Estimation of Water Erosion and the Transportation of Sediments in the Upper Basin of Cuxtepeques River, Chiapas, Mexico

Changes in land use and increased intensity of rainfall are factors of greater influence that accelerate the soil erosion process. The application of basin scale sedimentological models integrated to Geographic Information Systems (GIS), is a tool that allows the definition of critical zones, and of...

Full description

Autores:
Gutierrez Lopez, Ricardo
Muciño Porras, Juan José
Arellano Monterrosas, Jose Luis
Guichard Romero, Delva del Rocío
Aguilar Suárez, Miguel Ángel
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Universidad EIA .
Repositorio:
Repositorio EIA .
Idioma:
eng
OAI Identifier:
oai:repository.eia.edu.co:11190/5125
Acceso en línea:
https://repository.eia.edu.co/handle/11190/5125
https://doi.org/10.24050/reia.v18i35.1445
Palabra clave:
Land use
Water Erosion
Basin
GIS
Sediments
USLE
Extreme Events
Plant Cover
Statistic Homogeneity
Correlation
Land use
Water Erosion
Basin
GIS
Sediments
USLE
Extreme Events
Plant Cover
Statistic Homogeneity
Correlation
Rights
openAccess
License
Revista EIA - 2020
id REIA2_234b09e471a64ba1329fde9d0652a1d4
oai_identifier_str oai:repository.eia.edu.co:11190/5125
network_acronym_str REIA2
network_name_str Repositorio EIA .
repository_id_str
dc.title.spa.fl_str_mv Estimation of Water Erosion and the Transportation of Sediments in the Upper Basin of Cuxtepeques River, Chiapas, Mexico
dc.title.translated.eng.fl_str_mv Estimation of Water Erosion and the Sediment Transportation in the Upper Basin of Cuxtepeques River, Chiapas, Mexico
title Estimation of Water Erosion and the Transportation of Sediments in the Upper Basin of Cuxtepeques River, Chiapas, Mexico
spellingShingle Estimation of Water Erosion and the Transportation of Sediments in the Upper Basin of Cuxtepeques River, Chiapas, Mexico
Land use
Water Erosion
Basin
GIS
Sediments
USLE
Extreme Events
Plant Cover
Statistic Homogeneity
Correlation
Land use
Water Erosion
Basin
GIS
Sediments
USLE
Extreme Events
Plant Cover
Statistic Homogeneity
Correlation
title_short Estimation of Water Erosion and the Transportation of Sediments in the Upper Basin of Cuxtepeques River, Chiapas, Mexico
title_full Estimation of Water Erosion and the Transportation of Sediments in the Upper Basin of Cuxtepeques River, Chiapas, Mexico
title_fullStr Estimation of Water Erosion and the Transportation of Sediments in the Upper Basin of Cuxtepeques River, Chiapas, Mexico
title_full_unstemmed Estimation of Water Erosion and the Transportation of Sediments in the Upper Basin of Cuxtepeques River, Chiapas, Mexico
title_sort Estimation of Water Erosion and the Transportation of Sediments in the Upper Basin of Cuxtepeques River, Chiapas, Mexico
dc.creator.fl_str_mv Gutierrez Lopez, Ricardo
Muciño Porras, Juan José
Arellano Monterrosas, Jose Luis
Guichard Romero, Delva del Rocío
Aguilar Suárez, Miguel Ángel
dc.contributor.author.spa.fl_str_mv Gutierrez Lopez, Ricardo
Muciño Porras, Juan José
Arellano Monterrosas, Jose Luis
Guichard Romero, Delva del Rocío
Aguilar Suárez, Miguel Ángel
dc.subject.eng.fl_str_mv Land use
Water Erosion
Basin
GIS
Sediments
USLE
Extreme Events
Plant Cover
Statistic Homogeneity
Correlation
topic Land use
Water Erosion
Basin
GIS
Sediments
USLE
Extreme Events
Plant Cover
Statistic Homogeneity
Correlation
Land use
Water Erosion
Basin
GIS
Sediments
USLE
Extreme Events
Plant Cover
Statistic Homogeneity
Correlation
dc.subject.spa.fl_str_mv Land use
Water Erosion
Basin
GIS
Sediments
USLE
Extreme Events
Plant Cover
Statistic Homogeneity
Correlation
description Changes in land use and increased intensity of rainfall are factors of greater influence that accelerate the soil erosion process. The application of basin scale sedimentological models integrated to Geographic Information Systems (GIS), is a tool that allows the definition of critical zones, and of this the establishment of measures of control of processes of production and transport of sediments. This study evaluates the water erosion using the Universal Soil Loss Equation (USLE), five scenarios were studied: corresponding to the start of operations of the El Portillo II (1980) dam, and the before and after the two extreme events in the basin (September 1998 and October 2005). The transport of sediments was evaluated by regression, using full annually records (eight years) of flows of two gauging stations in the basin. Overall, variations in erosion rates were observed with changes in the vegetal coverage and statistical homogeneity in the gauging data, which allowed adjust them to a regression model, with correlation coefficient upper to 88%.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-12-31 14:30:36
2022-06-17T20:20:55Z
dc.date.available.none.fl_str_mv 2020-12-31 14:30:36
2022-06-17T20:20:55Z
dc.date.issued.none.fl_str_mv 2020-12-31
dc.type.spa.fl_str_mv Artículo de revista
dc.type.eng.fl_str_mv Journal article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_6501
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.content.eng.fl_str_mv Text
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.coarversion.eng.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 1794-1237
dc.identifier.uri.none.fl_str_mv https://repository.eia.edu.co/handle/11190/5125
dc.identifier.doi.none.fl_str_mv 10.24050/reia.v18i35.1445
dc.identifier.eissn.none.fl_str_mv 2463-0950
dc.identifier.url.none.fl_str_mv https://doi.org/10.24050/reia.v18i35.1445
identifier_str_mv 1794-1237
10.24050/reia.v18i35.1445
2463-0950
url https://repository.eia.edu.co/handle/11190/5125
https://doi.org/10.24050/reia.v18i35.1445
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.references.eng.fl_str_mv Arellano-Monterrosas, J. L. (1994). Degradación del Suelo por Erosión Hídrica en Chiapas: Evaluación y Principios Tecnológicos para su Control, tesis (Ingeniero Agrónomo), México, Universidad Autónoma de Chapingo, pp. 149-251.
Arellano-Monterrosas, J. L. (2005). Apropiación Territorial, Degradación Ambiental y Gestión de Recursos Hídricos en la Cuenca Superior del río Custepec, Chiapas, tesis (Maestría en Ciencias), México, Universidad Autónoma de Chapingo, pp. 46-481.
Bauman, J. and Arellano-Monterrosas, J. L. (2003). Measuring Rainfall Erosivity Characteristics and Annual R-Factors for Adjustment of the USLE in a Tropical Climate. In: 25 years of assessment of erosion-proccedings. Gheat, Belgium. D. Gabriels and W. Cornelis (eds.), pp. 69-74.
Campos-Aranda, D. F. (2010). Verificación de la Homogeneidad Regional Mediante Tres Pruebas Estadísticas. Tecnología y Ciencias del Agua, 1(4) octubre-diciembre, pp. 157-165. Disponible en: http://www.revistatyca.org.mx/ojs/index.php/tyca/article/view/78.
Campos-Aranda, D. F. (2011). Estimación de Envolventes de Diseño por Subregiones Hidrológicas. Tecnología y Ciencias del Agua, 2(4) octubre-diciembre, pp. 175-194. Disponible en: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-24222011000400012&lng=es&nrm=iso .
Castro-Quintero, A. F., Lince-Salazar, L. A. y Riñao-Melo, O. (2017). Determinación del Riesgo a la Erosión Potencial Hídrica en la Zona Cafetera del Quindío, Colombia. Revista de Investigación Agraria y Ambiental, [e-journal] 8(1) enero-junio, pp. 17-26. Disponible en: https://doi.org/10.22490/21456453.1828.
Challenger, A. y Dirzo, R. (2009). Estado de Conservación y Tendencia de Cambio, Primera parte: Factores de cambio y estado de la biodiversidad, En: CONABIO: Capital Natural de México, Vol. 2, México, pp. 35-73.
CORTOLIMA (2006). Fase de diagnóstico: Pérdida de Suelos. En: Plan de Ordenación y Manejo de la Cuenca Hidrográfica Mayor del Río Totare [e-book]. Ibagué, Colombia: Coorporación Regional Autónoma de Tolima, pp. 834-838. Disponible en: http://www.cortolima.gov.co/sites/default/files/images/stories/centro_documentos/pom_totare/diagnostico/m_212perdida_de_suelos_totare.pdf.
Cuevas, M. L., Garrido, A., Pérez-Damián, J. L. y Iura-González, D. (2010). Procesos de Cambio de Uso de Suelo y Degradación de la Vegetación Natural, En: INECC: Las Cuencas Hidrográficas de México, pp. 96-103.
Desmet, P. y, Govers, G. (1996). A GIS Procedure for Automatically Calculating the USLE LS Factor on Topographically Complex Landscape Units. Journal of Soil and Water Conservation, 51(5), pp. 427-433. Available at: http://search.ebscohost.com/login.aspx?direct=true&db=edsagr&AN=edsagr.US9633753&lang=es&site=eds-live.
Durigón, V. L., Antunes, M. H., Sánchez de Oliveira, P. T., Fonseca de Carvalho, D. and Fernándes, M. M. (2014). NDVI Time Series for Monitoring RUSLE Cover Management Factor in a Tropical Watershed. International Journal of Remote Sensing, [e-journal] 35(2), pp. 441-453. Available at: https://doi.org/10.1080/01431161.2013.871081.
ESRI (Enviromental System Research Institute), 2017. ArcGis Desktop/ArcMap 10. [Computer Program]. Redlands, California, U.S.A.: Enviromental System Research Institute Inc.
Fabián-Rivera, J. G., Mejía-Zermeño, R., Soto-Cortéz, G. y Val-Segura, R. (2005). Aspectos de la Medición de Sedimentos. En: Rivera-Trejo, F., Gutiérrez-López, A., Val-Segura, R., Mejía-Zermeño, R., Sánchez-Ruiz, P. A., Aparicio-Mijares, J., y Díaz-Flores, L. L., eds. La Medición de Sedimentos en México. Jiutepec, Morelos: IMTA-UJAT, pp. 11-15.
FAO. (2006). World Reference Base for Soil Resources 2006. A Framework for International Classification, Correlation and Communication, Roma, FAO, 2006.
Flores-López, H. E., Martínez-Menes, M., Oropeza-López, J. L., Mejía-Saens, E. y Carrillo-González, R. (2003). Integración de la EUPS a un SIG para Estimar la Erosión Hídrica del Suelo en Una Cuenca Hidrográfica de Tepatitlán, Jalisco, México. Terra Latinoamericana, 21(2) abril-junio, pp. 233-244. Disponible en: https://www.redalyc.org/articulo.oa?id=573/57315595010.
Gottschalk, C. L. (1964). Sedimentation. Part. I. Reservoir Sedimentation, In: Chow, V. T. Handbook of Applied Hydrology: A Compendium of Water-Resources Technology, Section 17-I, New York: McGraw-Hill, pp. 1418.
Hexagón Geospatial, 2017. Erdas Imagine 8.3. [Computer Program] Stockholm, Sweden: Hexagon AB Inc.
Krysanova, V., Williems, J., Bürger, G. and Ósterle, H. (2002). The Linkage Between Hydrological Processes and Sediment Transport at The River Basin Scale: A Modelling Study, In: Summer, W. y Walling, D. E., eds. Modelling Erosion, Sediment Transport and Sediment Yield, Thechnical Documents in Hydrology. No. 60. Paris, France: UNESCO-IHP, pp. 147-174.
Pereyra-Díaz, D., Gómez-Romero, L. y Loeza-Hernández, F. (2005). Pérdida de Suelo por Erosión Hídrica, En: Rivera-Trejo, F., Gutiérrez-López, A., Val-Segura, R., Mejía-Zermeño, R., Sánchez-Ruiz, P. A., Aparicio-Mijares, J., y Díaz-Flores, L. L., eds. La Medición de Sedimentos en México. Jiutepec, Morelos: IMTA-UJAT, pp. 61-84.
Pérez-Nieto, S. (2013). Erosión Hídrica en Cuencas Costeras de Chiapas y Estrategias para su Restauración Hidrológico Ambiental, tesis (Doctorado en Ingeniería), México, Colegio de Posgraduados, pp. 2.53-2.67.
Secretaría de Recursos Hidráulicos. (1972). Segunda Parte: Datos Hidrométricos y de Acarreo de Azolves en Suspensión, En: Boletín Hidrológico Núm. 38: Regiones Hidrológicas Núm. 30 (Grijalva Usumacinta), Núm. 31 (Yucatán oeste), Núm. 32 (Yucatán norte) y Núm. 33 (Yucatán este), Tomo I. México, D. F.
USGS (United States Geological Survey). (2018). GloVis. (United States Department of the Interior). https://glovis.usgs.gov/app.
Walling, D. E. (2009). The Impact of Global Change on Erosion and Sediment Transport by Rivers: Current Progress and Future Challenges. The United Nations World Water Assessment Program. Scientific Paper. Paris, France: UNESCO-IHP, pp. 2-22.
Wischmeier, W. H. y, Smith, D. D. (1978). Agriculture Handbook 537: Predicting Rainfall Erosion Losses, a Guide to Conservation Planning, Washington DC, USA: United States Department of Agriculture, pp. 4-34.
dc.relation.bitstream.none.fl_str_mv https://revistas.eia.edu.co/index.php/reveia/article/download/1445/1395
dc.relation.citationedition.spa.fl_str_mv Núm. 35 , Año 2021
dc.relation.citationendpage.none.fl_str_mv 14
dc.relation.citationissue.spa.fl_str_mv 35
dc.relation.citationstartpage.none.fl_str_mv 35013 pp. 1
dc.relation.citationvolume.spa.fl_str_mv 18
dc.relation.ispartofjournal.spa.fl_str_mv Revista EIA
dc.rights.eng.fl_str_mv Revista EIA - 2020
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.eng.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Revista EIA - 2020
https://creativecommons.org/licenses/by-nc-nd/4.0
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Fondo Editorial EIA - Universidad EIA
dc.source.eng.fl_str_mv https://revistas.eia.edu.co/index.php/reveia/article/view/1445
institution Universidad EIA .
bitstream.url.fl_str_mv https://repository.eia.edu.co/bitstreams/ee54f885-ba9e-472e-a9af-f876b6a1a664/download
bitstream.checksum.fl_str_mv a82c01ea52fc72edf250169b0e71947d
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EIA
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814100896066306048
spelling Gutierrez Lopez, Ricardo6ac9078a2f21099a50123f0e10fb7962300Muciño Porras, Juan José026676f446dc294a204d4509b0516d11300Arellano Monterrosas, Jose Luis116dc9dbeb8f15670907a582d271ba21300Guichard Romero, Delva del Rocío40ded70f0e1ee2a156c2eedea3cb3a70300Aguilar Suárez, Miguel Ángel6b208456ef0548b8eabb5d26d96b72f03002020-12-31 14:30:362022-06-17T20:20:55Z2020-12-31 14:30:362022-06-17T20:20:55Z2020-12-311794-1237https://repository.eia.edu.co/handle/11190/512510.24050/reia.v18i35.14452463-0950https://doi.org/10.24050/reia.v18i35.1445Changes in land use and increased intensity of rainfall are factors of greater influence that accelerate the soil erosion process. The application of basin scale sedimentological models integrated to Geographic Information Systems (GIS), is a tool that allows the definition of critical zones, and of this the establishment of measures of control of processes of production and transport of sediments. This study evaluates the water erosion using the Universal Soil Loss Equation (USLE), five scenarios were studied: corresponding to the start of operations of the El Portillo II (1980) dam, and the before and after the two extreme events in the basin (September 1998 and October 2005). The transport of sediments was evaluated by regression, using full annually records (eight years) of flows of two gauging stations in the basin. Overall, variations in erosion rates were observed with changes in the vegetal coverage and statistical homogeneity in the gauging data, which allowed adjust them to a regression model, with correlation coefficient upper to 88%.Changes in land use and increased intensity of rainfall are factors of greater influence that accelerate the soil erosion process. The application of basin scale sedimentological models integrated to Geographic Information Systems (GIS), is a tool that allows the definition of critical zones, and of this the establishment of measures of control of processes of production and transport of sediments. This study evaluates the water erosion using the Universal Soil Loss Equation (USLE), five scenarios were studied: corresponding to the start of operations of the El Portillo II (1980) dam, and the before and after the two extreme events in the basin (September 1998 and October 2005). The transport of sediments was evaluated by regression, using full annually records (eight years) of flows of two gauging stations in the basin. Overall, variations in erosion rates were observed with changes in the vegetal coverage and statistical homogeneity in the gauging data, which allowed adjust them to a regression model, with correlation coefficient upper to 88%.application/pdfengFondo Editorial EIA - Universidad EIARevista EIA - 2020https://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.http://purl.org/coar/access_right/c_abf2https://revistas.eia.edu.co/index.php/reveia/article/view/1445Land useWater ErosionBasinGISSedimentsUSLEExtreme EventsPlant CoverStatistic HomogeneityCorrelationLand useWater ErosionBasinGISSedimentsUSLEExtreme EventsPlant CoverStatistic HomogeneityCorrelationEstimation of Water Erosion and the Transportation of Sediments in the Upper Basin of Cuxtepeques River, Chiapas, MexicoEstimation of Water Erosion and the Sediment Transportation in the Upper Basin of Cuxtepeques River, Chiapas, MexicoArtículo de revistaJournal articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionTexthttp://purl.org/redcol/resource_type/ARTREFhttp://purl.org/coar/version/c_970fb48d4fbd8a85Arellano-Monterrosas, J. L. (1994). Degradación del Suelo por Erosión Hídrica en Chiapas: Evaluación y Principios Tecnológicos para su Control, tesis (Ingeniero Agrónomo), México, Universidad Autónoma de Chapingo, pp. 149-251.Arellano-Monterrosas, J. L. (2005). Apropiación Territorial, Degradación Ambiental y Gestión de Recursos Hídricos en la Cuenca Superior del río Custepec, Chiapas, tesis (Maestría en Ciencias), México, Universidad Autónoma de Chapingo, pp. 46-481.Bauman, J. and Arellano-Monterrosas, J. L. (2003). Measuring Rainfall Erosivity Characteristics and Annual R-Factors for Adjustment of the USLE in a Tropical Climate. In: 25 years of assessment of erosion-proccedings. Gheat, Belgium. D. Gabriels and W. Cornelis (eds.), pp. 69-74.Campos-Aranda, D. F. (2010). Verificación de la Homogeneidad Regional Mediante Tres Pruebas Estadísticas. Tecnología y Ciencias del Agua, 1(4) octubre-diciembre, pp. 157-165. Disponible en: http://www.revistatyca.org.mx/ojs/index.php/tyca/article/view/78.Campos-Aranda, D. F. (2011). Estimación de Envolventes de Diseño por Subregiones Hidrológicas. Tecnología y Ciencias del Agua, 2(4) octubre-diciembre, pp. 175-194. Disponible en: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-24222011000400012&lng=es&nrm=iso .Castro-Quintero, A. F., Lince-Salazar, L. A. y Riñao-Melo, O. (2017). Determinación del Riesgo a la Erosión Potencial Hídrica en la Zona Cafetera del Quindío, Colombia. Revista de Investigación Agraria y Ambiental, [e-journal] 8(1) enero-junio, pp. 17-26. Disponible en: https://doi.org/10.22490/21456453.1828.Challenger, A. y Dirzo, R. (2009). Estado de Conservación y Tendencia de Cambio, Primera parte: Factores de cambio y estado de la biodiversidad, En: CONABIO: Capital Natural de México, Vol. 2, México, pp. 35-73.CORTOLIMA (2006). Fase de diagnóstico: Pérdida de Suelos. En: Plan de Ordenación y Manejo de la Cuenca Hidrográfica Mayor del Río Totare [e-book]. Ibagué, Colombia: Coorporación Regional Autónoma de Tolima, pp. 834-838. Disponible en: http://www.cortolima.gov.co/sites/default/files/images/stories/centro_documentos/pom_totare/diagnostico/m_212perdida_de_suelos_totare.pdf.Cuevas, M. L., Garrido, A., Pérez-Damián, J. L. y Iura-González, D. (2010). Procesos de Cambio de Uso de Suelo y Degradación de la Vegetación Natural, En: INECC: Las Cuencas Hidrográficas de México, pp. 96-103.Desmet, P. y, Govers, G. (1996). A GIS Procedure for Automatically Calculating the USLE LS Factor on Topographically Complex Landscape Units. Journal of Soil and Water Conservation, 51(5), pp. 427-433. Available at: http://search.ebscohost.com/login.aspx?direct=true&db=edsagr&AN=edsagr.US9633753&lang=es&site=eds-live.Durigón, V. L., Antunes, M. H., Sánchez de Oliveira, P. T., Fonseca de Carvalho, D. and Fernándes, M. M. (2014). NDVI Time Series for Monitoring RUSLE Cover Management Factor in a Tropical Watershed. International Journal of Remote Sensing, [e-journal] 35(2), pp. 441-453. Available at: https://doi.org/10.1080/01431161.2013.871081.ESRI (Enviromental System Research Institute), 2017. ArcGis Desktop/ArcMap 10. [Computer Program]. Redlands, California, U.S.A.: Enviromental System Research Institute Inc.Fabián-Rivera, J. G., Mejía-Zermeño, R., Soto-Cortéz, G. y Val-Segura, R. (2005). Aspectos de la Medición de Sedimentos. En: Rivera-Trejo, F., Gutiérrez-López, A., Val-Segura, R., Mejía-Zermeño, R., Sánchez-Ruiz, P. A., Aparicio-Mijares, J., y Díaz-Flores, L. L., eds. La Medición de Sedimentos en México. Jiutepec, Morelos: IMTA-UJAT, pp. 11-15.FAO. (2006). World Reference Base for Soil Resources 2006. A Framework for International Classification, Correlation and Communication, Roma, FAO, 2006.Flores-López, H. E., Martínez-Menes, M., Oropeza-López, J. L., Mejía-Saens, E. y Carrillo-González, R. (2003). Integración de la EUPS a un SIG para Estimar la Erosión Hídrica del Suelo en Una Cuenca Hidrográfica de Tepatitlán, Jalisco, México. Terra Latinoamericana, 21(2) abril-junio, pp. 233-244. Disponible en: https://www.redalyc.org/articulo.oa?id=573/57315595010.Gottschalk, C. L. (1964). Sedimentation. Part. I. Reservoir Sedimentation, In: Chow, V. T. Handbook of Applied Hydrology: A Compendium of Water-Resources Technology, Section 17-I, New York: McGraw-Hill, pp. 1418.Hexagón Geospatial, 2017. Erdas Imagine 8.3. [Computer Program] Stockholm, Sweden: Hexagon AB Inc.Krysanova, V., Williems, J., Bürger, G. and Ósterle, H. (2002). The Linkage Between Hydrological Processes and Sediment Transport at The River Basin Scale: A Modelling Study, In: Summer, W. y Walling, D. E., eds. Modelling Erosion, Sediment Transport and Sediment Yield, Thechnical Documents in Hydrology. No. 60. Paris, France: UNESCO-IHP, pp. 147-174.Pereyra-Díaz, D., Gómez-Romero, L. y Loeza-Hernández, F. (2005). Pérdida de Suelo por Erosión Hídrica, En: Rivera-Trejo, F., Gutiérrez-López, A., Val-Segura, R., Mejía-Zermeño, R., Sánchez-Ruiz, P. A., Aparicio-Mijares, J., y Díaz-Flores, L. L., eds. La Medición de Sedimentos en México. Jiutepec, Morelos: IMTA-UJAT, pp. 61-84.Pérez-Nieto, S. (2013). Erosión Hídrica en Cuencas Costeras de Chiapas y Estrategias para su Restauración Hidrológico Ambiental, tesis (Doctorado en Ingeniería), México, Colegio de Posgraduados, pp. 2.53-2.67.Secretaría de Recursos Hidráulicos. (1972). Segunda Parte: Datos Hidrométricos y de Acarreo de Azolves en Suspensión, En: Boletín Hidrológico Núm. 38: Regiones Hidrológicas Núm. 30 (Grijalva Usumacinta), Núm. 31 (Yucatán oeste), Núm. 32 (Yucatán norte) y Núm. 33 (Yucatán este), Tomo I. México, D. F.USGS (United States Geological Survey). (2018). GloVis. (United States Department of the Interior). https://glovis.usgs.gov/app.Walling, D. E. (2009). The Impact of Global Change on Erosion and Sediment Transport by Rivers: Current Progress and Future Challenges. The United Nations World Water Assessment Program. Scientific Paper. Paris, France: UNESCO-IHP, pp. 2-22.Wischmeier, W. H. y, Smith, D. D. (1978). Agriculture Handbook 537: Predicting Rainfall Erosion Losses, a Guide to Conservation Planning, Washington DC, USA: United States Department of Agriculture, pp. 4-34.https://revistas.eia.edu.co/index.php/reveia/article/download/1445/1395Núm. 35 , Año 2021143535013 pp. 118Revista EIAPublicationOREORE.xmltext/xml2851https://repository.eia.edu.co/bitstreams/ee54f885-ba9e-472e-a9af-f876b6a1a664/downloada82c01ea52fc72edf250169b0e71947dMD5111190/5125oai:repository.eia.edu.co:11190/51252023-07-25 17:05:26.023https://creativecommons.org/licenses/by-nc-nd/4.0Revista EIA - 2020metadata.onlyhttps://repository.eia.edu.coRepositorio Institucional Universidad EIAbdigital@metabiblioteca.com