Comportamiento de fases de membranas nanoestruturadas basadas en PVA, CS, H3PO2 y Nb2O5
Se estudió las propiedades térmicas (equilibrio de fases) de membranas nanoestructuradas basadas en poli(vinil alcohol) (PVA), quitosano (CS), ácido hipofosforoso (H3PO2) y micropartículas nanoporosas de óxido de niobio (Nb2O5) usando calorimetría de barrido diferencial (DSC) y análisis termo-gravim...
- Autores:
-
Zuñiga Rodriguez, Tarwin Duvan
Peña Lara, Diego
Diosa Astaiza, Jesus Evelio
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Universidad EIA .
- Repositorio:
- Repositorio EIA .
- Idioma:
- spa
- OAI Identifier:
- oai:repository.eia.edu.co:11190/5105
- Acceso en línea:
- https://repository.eia.edu.co/handle/11190/5105
https://doi.org/10.24050/reia.v17i34.1368
- Palabra clave:
- Membranas nanoestruturadas
PVA
Transición vítrea
TGA
Nanostructured membranes
PVA
Glass transition
TGA
- Rights
- openAccess
- License
- Revista EIA - 2020
id |
REIA2_41e3237fd8ade95136d43b631112eba9 |
---|---|
oai_identifier_str |
oai:repository.eia.edu.co:11190/5105 |
network_acronym_str |
REIA2 |
network_name_str |
Repositorio EIA . |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Comportamiento de fases de membranas nanoestruturadas basadas en PVA, CS, H3PO2 y Nb2O5 |
dc.title.translated.eng.fl_str_mv |
Phase behavior of nanostruturated membranes based on PVA, CS, H3PO2, and Nb2O5 |
title |
Comportamiento de fases de membranas nanoestruturadas basadas en PVA, CS, H3PO2 y Nb2O5 |
spellingShingle |
Comportamiento de fases de membranas nanoestruturadas basadas en PVA, CS, H3PO2 y Nb2O5 Membranas nanoestruturadas PVA Transición vítrea TGA Nanostructured membranes PVA Glass transition TGA |
title_short |
Comportamiento de fases de membranas nanoestruturadas basadas en PVA, CS, H3PO2 y Nb2O5 |
title_full |
Comportamiento de fases de membranas nanoestruturadas basadas en PVA, CS, H3PO2 y Nb2O5 |
title_fullStr |
Comportamiento de fases de membranas nanoestruturadas basadas en PVA, CS, H3PO2 y Nb2O5 |
title_full_unstemmed |
Comportamiento de fases de membranas nanoestruturadas basadas en PVA, CS, H3PO2 y Nb2O5 |
title_sort |
Comportamiento de fases de membranas nanoestruturadas basadas en PVA, CS, H3PO2 y Nb2O5 |
dc.creator.fl_str_mv |
Zuñiga Rodriguez, Tarwin Duvan Peña Lara, Diego Diosa Astaiza, Jesus Evelio |
dc.contributor.author.spa.fl_str_mv |
Zuñiga Rodriguez, Tarwin Duvan Peña Lara, Diego Diosa Astaiza, Jesus Evelio |
dc.subject.spa.fl_str_mv |
Membranas nanoestruturadas PVA Transición vítrea TGA |
topic |
Membranas nanoestruturadas PVA Transición vítrea TGA Nanostructured membranes PVA Glass transition TGA |
dc.subject.eng.fl_str_mv |
Nanostructured membranes PVA Glass transition TGA |
description |
Se estudió las propiedades térmicas (equilibrio de fases) de membranas nanoestructuradas basadas en poli(vinil alcohol) (PVA), quitosano (CS), ácido hipofosforoso (H3PO2) y micropartículas nanoporosas de óxido de niobio (Nb2O5) usando calorimetría de barrido diferencial (DSC) y análisis termo-gravimétrico (TGA). Se prepararon membranas en una combinación PVA-CS 80:20+40%H3PO2+xNb2O5 con x=0.02 hasta x=0.10. Para las medidas de DSC, se observó la transición vítrea de PVA/CS 80:20 en Tg~26°C, para PVA/CS 80:20+40%H3PO2 en 95°C y para las dopadas con Nb2O5 en 110°C. El punto de fusión de PVA y PVA/CS 80:20 fue alrededor de 210°C, para PVA/CS 80:20+40%H3PO2 no se observó claramente, indicando predominio de su fase amorfa. Para las dopadas con Nb2O5, la fusión de sus fases cristalinas fue alrededor de 180°C. Por encima de 430°C, todas las membranas se descomponen. Las curvas TGA de todas las membranas mostraron una pérdida continua de peso al aumentar la temperatura hasta 200°C, esta pérdida es atribuible a la evaporación de moléculas de agua absorbidas en la superficie de la membrana o atrapadas dentro de las cadenas de la matriz del polímero. Por encima de 200°C, se observó que las membranas pierden peso más rápidamente, siendo mayor para las membranas sin dopar con Nb2O5. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-06-21 00:00:00 2022-06-17T20:20:40Z |
dc.date.available.none.fl_str_mv |
2020-06-21 00:00:00 2022-06-17T20:20:40Z |
dc.date.issued.none.fl_str_mv |
2020-06-21 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.eng.fl_str_mv |
Journal article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_6501 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ARTREF |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
1794-1237 |
dc.identifier.uri.none.fl_str_mv |
https://repository.eia.edu.co/handle/11190/5105 |
dc.identifier.doi.none.fl_str_mv |
10.24050/reia.v17i34.1368 |
dc.identifier.eissn.none.fl_str_mv |
2463-0950 |
dc.identifier.url.none.fl_str_mv |
https://doi.org/10.24050/reia.v17i34.1368 |
identifier_str_mv |
1794-1237 10.24050/reia.v17i34.1368 2463-0950 |
url |
https://repository.eia.edu.co/handle/11190/5105 https://doi.org/10.24050/reia.v17i34.1368 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Ahn, J., Wang, G.X., Liu, H., and Dou, S., 2003. Nanoparticle-dispersed PEO polymer electrolytes for Li batteries. Journal of Power Sources, 119–121, pp. 422–426. doi: 10.1016/S0378-7753(03)00264-7. Casciola, M., Alberti, G., Ciarletta, A., Cruccolini, A., Piaggio, P., and Picaa, M., 2005. Nanocomposite membranes made of zirconium phosphate sulfophenylenphosphonate dispersed in polyvinylidene fluoride: Preparation and proton conductivity. Solid State Ionics, 176(39), pp. 2985–2989. doi: 10.1016/j.ssi.2005.09.036 González, Y.F. y Vargas, R.A., 2011. Estudio de las propiedades termodinámicas y eléctricas de materiales compuestos póliméricos basados en el poli(vinil alcohol) (PVA) + H3PO2 + TiO2. Revista Iberoamericana de Polímeros, 12(2), pp. 64–75. Ma, B., Qin, A., Li, X., Zhao, X., and He, C., 2014. Structure and properties of chitin whisker reinforced chitosan membranes. International Journal of Biological Macromolecules, 64, pp. 341–346. doi: 10.1016/j.ijbiomac.2013.12.015. Mena, D.F., 2014. Caracterización de fases conductoras iónicas en membranas basadas con quitosano y polivinil alcohol. Trabajo de grado, Universidad del Valle. Steele, B.C.H. and Heinzel, A., 2001. Materials for fuel-cell technologies. Nature, 414, pp. 345–352. doi: 10.1038/35104620. Vargas, R.A., Garcia, A., and Vargas, M.A., 1998. Phase behavior of complexes of PVA and acid salts. Electrochimica Acta, 43(10-11), pp. 1271–1274. doi: 10.1016/S0013-4686(97)10029-9. Wang, X.L., Fan, L.Z., Xu, Z.H., Lin, Y.H., and Nan, C.W., 2008. Temperature dependent ionic transport properties in composite solid polymer electrolytes. Solid State Ionics, 179(27), pp. 1310–1313. doi: 10.1016/j.ssi.2008.01.045. Yuan, H.K., Ren, J., Ma, X.H., and Xu, Z.L., 2011. Dehydration of ethyl acetate aqueous solutions by pervaporation using PVA/PAN hollow fiber composite membrane. Desalination, 280(1-3), pp. 252–258. doi: 10.1016/j.desal.2011.07.002. |
dc.relation.bitstream.none.fl_str_mv |
https://revistas.eia.edu.co/index.php/reveia/article/download/1368/1344 |
dc.relation.citationedition.spa.fl_str_mv |
Núm. 34 , Año 2020 |
dc.relation.citationendpage.none.fl_str_mv |
7 |
dc.relation.citationissue.spa.fl_str_mv |
34 |
dc.relation.citationstartpage.none.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
17 |
dc.relation.ispartofjournal.spa.fl_str_mv |
Revista EIA |
dc.rights.spa.fl_str_mv |
Revista EIA - 2020 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0 |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Revista EIA - 2020 https://creativecommons.org/licenses/by-nc-nd/4.0 http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Fondo Editorial EIA - Universidad EIA |
dc.source.spa.fl_str_mv |
https://revistas.eia.edu.co/index.php/reveia/article/view/1368 |
institution |
Universidad EIA . |
bitstream.url.fl_str_mv |
https://repository.eia.edu.co/bitstreams/ac44d6b6-3ee4-41f5-b280-de0020965935/download |
bitstream.checksum.fl_str_mv |
e75a5b018c41f3eea6ad625e79670734 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EIA |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814100873785114624 |
spelling |
Zuñiga Rodriguez, Tarwin Duvan145c9a09147ca9ebd642e38be58d4e53300Peña Lara, Diego8dc27cb753afe7c4c4a49999caa5fd30300Diosa Astaiza, Jesus Evelioaa5fd6e0dac0f2d9873ddd76ab9de8f03002020-06-21 00:00:002022-06-17T20:20:40Z2020-06-21 00:00:002022-06-17T20:20:40Z2020-06-211794-1237https://repository.eia.edu.co/handle/11190/510510.24050/reia.v17i34.13682463-0950https://doi.org/10.24050/reia.v17i34.1368Se estudió las propiedades térmicas (equilibrio de fases) de membranas nanoestructuradas basadas en poli(vinil alcohol) (PVA), quitosano (CS), ácido hipofosforoso (H3PO2) y micropartículas nanoporosas de óxido de niobio (Nb2O5) usando calorimetría de barrido diferencial (DSC) y análisis termo-gravimétrico (TGA). Se prepararon membranas en una combinación PVA-CS 80:20+40%H3PO2+xNb2O5 con x=0.02 hasta x=0.10. Para las medidas de DSC, se observó la transición vítrea de PVA/CS 80:20 en Tg~26°C, para PVA/CS 80:20+40%H3PO2 en 95°C y para las dopadas con Nb2O5 en 110°C. El punto de fusión de PVA y PVA/CS 80:20 fue alrededor de 210°C, para PVA/CS 80:20+40%H3PO2 no se observó claramente, indicando predominio de su fase amorfa. Para las dopadas con Nb2O5, la fusión de sus fases cristalinas fue alrededor de 180°C. Por encima de 430°C, todas las membranas se descomponen. Las curvas TGA de todas las membranas mostraron una pérdida continua de peso al aumentar la temperatura hasta 200°C, esta pérdida es atribuible a la evaporación de moléculas de agua absorbidas en la superficie de la membrana o atrapadas dentro de las cadenas de la matriz del polímero. Por encima de 200°C, se observó que las membranas pierden peso más rápidamente, siendo mayor para las membranas sin dopar con Nb2O5.Thermal behavior (phase equilibria) of nanostructured membranes based on poly(vinyl alcohol) (PVA), chitosan (CS), hypophosphorous acid (H3PO2), nanoporous micro-particles of niobium oxide (Nb2O5) using Differential Scanning Calorimetric (DSC) and Thermogravimetry Analysis (TGA) techniques were studied. Membranes PVA-CS 80:20+40%H3PO2+xNb2O5 with between x=0.02 and x=0.10 were prepared. For the DSC thermograms, the glass transition of PVA/CS 80:20 was observed at Tg~26°C, for PVA/CS 80:20+40%H3PO2 at 95°C, and for those doped with Nb2O5 at 110°C. The melting point of PVA y PVA/CS 80:20 membranes was around 210°C, for PVA/CS 80:20+40%H3PO2 is no clearly observed, indicating the dominance of their amorphous phase. For doped with Nb2O5, the melting of their crystalline phases was around 180°C. Above 430°C, all membranes break down. The TGA thermograms for all membranes showed a continuous weight loss as the temperature increased to 200°C, this loss is due to the absorbed water molecules at the membrane’s surface or caught inside of the polymer chains. Above 200°C, the membranes loss weight more quickly, being higher for the membranes without doping with Nb2O5, is observed.application/pdfspaFondo Editorial EIA - Universidad EIARevista EIA - 2020https://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.http://purl.org/coar/access_right/c_abf2https://revistas.eia.edu.co/index.php/reveia/article/view/1368Membranas nanoestruturadasPVATransición vítreaTGANanostructured membranesPVAGlass transitionTGAComportamiento de fases de membranas nanoestruturadas basadas en PVA, CS, H3PO2 y Nb2O5Phase behavior of nanostruturated membranes based on PVA, CS, H3PO2, and Nb2O5Artículo de revistaJournal articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionTexthttp://purl.org/redcol/resource_type/ARTREFhttp://purl.org/coar/version/c_970fb48d4fbd8a85Ahn, J., Wang, G.X., Liu, H., and Dou, S., 2003. Nanoparticle-dispersed PEO polymer electrolytes for Li batteries. Journal of Power Sources, 119–121, pp. 422–426. doi: 10.1016/S0378-7753(03)00264-7.Casciola, M., Alberti, G., Ciarletta, A., Cruccolini, A., Piaggio, P., and Picaa, M., 2005. Nanocomposite membranes made of zirconium phosphate sulfophenylenphosphonate dispersed in polyvinylidene fluoride: Preparation and proton conductivity. Solid State Ionics, 176(39), pp. 2985–2989. doi: 10.1016/j.ssi.2005.09.036González, Y.F. y Vargas, R.A., 2011. Estudio de las propiedades termodinámicas y eléctricas de materiales compuestos póliméricos basados en el poli(vinil alcohol) (PVA) + H3PO2 + TiO2. Revista Iberoamericana de Polímeros, 12(2), pp. 64–75.Ma, B., Qin, A., Li, X., Zhao, X., and He, C., 2014. Structure and properties of chitin whisker reinforced chitosan membranes. International Journal of Biological Macromolecules, 64, pp. 341–346. doi: 10.1016/j.ijbiomac.2013.12.015.Mena, D.F., 2014. Caracterización de fases conductoras iónicas en membranas basadas con quitosano y polivinil alcohol. Trabajo de grado, Universidad del Valle. Steele, B.C.H. and Heinzel, A., 2001. Materials for fuel-cell technologies. Nature, 414, pp. 345–352. doi: 10.1038/35104620.Vargas, R.A., Garcia, A., and Vargas, M.A., 1998. Phase behavior of complexes of PVA and acid salts. Electrochimica Acta, 43(10-11), pp. 1271–1274. doi: 10.1016/S0013-4686(97)10029-9.Wang, X.L., Fan, L.Z., Xu, Z.H., Lin, Y.H., and Nan, C.W., 2008. Temperature dependent ionic transport properties in composite solid polymer electrolytes. Solid State Ionics, 179(27), pp. 1310–1313. doi: 10.1016/j.ssi.2008.01.045.Yuan, H.K., Ren, J., Ma, X.H., and Xu, Z.L., 2011. Dehydration of ethyl acetate aqueous solutions by pervaporation using PVA/PAN hollow fiber composite membrane. Desalination, 280(1-3), pp. 252–258. doi: 10.1016/j.desal.2011.07.002.https://revistas.eia.edu.co/index.php/reveia/article/download/1368/1344Núm. 34 , Año 2020734117Revista EIAPublicationOREORE.xmltext/xml2651https://repository.eia.edu.co/bitstreams/ac44d6b6-3ee4-41f5-b280-de0020965935/downloade75a5b018c41f3eea6ad625e79670734MD5111190/5105oai:repository.eia.edu.co:11190/51052023-07-25 16:45:51.497https://creativecommons.org/licenses/by-nc-nd/4.0Revista EIA - 2020metadata.onlyhttps://repository.eia.edu.coRepositorio Institucional Universidad EIAbdigital@metabiblioteca.com |