Precisión en implantación de electrodos para estimulación cerebral profunda para manejo de trastornos del movimiento.

En la implantación de electrodos cerebrales profundos el gran reto del cirujano es la más precisa implantación de electrodos en el lugar seleccionado, presentamos el análisis de la técnica quirúrgica estándar internacional y análisis de una cohorte de pacientes implantados en términos de precisión l...

Full description

Autores:
Ordoñez Castillo, Jorge Alberto
Escobar Vidarte, Oscar Andrés
Orozco Mera, Javier
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Universidad EIA .
Repositorio:
Repositorio EIA .
Idioma:
spa
OAI Identifier:
oai:repository.eia.edu.co:11190/5141
Acceso en línea:
https://repository.eia.edu.co/handle/11190/5141
https://doi.org/10.24050/reia.v19i37.1480
Palabra clave:
Estimulación cerebral profunda
Estereotaxia
Implantación
Precisión
Deep brain stimulation
Stereotaxy
Implantation
Accuracy
Rights
openAccess
License
Revista EIA - 2021
id REIA2_4054d8e09deb529998172a1979670d5b
oai_identifier_str oai:repository.eia.edu.co:11190/5141
network_acronym_str REIA2
network_name_str Repositorio EIA .
repository_id_str
dc.title.spa.fl_str_mv Precisión en implantación de electrodos para estimulación cerebral profunda para manejo de trastornos del movimiento.
dc.title.translated.eng.fl_str_mv Precision in implantation of electrodes for deep brain stimulation for management of movement disorders.
title Precisión en implantación de electrodos para estimulación cerebral profunda para manejo de trastornos del movimiento.
spellingShingle Precisión en implantación de electrodos para estimulación cerebral profunda para manejo de trastornos del movimiento.
Estimulación cerebral profunda
Estereotaxia
Implantación
Precisión
Deep brain stimulation
Stereotaxy
Implantation
Accuracy
title_short Precisión en implantación de electrodos para estimulación cerebral profunda para manejo de trastornos del movimiento.
title_full Precisión en implantación de electrodos para estimulación cerebral profunda para manejo de trastornos del movimiento.
title_fullStr Precisión en implantación de electrodos para estimulación cerebral profunda para manejo de trastornos del movimiento.
title_full_unstemmed Precisión en implantación de electrodos para estimulación cerebral profunda para manejo de trastornos del movimiento.
title_sort Precisión en implantación de electrodos para estimulación cerebral profunda para manejo de trastornos del movimiento.
dc.creator.fl_str_mv Ordoñez Castillo, Jorge Alberto
Escobar Vidarte, Oscar Andrés
Orozco Mera, Javier
dc.contributor.author.spa.fl_str_mv Ordoñez Castillo, Jorge Alberto
Escobar Vidarte, Oscar Andrés
Orozco Mera, Javier
dc.subject.spa.fl_str_mv Estimulación cerebral profunda
Estereotaxia
Implantación
Precisión
topic Estimulación cerebral profunda
Estereotaxia
Implantación
Precisión
Deep brain stimulation
Stereotaxy
Implantation
Accuracy
dc.subject.eng.fl_str_mv Deep brain stimulation
Stereotaxy
Implantation
Accuracy
description En la implantación de electrodos cerebrales profundos el gran reto del cirujano es la más precisa implantación de electrodos en el lugar seleccionado, presentamos el análisis de la técnica quirúrgica estándar internacional y análisis de una cohorte de pacientes implantados en términos de precisión lograda en un estudio observacional descriptivo retrospectivo de doce pacientes, se analizó la precisión en implantación de electrodos con la técnica quirúrgica estándar internacional, comparando la posición de los electrodos en el post operatorio inmediato con la posición de los electrodos planeada antes del procedimiento quirúrgico. El estudio incluye doce pacientes con Enfermedad de Parkinson (9), distonía cervical (1), síndrome tardío (1) y Enfermedad de Gilles de la Tourette (1), implantados con técnica quirúrgica estándar internacional. Todos los pacientes fueron implantados bilateralmente, para un total de 24 electrodos implantados. En la medición de la distancia entre el blanco quirúrgico planeado en el preoperatorio y la localización final del electrodo, encontramos una distancia promedio de 0.89 milímetros, con un rango entre 0 y 2.5 milímetros. Encontramos que la implantación de electrodos cerebrales por estereotaxia, imágenes, software y microregistro, en paciente despierto, con micro y macro estimulación, es un procedimiento preciso y seguro con diferencia promedio 0,89 milímetros.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-12-31 11:53:27
2022-06-17T20:21:07Z
dc.date.available.none.fl_str_mv 2021-12-31 11:53:27
2022-06-17T20:21:07Z
dc.date.issued.none.fl_str_mv 2021-12-31
dc.type.spa.fl_str_mv Artículo de revista
dc.type.eng.fl_str_mv Journal article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_6501
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 1794-1237
dc.identifier.uri.none.fl_str_mv https://repository.eia.edu.co/handle/11190/5141
dc.identifier.doi.none.fl_str_mv 10.24050/reia.v19i37.1480
dc.identifier.eissn.none.fl_str_mv 2463-0950
dc.identifier.url.none.fl_str_mv https://doi.org/10.24050/reia.v19i37.1480
identifier_str_mv 1794-1237
10.24050/reia.v19i37.1480
2463-0950
url https://repository.eia.edu.co/handle/11190/5141
https://doi.org/10.24050/reia.v19i37.1480
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abelson, J. L. et al. (2005) ‘Deep brain stimulation for refractory obsessive-compulsive disorder.’, Biological psychiatry. United States, 57(5), pp. 510–516. doi: 10.1016/j.biopsych.2004.11.042.
Abosch, A. et al. (2013) ‘An international survey of deep brain stimulation procedural steps.’, Stereotactic and functional neurosurgery. Switzerland, 91(1), pp. 1–11. doi: 10.1159/000343207.
Aires, A. et al. (2018) ‘The impact of deep brain stimulation on health related quality of life and disease-specific disability in Meige Syndrome (MS).’, Clinical neurology and neurosurgery. Netherlands, 171, pp. 53–57. doi: 10.1016/j.clineuro.2018.05.012.
Altinel, Y. et al. (2019) ‘Outcomes in Lesion Surgery versus Deep Brain Stimulation in Patients with Tremor: A Systematic Review and Meta-Analysis.’, World neurosurgery. United States, 123, pp. 443-452.e8. doi: 10.1016/j.wneu.2018.11.175.
Balachandran, R. et al. (2010) ‘Effect of MR distortion on targeting for deep-brain stimulation.’, IEEE transactions on bio-medical engineering, 57(7), pp. 1729–1735. doi: 10.1109/TBME.2010.2043675.
Benabid, A. L. et al. (1991) ‘Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus.’, Lancet (London, England). England, 337(8738), pp. 403–406. doi: 10.1016/0140-6736(91)91175-t.
Bétry, C. et al. (2018) ‘Deep brain stimulation as a therapeutic option for obesity: A critical review.’, Obesity research & clinical practice. Netherlands, 12(3), pp. 260–269. doi: 10.1016/j.orcp.2018.02.004.
Bjartmarz, H. and Rehncrona, S. (2007) ‘Comparison of accuracy and precision between frame-based and frameless stereotactic navigation for deep brain stimulation electrode implantation.’, Stereotactic and functional neurosurgery. Switzerland, 85(5), pp. 235–242. doi: 10.1159/000103262.
Contarino, M. F. et al. (2013) ‘Postoperative displacement of deep brain stimulation electrodes related to lead-anchoring technique.’, Neurosurgery. United States, 73(4), pp. 681–8; discussion 188. doi: 10.1227/NEU.0000000000000079.
Cury, R. G. et al. (2017) ‘Thalamic deep brain stimulation for tremor in Parkinson disease, essential tremor, and dystonia.’, Neurology. United States, 89(13), pp. 1416–1423. doi: 10.1212/WNL.0000000000004295.
D’Haese, P.-F. et al. (2010) ‘Clinical accuracy of a customized stereotactic platform for deep brain stimulation after accounting for brain shift.’, Stereotactic and functional neurosurgery, 88(2), pp. 81–87. doi: 10.1159/000271823.
Dalton, B., Campbell, I. C. and Schmidt, U. (2017) ‘Neuromodulation and neurofeedback treatments in eating disorders and obesity.’, Current opinion in psychiatry. United States, 30(6), pp. 458–473. doi: 10.1097/YCO.0000000000000361.
Dougherty, D. D. (2018) ‘Deep Brain Stimulation: Clinical Applications.’, The Psychiatric clinics of North America. United States, 41(3), pp. 385–394. doi: 10.1016/j.psc.2018.04.004.
Elia, A. E. et al. (2018) ‘Deep brain stimulation for dystonia due to cerebral palsy: A review.’, European journal of paediatric neurology : EJPN : official journal of the European Paediatric Neurology Society. England, 22(2), pp. 308–315. doi: 10.1016/j.ejpn.2017.12.002.
Fitzpatrick, J. M. et al. (2005) ‘Accuracy of customized miniature stereotactic platforms.’, Stereotactic and functional neurosurgery. Switzerland, 83(1), pp. 25–31. doi: 10.1159/000085023.
Gielen, F. L. H. (2003) ‘Deep brain stimulation: current practice and challenges for the future’, in First International IEEE EMBS Conference on Neural Engineering, 2003. Conference Proceedings., pp. 489–491. doi: 10.1109/CNE.2003.1196869.
Holl, E. et al. (2010) Improving Targeting in Image-Guided Frame-Based Deep Brain Stimulation, Neurosurgery. doi: 10.1227/NEU.0b013e3181f7422a.
Holloway, K. L. et al. (2005) ‘Frameless stereotaxy using bone fiducial markers for deep brain stimulation.’, Journal of neurosurgery. United States, 103(3), pp. 404–413. doi: 10.3171/jns.2005.103.3.0404.
Holslag, J. A. H. et al. (2018) ‘Deep Brain Stimulation for Essential Tremor: A Comparison of Targets.’, World neurosurgery. United States, 110, pp. e580–e584. doi: 10.1016/j.wneu.2017.11.064.
Itakura, T. (ed.) (2014) Deep brain stimulation for neurological disorders : theoretical background and clinical application / Toru Itakura, editor. Cham : Springer, [2014].
Kohl, S. and Baldermann, J. C. (2018) ‘Progress and challenges in deep brain stimulation for obsessive-compulsive disorder.’, Pharmacology & therapeutics. England, 186, pp. 168–175. doi: 10.1016/j.pharmthera.2018.01.011.
Konrad, P. E. et al. (2011) ‘Customized, miniature rapid-prototype stereotactic frames for use in deep brain stimulator surgery: initial clinical methodology and experience from 263 patients from 2002 to 2008.’, Stereotactic and functional neurosurgery, 89(1), pp. 34–41. doi: 10.1159/000322276.
Laxton, A. W. et al. (2010) ‘A phase I trial of deep brain stimulation of memory circuits in Alzheimer’s disease.’, Annals of neurology. United States, 68(4), pp. 521–534. doi: 10.1002/ana.22089.
Li, Z. et al. (2016) ‘Review on Factors Affecting Targeting Accuracy of Deep Brain Stimulation Electrode Implantation between 2001 and 2015.’, Stereotactic and functional neurosurgery. Switzerland, 94(6), pp. 351–362. doi: 10.1159/000449206.
Macerollo, A. and Deuschl, G. (2018) ‘Deep brain stimulation for tardive syndromes: Systematic review and meta-analysis.’, Journal of the neurological sciences. Netherlands, 389, pp. 55–60. doi: 10.1016/j.jns.2018.02.013.
Maciunas, R. J., Galloway, R. L. J. and Latimer, J. W. (1994) ‘The application accuracy of stereotactic frames.’, Neurosurgery. United States, 35(4), pp. 682–685. doi: 10.1227/00006123-199410000-00015. Magown, P. et al. (2018) ‘Deep brain stimulation parameters for dystonia: A systematic review.’, Parkinsonism & related disorders. England, 54, pp. 9–16. doi: 10.1016/j.parkreldis.2018.04.017.
Mao, Z. et al. (2019) ‘Comparison of Efficacy of Deep Brain Stimulation of Different Targets in Parkinson’s Disease: A Network Meta-Analysis.’, Frontiers in aging neuroscience, p. 23. doi: 10.3389/fnagi.2019.00023.
Martini, M. L., Mocco, J. and Panov, F. (2019) ‘Neurosurgical Approaches to Levodopa-Induced Dyskinesia.’, World neurosurgery. United States, 126, pp. 376–382. doi: 10.1016/j.wneu.2019.03.056.
Medical Advisory Secretariat (2005) ‘Deep brain stimulation for Parkinson’s disease and other movement disorders: an evidence-based analysis.’, Ontario health technology assessment series, 5(2), pp. 1–56.
van den Munckhof, P. et al. (2010) ‘Postoperative curving and upward displacement of deep brain stimulation electrodes caused by brain shift.’, Neurosurgery. United States, 67(1), pp. 44–49. doi: 10.1227/01.NEU.0000370597.44524.6D.
O’Gorman, R. L. et al. (2009) ‘CT/MR image fusion in the postoperative assessment of electrodes implanted for deep brain stimulation.’, Stereotactic and functional neurosurgery. Switzerland, 87(4), pp. 205–210. doi: 10.1159/000225973.
Patel, N. K., Plaha, P. and Gill, S. S. (2007) ‘Magnetic resonance imaging-directed method for functional neurosurgery using implantable guide tubes.’, Neurosurgery. United States, 61(5 Suppl 2), pp. 356–358. doi: 10.1227/01.neu.0000303994.89773.01.
Pezeshkian, P. et al. (2011) ‘Accuracy of frame-based stereotactic magnetic resonance imaging vs frame-based stereotactic head computed tomography fused with recent magnetic resonance imaging for postimplantation deep brain stimulator lead localization.’, Neurosurgery. United States, 69(6), pp. 1299–1306. doi: 10.1227/NEU.0b013e31822b7069.
Rebelo, P. et al. (2018) ‘Thalamic Directional Deep Brain Stimulation for tremor: Spend less, get more.’, Brain stimulation. United States, 11(3), pp. 600–606. doi: 10.1016/j.brs.2017.12.015.
Sabour, S. (2013) ‘A quantitative assessment of the accuracy and reliability of O-arm images for deep brain stimulation surgery.’, Neurosurgery. United States, p. E696. doi: 10.1227/NEU.0b013e318282d66e.
Sankar, T. et al. (2015) ‘Deep Brain Stimulation Influences Brain Structure in Alzheimer’s Disease.’, Brain stimulation, 8(3), pp. 645–654. doi: 10.1016/j.brs.2014.11.020.
Sharma, M. et al. (2014) ‘Accuracy and precision of targeting using frameless stereotactic system in deep brain stimulator implantation surgery.’, Neurology India. India, 62(5), pp. 503–509. doi: 10.4103/0028-3886.144442.
Smith, A. P. and Bakay, R. A. E. (2011) ‘Frameless deep brain stimulation using intraoperative O-arm technology. Clinical article.’, Journal of neurosurgery. United States, 115(2), pp. 301–309. doi: 10.3171/2011.3.JNS101642.
Starr, P. A. et al. (2010) ‘Subthalamic nucleus deep brain stimulator placement using high-field interventional magnetic resonance imaging and a skull-mounted aiming device: technique and application accuracy.’, Journal of neurosurgery, 112(3), pp. 479–490. doi: 10.3171/2009.6.JNS081161.
Tolleson, C. et al. (2015) ‘The optimal pallidal target in deep brain stimulation for dystonia: a study using a functional atlas based on nonlinear image registration.’, Stereotactic and functional neurosurgery, 93(1), pp. 17–24. doi: 10.1159/000368441.
Velasco, F. et al. (2010) ‘Deep brain stimulation for epilepsy’, in Rho, J. M., Sankar, R., and Stafstrom, C. E. (eds) Epilepsy : mechanisms, models, and translational perspectives / edited by, Jong M. Rho, Raman Sankar, Carl E. Stafstrom. Boca Raton, Fla. : London: Boca Raton, Fla. : CRC, pp. 345–360.
Zrinzo, L. et al. (2009) ‘Avoiding the ventricle: a simple step to improve accuracy of anatomical targeting during deep brain stimulation.’, Journal of neurosurgery. United States, 110(6), pp. 1283–1290. doi: 10.3171/2008.12.JNS08885.
Zrinzo, L. (2012) ‘Pitfalls in precision stereotactic surgery.’, Surgical neurology international, 3(Suppl 1), pp. S53-61. doi: 10.4103/2152-7806.91612.
dc.relation.bitstream.none.fl_str_mv https://revistas.eia.edu.co/index.php/reveia/article/download/1480/1435
dc.relation.citationedition.spa.fl_str_mv Núm. 37 , Año 2022 :
dc.relation.citationendpage.none.fl_str_mv 15
dc.relation.citationissue.spa.fl_str_mv 37
dc.relation.citationstartpage.none.fl_str_mv 37004 pp. 1
dc.relation.citationvolume.spa.fl_str_mv 19
dc.relation.ispartofjournal.spa.fl_str_mv Revista EIA
dc.rights.spa.fl_str_mv Revista EIA - 2021
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Revista EIA - 2021
https://creativecommons.org/licenses/by-nc-nd/4.0
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Fondo Editorial EIA - Universidad EIA
dc.source.spa.fl_str_mv https://revistas.eia.edu.co/index.php/reveia/article/view/1480
institution Universidad EIA .
bitstream.url.fl_str_mv https://repository.eia.edu.co/bitstreams/23624b14-21fa-4109-bf9a-2b311fe71b09/download
bitstream.checksum.fl_str_mv 8dd4000ac7f8fcefc01470928287ddd7
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EIA
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814100888242880512
spelling Ordoñez Castillo, Jorge Alberto4034e3046793eec17d71b3a81e8332ed300Escobar Vidarte, Oscar Andrése822dcea3fdd2aabdad1eda1a37862ab300Orozco Mera, Javier6c44b7824521b49ce76a8ba1b733d4503002021-12-31 11:53:272022-06-17T20:21:07Z2021-12-31 11:53:272022-06-17T20:21:07Z2021-12-311794-1237https://repository.eia.edu.co/handle/11190/514110.24050/reia.v19i37.14802463-0950https://doi.org/10.24050/reia.v19i37.1480En la implantación de electrodos cerebrales profundos el gran reto del cirujano es la más precisa implantación de electrodos en el lugar seleccionado, presentamos el análisis de la técnica quirúrgica estándar internacional y análisis de una cohorte de pacientes implantados en términos de precisión lograda en un estudio observacional descriptivo retrospectivo de doce pacientes, se analizó la precisión en implantación de electrodos con la técnica quirúrgica estándar internacional, comparando la posición de los electrodos en el post operatorio inmediato con la posición de los electrodos planeada antes del procedimiento quirúrgico. El estudio incluye doce pacientes con Enfermedad de Parkinson (9), distonía cervical (1), síndrome tardío (1) y Enfermedad de Gilles de la Tourette (1), implantados con técnica quirúrgica estándar internacional. Todos los pacientes fueron implantados bilateralmente, para un total de 24 electrodos implantados. En la medición de la distancia entre el blanco quirúrgico planeado en el preoperatorio y la localización final del electrodo, encontramos una distancia promedio de 0.89 milímetros, con un rango entre 0 y 2.5 milímetros. Encontramos que la implantación de electrodos cerebrales por estereotaxia, imágenes, software y microregistro, en paciente despierto, con micro y macro estimulación, es un procedimiento preciso y seguro con diferencia promedio 0,89 milímetros.In the implantation of deep brain electrodes, the great challenge for the surgeon is the most precise implantation of electrodes in the selected place. We present the analysis of the international standard surgical technique and analysis of a cohort of implanted patients in terms of precision achieved in an observational study. descriptive retrospective of twelve patients, the precision in electrode implantation was analyzed with the international standard surgical technique, comparing the position of the electrodes in the immediate postoperative period with the position of the electrodes planned before the surgical procedure. The study includes twelve patients with Parkinson's disease (9), cervical dystonia (1), late syndrome (1) and Gilles de la Tourette's disease (1), implanted with international standard surgical technique. All patients were implanted bilaterally, for a total of 24 implanted electrodes. In the measurement of the distance between the planned surgical target in the preoperative period and the final location of the electrode, we found an average distance of 0.89 millimeters, with a range between 0 and 2.5 millimeters. We found that the implantation of brain electrodes by stereotaxy, images, software and microregistration, in an awake patient, with micro and macro stimulation, is a precise and safe procedure with an average difference of 0.89 millimeters.application/pdfspaFondo Editorial EIA - Universidad EIARevista EIA - 2021https://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.http://purl.org/coar/access_right/c_abf2https://revistas.eia.edu.co/index.php/reveia/article/view/1480Estimulación cerebral profundaEstereotaxiaImplantaciónPrecisiónDeep brain stimulationStereotaxyImplantationAccuracyPrecisión en implantación de electrodos para estimulación cerebral profunda para manejo de trastornos del movimiento.Precision in implantation of electrodes for deep brain stimulation for management of movement disorders.Artículo de revistaJournal articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionTexthttp://purl.org/redcol/resource_type/ARTREFhttp://purl.org/coar/version/c_970fb48d4fbd8a85Abelson, J. L. et al. (2005) ‘Deep brain stimulation for refractory obsessive-compulsive disorder.’, Biological psychiatry. United States, 57(5), pp. 510–516. doi: 10.1016/j.biopsych.2004.11.042.Abosch, A. et al. (2013) ‘An international survey of deep brain stimulation procedural steps.’, Stereotactic and functional neurosurgery. Switzerland, 91(1), pp. 1–11. doi: 10.1159/000343207.Aires, A. et al. (2018) ‘The impact of deep brain stimulation on health related quality of life and disease-specific disability in Meige Syndrome (MS).’, Clinical neurology and neurosurgery. Netherlands, 171, pp. 53–57. doi: 10.1016/j.clineuro.2018.05.012.Altinel, Y. et al. (2019) ‘Outcomes in Lesion Surgery versus Deep Brain Stimulation in Patients with Tremor: A Systematic Review and Meta-Analysis.’, World neurosurgery. United States, 123, pp. 443-452.e8. doi: 10.1016/j.wneu.2018.11.175.Balachandran, R. et al. (2010) ‘Effect of MR distortion on targeting for deep-brain stimulation.’, IEEE transactions on bio-medical engineering, 57(7), pp. 1729–1735. doi: 10.1109/TBME.2010.2043675.Benabid, A. L. et al. (1991) ‘Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus.’, Lancet (London, England). England, 337(8738), pp. 403–406. doi: 10.1016/0140-6736(91)91175-t.Bétry, C. et al. (2018) ‘Deep brain stimulation as a therapeutic option for obesity: A critical review.’, Obesity research & clinical practice. Netherlands, 12(3), pp. 260–269. doi: 10.1016/j.orcp.2018.02.004.Bjartmarz, H. and Rehncrona, S. (2007) ‘Comparison of accuracy and precision between frame-based and frameless stereotactic navigation for deep brain stimulation electrode implantation.’, Stereotactic and functional neurosurgery. Switzerland, 85(5), pp. 235–242. doi: 10.1159/000103262.Contarino, M. F. et al. (2013) ‘Postoperative displacement of deep brain stimulation electrodes related to lead-anchoring technique.’, Neurosurgery. United States, 73(4), pp. 681–8; discussion 188. doi: 10.1227/NEU.0000000000000079.Cury, R. G. et al. (2017) ‘Thalamic deep brain stimulation for tremor in Parkinson disease, essential tremor, and dystonia.’, Neurology. United States, 89(13), pp. 1416–1423. doi: 10.1212/WNL.0000000000004295.D’Haese, P.-F. et al. (2010) ‘Clinical accuracy of a customized stereotactic platform for deep brain stimulation after accounting for brain shift.’, Stereotactic and functional neurosurgery, 88(2), pp. 81–87. doi: 10.1159/000271823.Dalton, B., Campbell, I. C. and Schmidt, U. (2017) ‘Neuromodulation and neurofeedback treatments in eating disorders and obesity.’, Current opinion in psychiatry. United States, 30(6), pp. 458–473. doi: 10.1097/YCO.0000000000000361.Dougherty, D. D. (2018) ‘Deep Brain Stimulation: Clinical Applications.’, The Psychiatric clinics of North America. United States, 41(3), pp. 385–394. doi: 10.1016/j.psc.2018.04.004.Elia, A. E. et al. (2018) ‘Deep brain stimulation for dystonia due to cerebral palsy: A review.’, European journal of paediatric neurology : EJPN : official journal of the European Paediatric Neurology Society. England, 22(2), pp. 308–315. doi: 10.1016/j.ejpn.2017.12.002.Fitzpatrick, J. M. et al. (2005) ‘Accuracy of customized miniature stereotactic platforms.’, Stereotactic and functional neurosurgery. Switzerland, 83(1), pp. 25–31. doi: 10.1159/000085023.Gielen, F. L. H. (2003) ‘Deep brain stimulation: current practice and challenges for the future’, in First International IEEE EMBS Conference on Neural Engineering, 2003. Conference Proceedings., pp. 489–491. doi: 10.1109/CNE.2003.1196869.Holl, E. et al. (2010) Improving Targeting in Image-Guided Frame-Based Deep Brain Stimulation, Neurosurgery. doi: 10.1227/NEU.0b013e3181f7422a.Holloway, K. L. et al. (2005) ‘Frameless stereotaxy using bone fiducial markers for deep brain stimulation.’, Journal of neurosurgery. United States, 103(3), pp. 404–413. doi: 10.3171/jns.2005.103.3.0404.Holslag, J. A. H. et al. (2018) ‘Deep Brain Stimulation for Essential Tremor: A Comparison of Targets.’, World neurosurgery. United States, 110, pp. e580–e584. doi: 10.1016/j.wneu.2017.11.064.Itakura, T. (ed.) (2014) Deep brain stimulation for neurological disorders : theoretical background and clinical application / Toru Itakura, editor. Cham : Springer, [2014].Kohl, S. and Baldermann, J. C. (2018) ‘Progress and challenges in deep brain stimulation for obsessive-compulsive disorder.’, Pharmacology & therapeutics. England, 186, pp. 168–175. doi: 10.1016/j.pharmthera.2018.01.011.Konrad, P. E. et al. (2011) ‘Customized, miniature rapid-prototype stereotactic frames for use in deep brain stimulator surgery: initial clinical methodology and experience from 263 patients from 2002 to 2008.’, Stereotactic and functional neurosurgery, 89(1), pp. 34–41. doi: 10.1159/000322276.Laxton, A. W. et al. (2010) ‘A phase I trial of deep brain stimulation of memory circuits in Alzheimer’s disease.’, Annals of neurology. United States, 68(4), pp. 521–534. doi: 10.1002/ana.22089.Li, Z. et al. (2016) ‘Review on Factors Affecting Targeting Accuracy of Deep Brain Stimulation Electrode Implantation between 2001 and 2015.’, Stereotactic and functional neurosurgery. Switzerland, 94(6), pp. 351–362. doi: 10.1159/000449206.Macerollo, A. and Deuschl, G. (2018) ‘Deep brain stimulation for tardive syndromes: Systematic review and meta-analysis.’, Journal of the neurological sciences. Netherlands, 389, pp. 55–60. doi: 10.1016/j.jns.2018.02.013.Maciunas, R. J., Galloway, R. L. J. and Latimer, J. W. (1994) ‘The application accuracy of stereotactic frames.’, Neurosurgery. United States, 35(4), pp. 682–685. doi: 10.1227/00006123-199410000-00015. Magown, P. et al. (2018) ‘Deep brain stimulation parameters for dystonia: A systematic review.’, Parkinsonism & related disorders. England, 54, pp. 9–16. doi: 10.1016/j.parkreldis.2018.04.017.Mao, Z. et al. (2019) ‘Comparison of Efficacy of Deep Brain Stimulation of Different Targets in Parkinson’s Disease: A Network Meta-Analysis.’, Frontiers in aging neuroscience, p. 23. doi: 10.3389/fnagi.2019.00023.Martini, M. L., Mocco, J. and Panov, F. (2019) ‘Neurosurgical Approaches to Levodopa-Induced Dyskinesia.’, World neurosurgery. United States, 126, pp. 376–382. doi: 10.1016/j.wneu.2019.03.056.Medical Advisory Secretariat (2005) ‘Deep brain stimulation for Parkinson’s disease and other movement disorders: an evidence-based analysis.’, Ontario health technology assessment series, 5(2), pp. 1–56.van den Munckhof, P. et al. (2010) ‘Postoperative curving and upward displacement of deep brain stimulation electrodes caused by brain shift.’, Neurosurgery. United States, 67(1), pp. 44–49. doi: 10.1227/01.NEU.0000370597.44524.6D.O’Gorman, R. L. et al. (2009) ‘CT/MR image fusion in the postoperative assessment of electrodes implanted for deep brain stimulation.’, Stereotactic and functional neurosurgery. Switzerland, 87(4), pp. 205–210. doi: 10.1159/000225973.Patel, N. K., Plaha, P. and Gill, S. S. (2007) ‘Magnetic resonance imaging-directed method for functional neurosurgery using implantable guide tubes.’, Neurosurgery. United States, 61(5 Suppl 2), pp. 356–358. doi: 10.1227/01.neu.0000303994.89773.01.Pezeshkian, P. et al. (2011) ‘Accuracy of frame-based stereotactic magnetic resonance imaging vs frame-based stereotactic head computed tomography fused with recent magnetic resonance imaging for postimplantation deep brain stimulator lead localization.’, Neurosurgery. United States, 69(6), pp. 1299–1306. doi: 10.1227/NEU.0b013e31822b7069.Rebelo, P. et al. (2018) ‘Thalamic Directional Deep Brain Stimulation for tremor: Spend less, get more.’, Brain stimulation. United States, 11(3), pp. 600–606. doi: 10.1016/j.brs.2017.12.015.Sabour, S. (2013) ‘A quantitative assessment of the accuracy and reliability of O-arm images for deep brain stimulation surgery.’, Neurosurgery. United States, p. E696. doi: 10.1227/NEU.0b013e318282d66e.Sankar, T. et al. (2015) ‘Deep Brain Stimulation Influences Brain Structure in Alzheimer’s Disease.’, Brain stimulation, 8(3), pp. 645–654. doi: 10.1016/j.brs.2014.11.020.Sharma, M. et al. (2014) ‘Accuracy and precision of targeting using frameless stereotactic system in deep brain stimulator implantation surgery.’, Neurology India. India, 62(5), pp. 503–509. doi: 10.4103/0028-3886.144442.Smith, A. P. and Bakay, R. A. E. (2011) ‘Frameless deep brain stimulation using intraoperative O-arm technology. Clinical article.’, Journal of neurosurgery. United States, 115(2), pp. 301–309. doi: 10.3171/2011.3.JNS101642.Starr, P. A. et al. (2010) ‘Subthalamic nucleus deep brain stimulator placement using high-field interventional magnetic resonance imaging and a skull-mounted aiming device: technique and application accuracy.’, Journal of neurosurgery, 112(3), pp. 479–490. doi: 10.3171/2009.6.JNS081161.Tolleson, C. et al. (2015) ‘The optimal pallidal target in deep brain stimulation for dystonia: a study using a functional atlas based on nonlinear image registration.’, Stereotactic and functional neurosurgery, 93(1), pp. 17–24. doi: 10.1159/000368441.Velasco, F. et al. (2010) ‘Deep brain stimulation for epilepsy’, in Rho, J. M., Sankar, R., and Stafstrom, C. E. (eds) Epilepsy : mechanisms, models, and translational perspectives / edited by, Jong M. Rho, Raman Sankar, Carl E. Stafstrom. Boca Raton, Fla. : London: Boca Raton, Fla. : CRC, pp. 345–360.Zrinzo, L. et al. (2009) ‘Avoiding the ventricle: a simple step to improve accuracy of anatomical targeting during deep brain stimulation.’, Journal of neurosurgery. United States, 110(6), pp. 1283–1290. doi: 10.3171/2008.12.JNS08885.Zrinzo, L. (2012) ‘Pitfalls in precision stereotactic surgery.’, Surgical neurology international, 3(Suppl 1), pp. S53-61. doi: 10.4103/2152-7806.91612.https://revistas.eia.edu.co/index.php/reveia/article/download/1480/1435Núm. 37 , Año 2022 :153737004 pp. 119Revista EIAPublicationOREORE.xmltext/xml2726https://repository.eia.edu.co/bitstreams/23624b14-21fa-4109-bf9a-2b311fe71b09/download8dd4000ac7f8fcefc01470928287ddd7MD5111190/5141oai:repository.eia.edu.co:11190/51412023-07-25 17:00:15.279https://creativecommons.org/licenses/by-nc-nd/4.0Revista EIA - 2021metadata.onlyhttps://repository.eia.edu.coRepositorio Institucional Universidad EIAbdigital@metabiblioteca.com