSARIMAModelo de ComponentesColombiaPlaneaciónEstrategiaModelos de series temporales para pronóstico de la demanda eléctrica del sector de explotación de minas y canteras en ColombiaTime series forecasting for Colombian mining and quarrying electricity demandArtículo de revistaJournal articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionTexthttp://purl.org/redcol/resource_type/ARTREFhttp://purl.org/coar/version/c_970fb48d4fbd8a85Azadeh, A., Ghaderi, S. F. and Sohrabkhani, S. (2008) ‘A simulated-based neural network algorithm for forecasting electrical energy consumption in Iran’, Energy Policy, 36(7), pp. 2637–2644. https://doi.org/10.1016/j.enpol.2008.02.035.Barreto, C. and Campo, J. (2012) ‘Relación a largo plazo entre consumo de energía y PIB en América Latina : Una evaluación empírica con datos panel using panel data’, Ecos de Economia, (35), pp. 73–89.Box, G. E. P. and Jenkins, G. M. (1976) Time series analysis: forecasting and control. Revised Ed. San Francisco : Holden-Day.Deb, C. et al. (2017) ‘A review on time series forecasting techniques for building energy consumption’, Renewable and Sustainable Energy Reviews. Elsevier Ltd, 74(February), pp. 902–924. https://doi.org/10.1016/j.rser.2017.02.085.EEA (2017) Final energy consumption of electricity by sector, Final energy consumption by sector and fuel. Available at: https://www.eea.europa.eu/data-and-maps/indicators/final-energy-consumption-by-sector-9/assessment-1.Franco, C. J., Velásquez, J. D. and Olaya, I. (2008) ‘Caracterización de la demanda mensual de electricidad en Colombia usando un modelo de componentes no observables’, Cuadernos de Administración, 21(36), pp. 221–235. http://www.scielo.org.co/pdf/cadm/v21n36/v21n36a10.pdf.Garzón Medina, D. O. and Marulanda García, G. A. (2017) ‘Estimación del consumo eléctrico colombiano en el corto y largo plazo empleando regresión multivariable y series temporales’, AVANCES Investigación en Ingeniería, 14, p. 155. https://doi.org/10.18041/1794-4953/avances.1.1294.Gil, D. (2016) ‘Pronóstico de la demanda mensual de electricidad con series de tiempo’, Revista EIA, 13(26), pp. 111–120. https://doi.org/10.24050/reia.v13i26.749.Goodarzi, S., Perera, H. N. and Bunn, D. (2019) ‘The impact of renewable energy forecast errors on imbalance volumes and electricity spot prices’, Energy Policy. Elsevier Ltd, 134(March), pp. 110827. https://doi.org/10.1016/j.enpol.2019.06.035.Gulay, E. (2019) ‘Forecasting the Total Electricity Production in South Africa : Comparative Analysis to Improve the Predictive Modelling Accuracy’, 7(November 2018), pp. 88–110. https://doi.org/10.3934/energy.2019.1.88.Holt, C. C. (1957) Forecasting seasonals and trends by exponentially weighted moving averages. Pittsburgh, Pa.: Carnegie Institute of Technology, Graduate school of Industrial Administration.IEA (2017) Electricity information overview, IEA Statistics. https://www.iea.org/publications/freepublications/publication/ElectricityInformation2017Overview.pdf.Islam, M. A. et al. (2020) ‘Energy demand forecasting’, in Energy for Sustainable Development. Elsevier, pp. 105–123. https://doi.org/10.1016/B978-0-12-814645-3.00005-5.Jimenez, J. et al. (2019) ‘Multivariate Statistical Analysis based Methodology for Long-Term Demand Forecasting’, IEEE Latin America Transactions, 17(01), pp. 93–101. https://doi.org/10.1109/TLA.2019.8826700.Jiménez, J., Donado, K. and Quintero, C. G. (2017) ‘A methodology for short-term load forecasting’, IEEE Latin America Transactions, 15(3), pp. 400–407. https://doi.org/10.1109/TLA.2017.7867168.Kubli, M., Loock, M. and Wüstenhagen, R. (2018) ‘The flexible prosumer: Measuring the willingness to co-create distributed flexibility’, Energy Policy, 114(August 2017), pp. 540–548. https://doi.org/10.1016/j.enpol.2017.12.044.Mohandes, M. (2002) ‘Support vector machines for short-term electrical load forecasting’, International Journal of Energy Research, 26(4), pp. 335–345. doi: 10.1002/er.787. Nunes Da Silva, I. and Carli Moreira De Andrade, L. (2016) ‘Efficient neurofuzzy model to very short-term load forecasting, IEEE Latin America Transactions, 14(2), pp. 721–728. https://doi.org/10.1109/TLA.2016.7437215.Percy, S. D., Aldeen, M. and Berry, A. (2018) ‘Residential demand forecasting with solar-battery systems: A survey-less approach’, IEEE Transactions on Sustainable Energy. IEEE, 9(4), pp. 1499–1507. https://doi.org/10.1109/TSTE.2018.2791982.Pérez Osorno, M. and Betancur Vargas, A. (2017) ‘Gestión del sector minero en el ámbito nacional y su relación entre el accionar gubernamental y empresarial’, Recerca. Revista de pensament i anàlisi., 0(20), pp. 157–184. https://doi.org/10.6035/Recerca.2017.20.8.R Core Team (2017) ‘R: A Language and Environment for Statistical Computing’. Vienna, Austria: R Foundation for Statistical Computing. https://www.r-project.org/.Rahman, A. and Ahmar, A. S. (2017) ‘Forecasting of primary energy consumption data in the United States: A comparison between ARIMA and Holter-Winters models’, in AIP Conference Proceedings, p. 020163. https://doi.org/10.1063/1.5002357.Rocha, H. R. O. et al. (2018) ‘Forecast of distributed electrical generation system capacity based on seasonal micro generators using ELM and PSO’, IEEE Latin America Transactions, 16(4), pp. 1136–1141. https://doi.org/10.1109/TLA.2018.8362148.Romero, F. T., Hernandez, J. D. C. J. and Lopez, W. G. (2011) ‘Predicting electricity consumption using neural networks’, IEEE Latin America Transactions, 9(7), pp. 1066–1072. https://doi.org/10.1109/TLA.2011.6129704.Rueda, V. M., Velásquez, J. D. and Franco, C. J. (2011) ‘Avances recientes en la predicción de la demanda de electricidad usando modelos no lineales’, Dyna, 167, pp. 36–43. http://www.scielo.org.co/pdf/dyna/v78n167/a04v78n167.pdf.Shyh-Jier Huang and Kuang-Rong Shih (2003) ‘Short-term load forecasting via ARMA model identification including non-gaussian process considerations’, IEEE Transactions on Power Systems. IEEE, 18(2), pp. 673–679. https://doi.org/10.1109/tpwrs.2003.811010.Stoffer, D. (2012) ‘astsa: Applied Statistical Time Series Analysis’.SUI (2016) Sistema Único de Información de Servicios Públicos (SUI), Consolidado Energía. Available at: http://reportes.sui.gov.co/fabricaReportes/frameSet.jsp?idreporte=ele_com_094.Velásquez, J. D., Franco, C. J. and García, H. A. (2009) ‘Un modelo no lineal para la predicción de la demanda mensual de electricidad en colombia’, Estudios Gerenciales, 25(112), pp. 37–54. https://doi.org/10.1016/S0123-5923(09)70079-8.Wang, Y. et al. (2012) ‘Application of residual modification approach in seasonal ARIMA for electricity demand forecasting: A case study of China’, Energy Policy. (Special Section: Frontiers of Sustainability), 48, pp. 284–294. https://doi.org/10.1016/j.enpol.2012.05.026.Winters, P. R. (1960) ‘Forecasting Sales by Exponentially Weighted Moving Averages’, Management Science, 6(3), pp. 324–342. https://doi.org/10.1287/mnsc.6.3.324.XM (2018) Información inteligente. http://informacioninteligente10.xm.com.co/demanda/paginas/default.aspx.Yang, Y. et al. (2016) ‘Modelling a combined method based on ANFIS and neural network improved by DE algorithm: A case study for short-term electricity demand forecasting’, Applied Soft Computing, 49, pp. 663–675. https://doi.org/10.1016/j.asoc.2016.07.053.https://revistas.eia.edu.co/index.php/reveia/article/download/1458/1378Núm. 35 , Año 2021233535007 pp. 118Revista EIAPublicationOREORE.xmltext/xml2753https://repository.eia.edu.co/bitstreams/3249ac81-1037-49ea-88b0-775e35982e1f/downloade3dedbcd8de4a2dbf0994de4f795fea6MD5111190/5130oai:repository.eia.edu.co:11190/51302023-07-25 17:18:18.929https://creativecommons.org/licenses/by-nc-nd/4.0Revista EIA - 2020metadata.onlyhttps://repository.eia.edu.coRepositorio Institucional Universidad EIAbdigital@metabiblioteca.com