Simulación del proceso de producción de L-fenilalanina por la ruta fermentativa utilizando el simulador SuperPro Designer®

La L-fenilalanina (L-Fe) es uno de los ocho aminoácidos esenciales para el cuerpo humano. En el presente trabajo se efectuó la simulación del proceso de producción de la L-Fe por la ruta fermentativa mediante el simulador SuperPro Designerâ, con el fin de conocer sus indicadores de rentabilidad más...

Full description

Autores:
Perez Sanchez, Amaury
Ranero-González, Elizabeth
Pérez-Sánchez, Eddy J.
Segura-Silva, Rutdali Maria
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Universidad EIA .
Repositorio:
Repositorio EIA .
Idioma:
spa
OAI Identifier:
oai:repository.eia.edu.co:11190/5119
Acceso en línea:
https://repository.eia.edu.co/handle/11190/5119
https://doi.org/10.24050/reia.v18i35.1417
Palabra clave:
Estudio de sensibilidad
L-Fenilalanina
Fermentación
Rentabilidad
Simulación
SuperPro Designer
Sensitivity study
L-Phenylalanine
Fermentation
Profitability
Simulation; SuperPro Designer®
Rights
openAccess
License
Revista EIA - 2020
id REIA2_27f9952fab21a318369457c590172daa
oai_identifier_str oai:repository.eia.edu.co:11190/5119
network_acronym_str REIA2
network_name_str Repositorio EIA .
repository_id_str
dc.title.spa.fl_str_mv Simulación del proceso de producción de L-fenilalanina por la ruta fermentativa utilizando el simulador SuperPro Designer®
dc.title.translated.eng.fl_str_mv Simulation of the L-phenylalanine production process by the fermentative route using SuperPro Designer® simulator
title Simulación del proceso de producción de L-fenilalanina por la ruta fermentativa utilizando el simulador SuperPro Designer®
spellingShingle Simulación del proceso de producción de L-fenilalanina por la ruta fermentativa utilizando el simulador SuperPro Designer®
Estudio de sensibilidad
L-Fenilalanina
Fermentación
Rentabilidad
Simulación
SuperPro Designer
Sensitivity study
L-Phenylalanine
Fermentation
Profitability
Simulation; SuperPro Designer®
title_short Simulación del proceso de producción de L-fenilalanina por la ruta fermentativa utilizando el simulador SuperPro Designer®
title_full Simulación del proceso de producción de L-fenilalanina por la ruta fermentativa utilizando el simulador SuperPro Designer®
title_fullStr Simulación del proceso de producción de L-fenilalanina por la ruta fermentativa utilizando el simulador SuperPro Designer®
title_full_unstemmed Simulación del proceso de producción de L-fenilalanina por la ruta fermentativa utilizando el simulador SuperPro Designer®
title_sort Simulación del proceso de producción de L-fenilalanina por la ruta fermentativa utilizando el simulador SuperPro Designer®
dc.creator.fl_str_mv Perez Sanchez, Amaury
Ranero-González, Elizabeth
Pérez-Sánchez, Eddy J.
Segura-Silva, Rutdali Maria
dc.contributor.author.spa.fl_str_mv Perez Sanchez, Amaury
Ranero-González, Elizabeth
Pérez-Sánchez, Eddy J.
Segura-Silva, Rutdali Maria
dc.subject.spa.fl_str_mv Estudio de sensibilidad
L-Fenilalanina
Fermentación
Rentabilidad
Simulación
SuperPro Designer
topic Estudio de sensibilidad
L-Fenilalanina
Fermentación
Rentabilidad
Simulación
SuperPro Designer
Sensitivity study
L-Phenylalanine
Fermentation
Profitability
Simulation; SuperPro Designer®
dc.subject.eng.fl_str_mv Sensitivity study
L-Phenylalanine
Fermentation
Profitability
Simulation; SuperPro Designer®
description La L-fenilalanina (L-Fe) es uno de los ocho aminoácidos esenciales para el cuerpo humano. En el presente trabajo se efectuó la simulación del proceso de producción de la L-Fe por la ruta fermentativa mediante el simulador SuperPro Designerâ, con el fin de conocer sus indicadores de rentabilidad más importantes bajo las condiciones económicas actuales de Cuba. También se efectuó un estudio de sensibilidad con el objetivo de saber a partir de qué valor del parámetro precio de venta unitario del frasco de L-Fe se comienza a obtener un valor positivo del indicador Valor Actual Neto (VAN). Se obtuvo un margen bruto de 70,15 %, un costo unitario de producción de USD $ 66,75 por frasco y un retorno de la inversión de 38,92 %. A partir de un valor del precio de venta unitario del frasco de L-Fe de USD $ 115,3 empieza a ser rentable la planta de producción. El proceso de producción de L-Fe puede considerarse de rentable y factible desde el punto de vista técnico-económico atendiendo a los resultados obtenidos de VAN (USD $ 14 040 000), Tasa Interna de Retorno (49,14 %) y Período de Recuperación de la Inversión (2,57 años).
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-12-31 14:30:36
2022-06-17T20:20:51Z
dc.date.available.none.fl_str_mv 2020-12-31 14:30:36
2022-06-17T20:20:51Z
dc.date.issued.none.fl_str_mv 2020-12-31
dc.type.spa.fl_str_mv Artículo de revista
dc.type.eng.fl_str_mv Journal article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_6501
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 1794-1237
dc.identifier.uri.none.fl_str_mv https://repository.eia.edu.co/handle/11190/5119
dc.identifier.doi.none.fl_str_mv 10.24050/reia.v18i35.1417
dc.identifier.eissn.none.fl_str_mv 2463-0950
dc.identifier.url.none.fl_str_mv https://doi.org/10.24050/reia.v18i35.1417
identifier_str_mv 1794-1237
10.24050/reia.v18i35.1417
2463-0950
url https://repository.eia.edu.co/handle/11190/5119
https://doi.org/10.24050/reia.v18i35.1417
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Aguiar, A. C. d.; Osorio-Tobón, J. F.; Silva, L. P. S.; Barbero, G. F.; Martínez, J. (2018). Economic analysis of oleoresin production from malagueta peppers (Capsicum frutescens) by supercritical fluid extraction. The Journal of Supercritical Fluids, 133, pp. 86-93. https://dx.doi.org/10.1016/j.supflu. 2017.09.031.
Auli, N. A.; Sakinah, M.; Bakri, A. M. M. A.; Kamarudin, H.; Norazian, M. N. (2013). Simulation Of Xylitol Production: A Review. Australian Journal of Basic and Applied Sciences, 7(5), pp. 366-372.
Baca, G. (2010). Evaluación de proyectos, 6ta ed., México D.F., McGraw-Hill/Interamericana Editores, S.A. de C.V, pp. 56-94.
Báez-Viveros, J. L.; Flores, N., Juárez, K.; Castillo-España, P.; Bolivar, F.; Gosset, G. (2007). Metabolic transcription analysis of engineered Escherichia coli strains that overproduce L-phenylalanine. Microbial Cell Factories, 6(1), pp. 1-20. https://dx.doi.org/10.1186/1475-2859-6-30.
BIOTOL. (1997). Biotechnological Innovations in Chemical Synthesis. Oxford, Butterworth-Heinemann, pp. 253-262.
Bongaerts, J.; Krämer, M.; Müller, U.; Raeven, L.; Wubbolts, M. (2001). Metabolic Engineering for Microbial Production of Aromatic Amino Acids and Derived Compounds. Metabolic Engineering, 3(4), pp. 289-300. https://dx.doi.org/10.1006/mben.2001.0196.
Doroshenko, V. G.; Livshits, V. A.; Airich, L. G.; Shmagina, I. S.; Savrasova, E. A.; Ovsienko, M. V.; Mashko, S. V. (2015). Metabolic Engineering of Escherichia coli for the Production of Phenylalanine and Related Compounds. Applied Biochemistry and Microbiology, 51(7), pp. 733-750. https://dx.doi.org/10.1134/s0003683815070017.
FINAR. (2019). Price List 2019-20, Gujarat, Finar Foundation,
García, J. M. (2008). La simulación de procesos en ingeniería química. Revista Investigación Científica, 4(2), pp. 1-9.
Gerigk, M.; Bujnicki, R.; Ganpo-Nkwenkwa, E.; Bongaerts, J.; Sprenger, G.; Takors, R. (2002). Process Control for Enhanced L-Phenylalanine Production Using Different Recombinant Escherichia coli Strains. Biotechnology and Bioengineering, 80(7), pp. 746-754. https://dx.doi.org/10.1002/bit.10428.
Gerigk, M. R.; Maass, D.; Kreutzer, A.; Sprenger, G.; Bongaerts, J.; Wubbolts, M.; Takors, R. (2002). Enhanced pilot-scale fed-batch L-phenylalanine production with recombinant Escherichia coli by fully integrated reactive extraction. Bioprocess Biosyst. Eng., 25, pp. 43–52. https://dx.doi.org/0.1007/s00449-002-0280-2.
Heinzle, E., Biwer, A. P., Cooney, C. L. (2006). Development of Sustainable Bioprocesses Modeling and Assessment. West Sussex, John Wiley & Sons, pp. 62-78.
Intelligen. (2018). SuperPro Designer® (Version 10.0). Scotch Plains, Intelligen, Inc.
Ito, H.; Sato, K.; Matsui, K.; Sano, K.; Enei, H.; Hirose, Y. (1990). Molecular breeding of a Brevibacterium lactofermentum L-phenylalanine producer using a cloned prephenate dehydratase gene. Appl. Microbiol. Biotechnol., 33, pp. 190-195. https://dx.doi.org/10.1007/BF00176523.
Jenkins, S. (2020). Economic Indicators. Chemical Engineering, 127(2), pp. 56.
Klausner, A. (1985). Building for Success in Phenylalanine. Biotechnology, 3(4), pp. 301-307.
Lee, C. S.; Chong, M. F.; Binner, E.; Gomes, R.; Robinson, J. (2018). Techno-economic assessment of scale-up ofbio-flocculant extraction and production by usingokra as biomass feedstock. Chemical Engineering Research and Design, 132, pp. 358–369. https://dx.doi.org/10.1016/j.cherd.2018.01.050.
Liu, C. H.; Liao, C. C. (1994). Medium optimization for L-phenylalanine production by a tryptophan auxotroph of Corynebacterium glutamicum. Biotechnol. Lett., 16, pp. 801-806.
Liu, Y.; Xu, Y.; Ding, D.; Wen, J.; Zhu, B.; Zhang, D. (2018). Genetic engineering of Escherichia coli to improve L-phenylalanine production. BMC Biotechnology, 18(5), pp. 1-12. https://dx.doi.org/10.1186/s12896-018-0418-1.
Mani, S.; Sundaram, J.; Das, K. C. (2016). Process simulation and modeling: Anaerobic digestion of complex organic matter. Biomass and Bioenergy, 93, pp. 158-167. https://dx.doi.org/10.1016/j.biombioe.2016.07.018.
Matche. (2020). Chemical Equipment Cost. Disponible en www.matche.com. [Consultado 12 de abril 2020].
McEvoy, J. J.; Joyce, A. (1974). Production of L-phenylalanine by DL-phenylalanine hydroxamate-resistant Tyr- mutants of Bacillus subtilis. Mol. Cell. Biochem., 4(3), pp. 191-195. https://dx.doi.org/10.1007/bf01731480.
Meza, J. d. J. (2013). Evaluación financiera de proyectos, 3ra ed., Bogotá, D.C.: Ecoe Ediciones, pp. 133-199.
Miranda, R. d. C.; Mendes, M. F. (2018). Simulation of the Extractive Distillation of Ethanol-Water System: Evaluation of the Influence of Different Solvents. New Materials, Compounds and Applications, 2(2), pp. 152-167.
Molychem. (2019). Price List 2019-2021. Mumbai, Molychem.
Oxford. (2019). Price List 2020-2021 Maharashtra, Oxford Lab Fine Chem LLP.
Peters, M. S., Timmerhaus, K. D., West, R. E. (2003). Plant Design and Economics for Chemical Engineers, 5th ed., New York: McGraw-Hill, pp. 226-275.
Rüffer, N.; Heidersdorf, U.; Kretzers, I.; Sprenger, G. A.; Raeven, L.; Takors, R. (2004). Fully integrated L-phenylalanine separation and concentration using reactive-extraction with liquid-liquid centrifuges in a fed-batch process with E. coli. Bioprocess Biosyst Eng, 26, pp. 239–248. https://dx.doi.org/10.1007/ s00449-004-0354-4.
Sayar, N. A.; Pinar, O.; Kazan, D.; Sayar, A. A. (2019). Bioethanol Production From Turkish Hazelnut Husk Process Design and Economic Evaluation. Waste Biomass Valor, 10, pp. 909–923. https://dx.doi.org/10.1007/s12649-017-0103-y.
Sigma-Aldrich. (2020). L-Phenylalanine PharmaGrade. Disponible en: https://www.sigmaaldrich.com/catalog/product/sigma/p8740?lang=en&region=CU. [Consultado 27 de abril 2020].
Sinnott, R., Towler, G. (2020). Chemical Engineering Design, 6th ed., Oxford, Butterworth-Heinemann, pp. 275-361.
Sprenger, G. A. (2007). From scratch to value: engineering Escherichia coli wild type cells to the production of L-phenylalanine and other fine chemicals derived from chorismate. Applied Microbiology and Biotechnology, 75(4), pp. 739–749. https://dx.doi.org/10.1007/s00253-007-0931-y.
Sun, Z.; Gao, X.; Zhang, Y.; Gao, C. (2016). Separation and purification of L-phenylalanine from the fermentation broth by electrodialysis. Desalination and Water Treatment, 57(47), pp. 1-7. https://dx.doi.org/10.1080/19443994.2015. 1137082.
Towler, G., Sinnott, R. (2013). Chemical Engineering Design. Principles, Practice and Economics of Plant and Process Design, 2nd ed., Oxford, Butterworth-Heinemann, pp. 389-425.
Vučurović, D. G.; Dodić, S. N.; Popov, S. D.; Dodić, J. M.; Grahovac, J. A. (2012). Process model and economic analysis of ethanol production from sugar beet raw juice as part of the cleaner production concept. Bioresource Technology, 104, pp. 367–372. https://dx.doi.org/10.1016/j.biortech.2011.10.085.
Wu, J.; Liu, Y.; Zhao, S.; Sun, J.; Jin, Z.; Zhang, D. (2019). Application of Dynamic Regulation to Increase L-Phenylalanine Production in Escherichia coli. J. Microbiol. Biotechnol., 29(6), pp. 923–932. https://dx.doi.org/10.4014/ jmb.1901.01058.
WVU. (2020) Batch Production of Aminoacids. Disponible en: https://cbe.statler.wvu.edu/files/d/450550ca-9cab-4688-a9b8-f73bc1c72707/ batch-production_of_ amino_acids.pdf. [Consultado 5 de febrero de 2020].
Yuan, P.; Cao, W.; Wang, Z.; Chen, K.; Li, Y.; Ouyang, P. (2015). Enhancement of L-phenylalanine production by engineered Escherichia coli using phased exponential L-tyrosine feeding combined with nitrogen source optimization. Journal of Bioscience and Bioengineering, 120(1), pp. 36-40. https://dx.doi.org /10.1016/j.jbiosc.2014.12.002
dc.relation.bitstream.none.fl_str_mv https://revistas.eia.edu.co/index.php/reveia/article/download/1417/1403
dc.relation.citationedition.spa.fl_str_mv Núm. 35 , Año 2021
dc.relation.citationendpage.none.fl_str_mv 15
dc.relation.citationissue.spa.fl_str_mv 35
dc.relation.citationstartpage.none.fl_str_mv 35017 pp. 1
dc.relation.citationvolume.spa.fl_str_mv 18
dc.relation.ispartofjournal.spa.fl_str_mv Revista EIA
dc.rights.spa.fl_str_mv Revista EIA - 2020
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Revista EIA - 2020
https://creativecommons.org/licenses/by-nc-nd/4.0
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Fondo Editorial EIA - Universidad EIA
dc.source.spa.fl_str_mv https://revistas.eia.edu.co/index.php/reveia/article/view/1417
institution Universidad EIA .
bitstream.url.fl_str_mv https://repository.eia.edu.co/bitstreams/4ee384d7-d270-4bfd-8c10-af937a41dfef/download
bitstream.checksum.fl_str_mv 2795a62394ded0a83c0141ec9ee3ba6c
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EIA
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1818099034809696256
spelling Perez Sanchez, Amaury2ad72dc15e6791952779e47cfa203592300Ranero-González, Elizabeth7eed137bd6c05884d20ab73168717cba300Pérez-Sánchez, Eddy J.81e07dec73482250f681f610d2fbe5e7300Segura-Silva, Rutdali Mariae1a74fff146128a8cfad7224a007435b3002020-12-31 14:30:362022-06-17T20:20:51Z2020-12-31 14:30:362022-06-17T20:20:51Z2020-12-311794-1237https://repository.eia.edu.co/handle/11190/511910.24050/reia.v18i35.14172463-0950https://doi.org/10.24050/reia.v18i35.1417La L-fenilalanina (L-Fe) es uno de los ocho aminoácidos esenciales para el cuerpo humano. En el presente trabajo se efectuó la simulación del proceso de producción de la L-Fe por la ruta fermentativa mediante el simulador SuperPro Designerâ, con el fin de conocer sus indicadores de rentabilidad más importantes bajo las condiciones económicas actuales de Cuba. También se efectuó un estudio de sensibilidad con el objetivo de saber a partir de qué valor del parámetro precio de venta unitario del frasco de L-Fe se comienza a obtener un valor positivo del indicador Valor Actual Neto (VAN). Se obtuvo un margen bruto de 70,15 %, un costo unitario de producción de USD $ 66,75 por frasco y un retorno de la inversión de 38,92 %. A partir de un valor del precio de venta unitario del frasco de L-Fe de USD $ 115,3 empieza a ser rentable la planta de producción. El proceso de producción de L-Fe puede considerarse de rentable y factible desde el punto de vista técnico-económico atendiendo a los resultados obtenidos de VAN (USD $ 14 040 000), Tasa Interna de Retorno (49,14 %) y Período de Recuperación de la Inversión (2,57 años).L-phenylalanine (L-Phe) is one of the eight essential amino acids for the human body. In this work, the simulation of the L-Phe fermentative production process was carried out using the SuperPro Designer® simulator, in order to know its most important profitability indicators under the current economic conditions in Cuba. A sensitivity study was also accomplished with the objective of knowing from which value of the parameter unit selling price of an L-Phe bottle a positive value begins to be obtained of the indicator Net Present Value (NPV). A gross margin of 70.15%, a unit cost of production of USD $ 66.75 per bottle and a return on investment of 38.92% were obtained. From a value of the unit sale price of the L-Phe bottle of USD $ 115.3 the production plant starts to be profitable. The L-Phe production process can be considered profitable and feasible from the techno-economical point of view, based on the results obtained of NPV (USD $ 14,040,000), Internal Rate of Return (49.14%) and Payback Time (2.57 years).     application/pdfspaFondo Editorial EIA - Universidad EIARevista EIA - 2020https://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.http://purl.org/coar/access_right/c_abf2https://revistas.eia.edu.co/index.php/reveia/article/view/1417Estudio de sensibilidadL-FenilalaninaFermentaciónRentabilidadSimulaciónSuperPro DesignerSensitivity studyL-PhenylalanineFermentationProfitabilitySimulation; SuperPro Designer®Simulación del proceso de producción de L-fenilalanina por la ruta fermentativa utilizando el simulador SuperPro Designer®Simulation of the L-phenylalanine production process by the fermentative route using SuperPro Designer® simulatorArtículo de revistaJournal articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionTexthttp://purl.org/redcol/resource_type/ARTREFhttp://purl.org/coar/version/c_970fb48d4fbd8a85Aguiar, A. C. d.; Osorio-Tobón, J. F.; Silva, L. P. S.; Barbero, G. F.; Martínez, J. (2018). Economic analysis of oleoresin production from malagueta peppers (Capsicum frutescens) by supercritical fluid extraction. The Journal of Supercritical Fluids, 133, pp. 86-93. https://dx.doi.org/10.1016/j.supflu. 2017.09.031.Auli, N. A.; Sakinah, M.; Bakri, A. M. M. A.; Kamarudin, H.; Norazian, M. N. (2013). Simulation Of Xylitol Production: A Review. Australian Journal of Basic and Applied Sciences, 7(5), pp. 366-372.Baca, G. (2010). Evaluación de proyectos, 6ta ed., México D.F., McGraw-Hill/Interamericana Editores, S.A. de C.V, pp. 56-94.Báez-Viveros, J. L.; Flores, N., Juárez, K.; Castillo-España, P.; Bolivar, F.; Gosset, G. (2007). Metabolic transcription analysis of engineered Escherichia coli strains that overproduce L-phenylalanine. Microbial Cell Factories, 6(1), pp. 1-20. https://dx.doi.org/10.1186/1475-2859-6-30.BIOTOL. (1997). Biotechnological Innovations in Chemical Synthesis. Oxford, Butterworth-Heinemann, pp. 253-262.Bongaerts, J.; Krämer, M.; Müller, U.; Raeven, L.; Wubbolts, M. (2001). Metabolic Engineering for Microbial Production of Aromatic Amino Acids and Derived Compounds. Metabolic Engineering, 3(4), pp. 289-300. https://dx.doi.org/10.1006/mben.2001.0196.Doroshenko, V. G.; Livshits, V. A.; Airich, L. G.; Shmagina, I. S.; Savrasova, E. A.; Ovsienko, M. V.; Mashko, S. V. (2015). Metabolic Engineering of Escherichia coli for the Production of Phenylalanine and Related Compounds. Applied Biochemistry and Microbiology, 51(7), pp. 733-750. https://dx.doi.org/10.1134/s0003683815070017.FINAR. (2019). Price List 2019-20, Gujarat, Finar Foundation,García, J. M. (2008). La simulación de procesos en ingeniería química. Revista Investigación Científica, 4(2), pp. 1-9.Gerigk, M.; Bujnicki, R.; Ganpo-Nkwenkwa, E.; Bongaerts, J.; Sprenger, G.; Takors, R. (2002). Process Control for Enhanced L-Phenylalanine Production Using Different Recombinant Escherichia coli Strains. Biotechnology and Bioengineering, 80(7), pp. 746-754. https://dx.doi.org/10.1002/bit.10428.Gerigk, M. R.; Maass, D.; Kreutzer, A.; Sprenger, G.; Bongaerts, J.; Wubbolts, M.; Takors, R. (2002). Enhanced pilot-scale fed-batch L-phenylalanine production with recombinant Escherichia coli by fully integrated reactive extraction. Bioprocess Biosyst. Eng., 25, pp. 43–52. https://dx.doi.org/0.1007/s00449-002-0280-2.Heinzle, E., Biwer, A. P., Cooney, C. L. (2006). Development of Sustainable Bioprocesses Modeling and Assessment. West Sussex, John Wiley & Sons, pp. 62-78.Intelligen. (2018). SuperPro Designer® (Version 10.0). Scotch Plains, Intelligen, Inc.Ito, H.; Sato, K.; Matsui, K.; Sano, K.; Enei, H.; Hirose, Y. (1990). Molecular breeding of a Brevibacterium lactofermentum L-phenylalanine producer using a cloned prephenate dehydratase gene. Appl. Microbiol. Biotechnol., 33, pp. 190-195. https://dx.doi.org/10.1007/BF00176523.Jenkins, S. (2020). Economic Indicators. Chemical Engineering, 127(2), pp. 56.Klausner, A. (1985). Building for Success in Phenylalanine. Biotechnology, 3(4), pp. 301-307.Lee, C. S.; Chong, M. F.; Binner, E.; Gomes, R.; Robinson, J. (2018). Techno-economic assessment of scale-up ofbio-flocculant extraction and production by usingokra as biomass feedstock. Chemical Engineering Research and Design, 132, pp. 358–369. https://dx.doi.org/10.1016/j.cherd.2018.01.050.Liu, C. H.; Liao, C. C. (1994). Medium optimization for L-phenylalanine production by a tryptophan auxotroph of Corynebacterium glutamicum. Biotechnol. Lett., 16, pp. 801-806.Liu, Y.; Xu, Y.; Ding, D.; Wen, J.; Zhu, B.; Zhang, D. (2018). Genetic engineering of Escherichia coli to improve L-phenylalanine production. BMC Biotechnology, 18(5), pp. 1-12. https://dx.doi.org/10.1186/s12896-018-0418-1.Mani, S.; Sundaram, J.; Das, K. C. (2016). Process simulation and modeling: Anaerobic digestion of complex organic matter. Biomass and Bioenergy, 93, pp. 158-167. https://dx.doi.org/10.1016/j.biombioe.2016.07.018.Matche. (2020). Chemical Equipment Cost. Disponible en www.matche.com. [Consultado 12 de abril 2020].McEvoy, J. J.; Joyce, A. (1974). Production of L-phenylalanine by DL-phenylalanine hydroxamate-resistant Tyr- mutants of Bacillus subtilis. Mol. Cell. Biochem., 4(3), pp. 191-195. https://dx.doi.org/10.1007/bf01731480.Meza, J. d. J. (2013). Evaluación financiera de proyectos, 3ra ed., Bogotá, D.C.: Ecoe Ediciones, pp. 133-199.Miranda, R. d. C.; Mendes, M. F. (2018). Simulation of the Extractive Distillation of Ethanol-Water System: Evaluation of the Influence of Different Solvents. New Materials, Compounds and Applications, 2(2), pp. 152-167.Molychem. (2019). Price List 2019-2021. Mumbai, Molychem.Oxford. (2019). Price List 2020-2021 Maharashtra, Oxford Lab Fine Chem LLP.Peters, M. S., Timmerhaus, K. D., West, R. E. (2003). Plant Design and Economics for Chemical Engineers, 5th ed., New York: McGraw-Hill, pp. 226-275.Rüffer, N.; Heidersdorf, U.; Kretzers, I.; Sprenger, G. A.; Raeven, L.; Takors, R. (2004). Fully integrated L-phenylalanine separation and concentration using reactive-extraction with liquid-liquid centrifuges in a fed-batch process with E. coli. Bioprocess Biosyst Eng, 26, pp. 239–248. https://dx.doi.org/10.1007/ s00449-004-0354-4.Sayar, N. A.; Pinar, O.; Kazan, D.; Sayar, A. A. (2019). Bioethanol Production From Turkish Hazelnut Husk Process Design and Economic Evaluation. Waste Biomass Valor, 10, pp. 909–923. https://dx.doi.org/10.1007/s12649-017-0103-y.Sigma-Aldrich. (2020). L-Phenylalanine PharmaGrade. Disponible en: https://www.sigmaaldrich.com/catalog/product/sigma/p8740?lang=en&region=CU. [Consultado 27 de abril 2020].Sinnott, R., Towler, G. (2020). Chemical Engineering Design, 6th ed., Oxford, Butterworth-Heinemann, pp. 275-361.Sprenger, G. A. (2007). From scratch to value: engineering Escherichia coli wild type cells to the production of L-phenylalanine and other fine chemicals derived from chorismate. Applied Microbiology and Biotechnology, 75(4), pp. 739–749. https://dx.doi.org/10.1007/s00253-007-0931-y.Sun, Z.; Gao, X.; Zhang, Y.; Gao, C. (2016). Separation and purification of L-phenylalanine from the fermentation broth by electrodialysis. Desalination and Water Treatment, 57(47), pp. 1-7. https://dx.doi.org/10.1080/19443994.2015. 1137082.Towler, G., Sinnott, R. (2013). Chemical Engineering Design. Principles, Practice and Economics of Plant and Process Design, 2nd ed., Oxford, Butterworth-Heinemann, pp. 389-425.Vučurović, D. G.; Dodić, S. N.; Popov, S. D.; Dodić, J. M.; Grahovac, J. A. (2012). Process model and economic analysis of ethanol production from sugar beet raw juice as part of the cleaner production concept. Bioresource Technology, 104, pp. 367–372. https://dx.doi.org/10.1016/j.biortech.2011.10.085.Wu, J.; Liu, Y.; Zhao, S.; Sun, J.; Jin, Z.; Zhang, D. (2019). Application of Dynamic Regulation to Increase L-Phenylalanine Production in Escherichia coli. J. Microbiol. Biotechnol., 29(6), pp. 923–932. https://dx.doi.org/10.4014/ jmb.1901.01058.WVU. (2020) Batch Production of Aminoacids. Disponible en: https://cbe.statler.wvu.edu/files/d/450550ca-9cab-4688-a9b8-f73bc1c72707/ batch-production_of_ amino_acids.pdf. [Consultado 5 de febrero de 2020].Yuan, P.; Cao, W.; Wang, Z.; Chen, K.; Li, Y.; Ouyang, P. (2015). Enhancement of L-phenylalanine production by engineered Escherichia coli using phased exponential L-tyrosine feeding combined with nitrogen source optimization. Journal of Bioscience and Bioengineering, 120(1), pp. 36-40. https://dx.doi.org /10.1016/j.jbiosc.2014.12.002https://revistas.eia.edu.co/index.php/reveia/article/download/1417/1403Núm. 35 , Año 2021153535017 pp. 118Revista EIAPublicationOREORE.xmltext/xml2787https://repository.eia.edu.co/bitstreams/4ee384d7-d270-4bfd-8c10-af937a41dfef/download2795a62394ded0a83c0141ec9ee3ba6cMD5111190/5119oai:repository.eia.edu.co:11190/51192023-07-25 16:49:56.933https://creativecommons.org/licenses/by-nc-nd/4.0Revista EIA - 2020metadata.onlyhttps://repository.eia.edu.coRepositorio Institucional Universidad EIAbdigital@metabiblioteca.com