Comportamiento electroquímico de los aceros 316L, 316L nitrurado y F1586 en fluido corporal simulado
Los materiales metálicos se emplean con frecuencia en la fabricación de implantes biomédicos, siendo la corrosión un factor que determina el éxito del desempeño del implante en el organismo. Debido a esto, en la presente investigación se estudió el comportamiento electroquímico de los aceros 316L, 3...
- Autores:
-
Galeano, Diana
Vargas Giraldo, Santiago
Vélez Restrepo, Juan Manuel
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Universidad EIA .
- Repositorio:
- Repositorio EIA .
- Idioma:
- spa
- OAI Identifier:
- oai:repository.eia.edu.co:11190/5131
- Acceso en línea:
- https://repository.eia.edu.co/handle/11190/5131
https://doi.org/10.24050/reia.v17i34.1461
- Palabra clave:
- Austenitc stainless steel
Passive layer
Corrosion
Simulated body fluid
Plasma nitriding
Aceros austeníticos
Capa pasiva
Corrosión
Fluido corporal simulado
Nitruración plasma
- Rights
- openAccess
- License
- Revista EIA - 2020
id |
REIA2_229965eb9dd0efadc62036b7f9054f13 |
---|---|
oai_identifier_str |
oai:repository.eia.edu.co:11190/5131 |
network_acronym_str |
REIA2 |
network_name_str |
Repositorio EIA . |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Comportamiento electroquímico de los aceros 316L, 316L nitrurado y F1586 en fluido corporal simulado |
dc.title.translated.eng.fl_str_mv |
Electrochemical behavior of 316L, 316L nitrided and F1586 steels in simulated body fluid |
title |
Comportamiento electroquímico de los aceros 316L, 316L nitrurado y F1586 en fluido corporal simulado |
spellingShingle |
Comportamiento electroquímico de los aceros 316L, 316L nitrurado y F1586 en fluido corporal simulado Austenitc stainless steel Passive layer Corrosion Simulated body fluid Plasma nitriding Aceros austeníticos Capa pasiva Corrosión Fluido corporal simulado Nitruración plasma |
title_short |
Comportamiento electroquímico de los aceros 316L, 316L nitrurado y F1586 en fluido corporal simulado |
title_full |
Comportamiento electroquímico de los aceros 316L, 316L nitrurado y F1586 en fluido corporal simulado |
title_fullStr |
Comportamiento electroquímico de los aceros 316L, 316L nitrurado y F1586 en fluido corporal simulado |
title_full_unstemmed |
Comportamiento electroquímico de los aceros 316L, 316L nitrurado y F1586 en fluido corporal simulado |
title_sort |
Comportamiento electroquímico de los aceros 316L, 316L nitrurado y F1586 en fluido corporal simulado |
dc.creator.fl_str_mv |
Galeano, Diana Vargas Giraldo, Santiago Vélez Restrepo, Juan Manuel |
dc.contributor.author.spa.fl_str_mv |
Galeano, Diana Vargas Giraldo, Santiago Vélez Restrepo, Juan Manuel |
dc.subject.eng.fl_str_mv |
Austenitc stainless steel Passive layer Corrosion Simulated body fluid Plasma nitriding |
topic |
Austenitc stainless steel Passive layer Corrosion Simulated body fluid Plasma nitriding Aceros austeníticos Capa pasiva Corrosión Fluido corporal simulado Nitruración plasma |
dc.subject.spa.fl_str_mv |
Aceros austeníticos Capa pasiva Corrosión Fluido corporal simulado Nitruración plasma |
description |
Los materiales metálicos se emplean con frecuencia en la fabricación de implantes biomédicos, siendo la corrosión un factor que determina el éxito del desempeño del implante en el organismo. Debido a esto, en la presente investigación se estudió el comportamiento electroquímico de los aceros 316L, 316L nitrurado y F1586 en fluido corporal simulado. A través de difracción de rayos X, fue posible deducir que las capas nitruradas estaban compuestas, además de la fase austenítica, de la fase S. De acuerdo a los resultados alcanzados mediante análisis electroquímicos, las capas pasivas de los aceros 316L nitrurado y F1586 fueron las más protectoras, en comparación al acero 316L sin nitrurar. Esto se debió a la alta estabilidad de la capa pasiva del acero nitrurado y a la posible formación de productos estables de corrosión en la superficie del acero F1586. En términos generales, el acero sometido a nitruración reveló la menor corrosión en el fluido corporal simulado. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-06-21 00:00:00 2022-06-17T20:20:59Z |
dc.date.available.none.fl_str_mv |
2020-06-21 00:00:00 2022-06-17T20:20:59Z |
dc.date.issued.none.fl_str_mv |
2020-06-21 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.eng.fl_str_mv |
Journal article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_6501 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ARTREF |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
1794-1237 |
dc.identifier.uri.none.fl_str_mv |
https://repository.eia.edu.co/handle/11190/5131 |
dc.identifier.doi.none.fl_str_mv |
10.24050/reia.v17i34.1461 |
dc.identifier.eissn.none.fl_str_mv |
2463-0950 |
dc.identifier.url.none.fl_str_mv |
https://doi.org/10.24050/reia.v17i34.1461 |
identifier_str_mv |
1794-1237 10.24050/reia.v17i34.1461 2463-0950 |
url |
https://repository.eia.edu.co/handle/11190/5131 https://doi.org/10.24050/reia.v17i34.1461 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
ASTM UNS S20910 (2018) Specification for Wrought Nitrogen Strengthened 22 Chromium-13 Nickel-5 Manganese-2.5 Molybdenum Stainless Steel Alloy Bar and Wire for Surgical Implants (UNS S20910). ASTM International. doi: 10.1520/F1314_F1314M-13A. ASTM UNS S29108 (2012) Specification for Wrought, Nitrogen Strengthened 23Manganese-21Chromium-1Molybdenum Low-Nickel Stainless Steel Alloy Bar and Wire for Surgical Implants (UNS S29108). ASTM International. doi: 10.1520/F2229-07. ASTM UNS S29225 (2017) Specification for Wrought Nitrogen Strengthened 11Manganese-17Chromium-3Molybdenum Low-Nickel Stainless Steel Alloy Bar and Wire for Surgical Implants (UNS S29225). ASTM International. doi: 10.1520/F2581-12R17. ASTM UNS S31675 (2013) Specification for Wrought Nitrogen Strengthened 21Chromium--10Nickel--3Manganese--2.5Molybdenum Stainless Steel Alloy Bar for Surgical Implants (UNS S31675). ASTM International. doi: 10.1520/F1586_F1586M-13. Biehler, J., Hoche, H. and Oechsner, M. (2017) ‘Nitriding behavior and corrosion properties of AISI 304L and 316L austenitic stainless steel with deformation-induced martensite’, Surface and Coatings Technology, 324, pp. 121–128. doi: 10.1016/j.surfcoat.2017.05.059. Borgioli, F. et al. (2005) ‘Glow-discharge nitriding of AISI 316L austenitic stainless steel: influence of treatment temperature’, Surface and Coatings Technology, 200(7), pp. 2474–2480. doi: 10.1016/j.surfcoat.2004.07.110. Braz, J. K. F. S. et al. (2019) ‘Plasma nitriding under low temperature improves the endothelial cell biocompatibility of 316L stainless steel’, Biotechnology Letters, 41(4–5), pp. 503–510. doi: 10.1007/s10529-019-02657-7. De Las Heras, E. et al. (2017) ‘Plasma nitriding of 316L stainless steel in two different N2-H2 atmospheres - Influence on microstructure and corrosion resistance’, Surface and Coatings Technology, 313, pp. 47–54. doi: 10.1016/j.surfcoat.2017.01.037. E. J. Mittemeijer (2013) ‘Fundamentals of Nitriding and Nitrocarburizing’, in J. Dossett and G.E. Totten (eds) Steel heat treating fundamentals and processes. ASM International, pp. 619–646. Eliaz, N. (2019) ‘Corrosion of Metallic Biomaterials: A Review’, Materials, 12(3). doi: 10.3390/ma12030407. Galeano-Osorio, D. S. et al. (2019) ‘Hemocompatibility of plasma nitrided 316L stainless steel: Effect of processing temperature’, Applied Surface Science, p. 144704. doi: 10.1016/j.apsusc.2019.144704. Guo, D., Kwok, C. T. and Chan, S. L. I. (2019) ‘Spindle speed in friction surfacing of 316L stainless steel – How it affects the microstructure, hardness and pitting corrosion resistance’, Surface and Coatings Technology, 361, pp. 324–341. doi: 10.1016/j.surfcoat.2019.01.055. Ichii, K., Fujimura, K. and Takase, T. (1986) ‘Structure of the Ion-nitrided Layer of 18-8 Stainless Steel’, Tech. Rep. Kansai Univ., 27, pp. 135–144. Kamachi Mudali, U. et al. (2002) ‘On the pitting corrosion resistance of nitrogen alloyed cold worked austenitic stainless steels’, Corrosion Science, 44(10), pp. 2183–2198. doi: 10.1016/S0010-938X(02)00035-5. Kokubo, T. and Takadama, H. (2006) ‘How useful is SBF in predicting in vivo bone bioactivity?’, Biomaterials, 27(15), pp. 2907–2915. doi: 10.1016/j.biomaterials.2006.01.017. Laleh, M. et al. (2019) ‘Unanticipated drastic decline in pitting corrosion resistance of additively manufactured 316L stainless steel after high-temperature post-processing’, Corrosion Science, p. 108412. doi: 10.1016/j.corsci.2019.108412. Li, J. et al. (2019) ‘Enhancing Pitting Corrosion Resistance of Severely Cold-Worked High Nitrogen Austenitic Stainless Steel by Nitric Acid Passivation’, Journal of The Electrochemical Society, 166(13), pp. C365–C374. doi: 10.1149/2.0211913jes. López, D., Alonso Falleiros, N. and Paulo Tschiptschin, A. (2011) ‘Effect of nitrogen on the corrosion–erosion synergism in an austenitic stainless steel’, Tribology International. (Special Issue: ECOTRIB 2009), 44(5), pp. 610–616. doi: 10.1016/j.triboint.2010.12.013. Man, C. et al. (2019) ‘The enhancement of microstructure on the passive and pitting behaviors of selective laser melting 316L SS in simulated body fluid’, Applied Surface Science, 467–468, pp. 193–205. doi: 10.1016/j.apsusc.2018.10.150. Marchev, K. et al. (1999) ‘The m phase layer on ion nitrided austenitic stainless steel (III): an epitaxial relationship between the m phase and the γ parent phase and a review of structural identifications of this phase’, Surface and Coatings Technology, 116–119, pp. 184–188. doi: 10.1016/S0257-8972(99)00296-0. Menthe, E. and Rie, K.-T. (1999) ‘Further investigation of the structure and properties of austenitic stainless steel after plasma nitriding’, Surface and Coatings Technology, 116–119, pp. 199–204. doi: 10.1016/S0257-8972(99)00085-7. Mingolo, N., Tschiptschin, A. P. and Pinedo, C. E. (2006) ‘On the formation of expanded austenite during plasma nitriding of an AISI 316L austenitic stainless steel’, Surface and Coatings Technology. (Proceedings of the 33rd International Conference on Metallurgical Coatings and Thin Films), 201(7), pp. 4215–4218. doi: 10.1016/j.surfcoat.2006.08.060. Mitchell, D. R. G. et al. (2003) ‘Characterisation of PI3 and RF plasma nitrided austenitic stainless steels using plan and cross-sectional TEM techniques’, Surface and Coatings Technology, 165(2), pp. 107–118. doi: 10.1016/S0257-8972(02)00741-7. Montaño-Machado, V. et al. (2019) ‘Medical Devices: Coronary Stents’, in Narayan, R. (ed.) Encyclopedia of Biomedical Engineering. Oxford: Elsevier, pp. 386–398. doi: 10.1016/B978-0-12-801238-3.10995-X. Sivakumar, M. and Rajeswari, S. (1995) ‘Corrosion induced failure of a stainless steel orthopaedic implant device’, Steel Research, 66(1), pp. 35–38. doi: 10.1002/srin.199501768. Wang, Q. et al. (2018) ‘A self-healing stainless steel: Role of nitrogen in eliminating detrimental effect of cold working on pitting corrosion resistance’, Corrosion Science, 145, pp. 55–66. doi: 10.1016/j.corsci.2018.09.013. Yang, K. and Ren, Y. (2010) ‘Nickel-free austenitic stainless steels for medical applications’, Science and Technology of Advanced Materials, 11(1). doi: 10.1088/1468-6996/11/1/014105. Ziegenhagen, R. et al. (2019) ‘Corrosion Resistance of Stainless Steels Intended to Come into Direct or Prolonged Contact with the Skin’, Materials, 12(6), p. 987. doi: 10.3390/ma12060987. |
dc.relation.bitstream.none.fl_str_mv |
https://revistas.eia.edu.co/index.php/reveia/article/download/1461/1331 |
dc.relation.citationedition.spa.fl_str_mv |
Núm. 34 , Año 2020 |
dc.relation.citationendpage.none.fl_str_mv |
11 |
dc.relation.citationissue.spa.fl_str_mv |
34 |
dc.relation.citationstartpage.none.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
17 |
dc.relation.ispartofjournal.spa.fl_str_mv |
Revista EIA |
dc.rights.spa.fl_str_mv |
Revista EIA - 2020 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0 |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Revista EIA - 2020 https://creativecommons.org/licenses/by-nc-nd/4.0 http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Fondo Editorial EIA - Universidad EIA |
dc.source.spa.fl_str_mv |
https://revistas.eia.edu.co/index.php/reveia/article/view/1461 |
institution |
Universidad EIA . |
bitstream.url.fl_str_mv |
https://repository.eia.edu.co/bitstreams/af1890d8-e09b-4cab-933f-9c26cedbe132/download |
bitstream.checksum.fl_str_mv |
397a95217664ca3a78ae67dc452a0ac6 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EIA |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814100894908678144 |
spelling |
Galeano, Dianae4c33c3fc2a24c51b3a514b86dbcde8b300Vargas Giraldo, Santiago81b19b13558983b084a68462f9c7e095300Vélez Restrepo, Juan Manuel779d482b716241ad5db941ac4cb78d753002020-06-21 00:00:002022-06-17T20:20:59Z2020-06-21 00:00:002022-06-17T20:20:59Z2020-06-211794-1237https://repository.eia.edu.co/handle/11190/513110.24050/reia.v17i34.14612463-0950https://doi.org/10.24050/reia.v17i34.1461Los materiales metálicos se emplean con frecuencia en la fabricación de implantes biomédicos, siendo la corrosión un factor que determina el éxito del desempeño del implante en el organismo. Debido a esto, en la presente investigación se estudió el comportamiento electroquímico de los aceros 316L, 316L nitrurado y F1586 en fluido corporal simulado. A través de difracción de rayos X, fue posible deducir que las capas nitruradas estaban compuestas, además de la fase austenítica, de la fase S. De acuerdo a los resultados alcanzados mediante análisis electroquímicos, las capas pasivas de los aceros 316L nitrurado y F1586 fueron las más protectoras, en comparación al acero 316L sin nitrurar. Esto se debió a la alta estabilidad de la capa pasiva del acero nitrurado y a la posible formación de productos estables de corrosión en la superficie del acero F1586. En términos generales, el acero sometido a nitruración reveló la menor corrosión en el fluido corporal simulado.Metal materials are frequently used in the manufacture of biomedical implants, and corrosion is a critical factor that determines the success of the implant performance in the body. Due to this, this research is focused on studying the electrochemical behavior of 316L, nitrided 316L, and F1586 steels in simulated body fluid. With X-ray diffraction, it was possible to deduce that the nitrided steel surface was composed, besides to austenitic phase, of S phase. According to the electrochemical results, the passive layer of the nitrided 316L and the F1586 steels were the most protective compared to 316L steel. It was due to the high stability of the nitrided steel’s passive layer and the possible formation of stable corrosion products on the F1586 steel’s surface. In general terms, nitrided 316L steel revealed the least corrosion in the simulated body fluid.application/pdfspaFondo Editorial EIA - Universidad EIARevista EIA - 2020https://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.http://purl.org/coar/access_right/c_abf2https://revistas.eia.edu.co/index.php/reveia/article/view/1461Austenitc stainless steelPassive layerCorrosionSimulated body fluidPlasma nitridingAceros austeníticosCapa pasivaCorrosiónFluido corporal simuladoNitruración plasmaComportamiento electroquímico de los aceros 316L, 316L nitrurado y F1586 en fluido corporal simuladoElectrochemical behavior of 316L, 316L nitrided and F1586 steels in simulated body fluidArtículo de revistaJournal articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionTexthttp://purl.org/redcol/resource_type/ARTREFhttp://purl.org/coar/version/c_970fb48d4fbd8a85ASTM UNS S20910 (2018) Specification for Wrought Nitrogen Strengthened 22 Chromium-13 Nickel-5 Manganese-2.5 Molybdenum Stainless Steel Alloy Bar and Wire for Surgical Implants (UNS S20910). ASTM International. doi: 10.1520/F1314_F1314M-13A.ASTM UNS S29108 (2012) Specification for Wrought, Nitrogen Strengthened 23Manganese-21Chromium-1Molybdenum Low-Nickel Stainless Steel Alloy Bar and Wire for Surgical Implants (UNS S29108). ASTM International. doi: 10.1520/F2229-07.ASTM UNS S29225 (2017) Specification for Wrought Nitrogen Strengthened 11Manganese-17Chromium-3Molybdenum Low-Nickel Stainless Steel Alloy Bar and Wire for Surgical Implants (UNS S29225). ASTM International. doi: 10.1520/F2581-12R17.ASTM UNS S31675 (2013) Specification for Wrought Nitrogen Strengthened 21Chromium--10Nickel--3Manganese--2.5Molybdenum Stainless Steel Alloy Bar for Surgical Implants (UNS S31675). ASTM International. doi: 10.1520/F1586_F1586M-13.Biehler, J., Hoche, H. and Oechsner, M. (2017) ‘Nitriding behavior and corrosion properties of AISI 304L and 316L austenitic stainless steel with deformation-induced martensite’, Surface and Coatings Technology, 324, pp. 121–128. doi: 10.1016/j.surfcoat.2017.05.059.Borgioli, F. et al. (2005) ‘Glow-discharge nitriding of AISI 316L austenitic stainless steel: influence of treatment temperature’, Surface and Coatings Technology, 200(7), pp. 2474–2480. doi: 10.1016/j.surfcoat.2004.07.110.Braz, J. K. F. S. et al. (2019) ‘Plasma nitriding under low temperature improves the endothelial cell biocompatibility of 316L stainless steel’, Biotechnology Letters, 41(4–5), pp. 503–510. doi: 10.1007/s10529-019-02657-7.De Las Heras, E. et al. (2017) ‘Plasma nitriding of 316L stainless steel in two different N2-H2 atmospheres - Influence on microstructure and corrosion resistance’, Surface and Coatings Technology, 313, pp. 47–54. doi: 10.1016/j.surfcoat.2017.01.037.E. J. Mittemeijer (2013) ‘Fundamentals of Nitriding and Nitrocarburizing’, in J. Dossett and G.E. Totten (eds) Steel heat treating fundamentals and processes. ASM International, pp. 619–646.Eliaz, N. (2019) ‘Corrosion of Metallic Biomaterials: A Review’, Materials, 12(3). doi: 10.3390/ma12030407.Galeano-Osorio, D. S. et al. (2019) ‘Hemocompatibility of plasma nitrided 316L stainless steel: Effect of processing temperature’, Applied Surface Science, p. 144704. doi: 10.1016/j.apsusc.2019.144704.Guo, D., Kwok, C. T. and Chan, S. L. I. (2019) ‘Spindle speed in friction surfacing of 316L stainless steel – How it affects the microstructure, hardness and pitting corrosion resistance’, Surface and Coatings Technology, 361, pp. 324–341. doi: 10.1016/j.surfcoat.2019.01.055. Ichii, K., Fujimura, K. and Takase, T. (1986) ‘Structure of the Ion-nitrided Layer of 18-8 Stainless Steel’, Tech. Rep. Kansai Univ., 27, pp. 135–144.Kamachi Mudali, U. et al. (2002) ‘On the pitting corrosion resistance of nitrogen alloyed cold worked austenitic stainless steels’, Corrosion Science, 44(10), pp. 2183–2198. doi: 10.1016/S0010-938X(02)00035-5.Kokubo, T. and Takadama, H. (2006) ‘How useful is SBF in predicting in vivo bone bioactivity?’, Biomaterials, 27(15), pp. 2907–2915. doi: 10.1016/j.biomaterials.2006.01.017.Laleh, M. et al. (2019) ‘Unanticipated drastic decline in pitting corrosion resistance of additively manufactured 316L stainless steel after high-temperature post-processing’, Corrosion Science, p. 108412. doi: 10.1016/j.corsci.2019.108412.Li, J. et al. (2019) ‘Enhancing Pitting Corrosion Resistance of Severely Cold-Worked High Nitrogen Austenitic Stainless Steel by Nitric Acid Passivation’, Journal of The Electrochemical Society, 166(13), pp. C365–C374. doi: 10.1149/2.0211913jes.López, D., Alonso Falleiros, N. and Paulo Tschiptschin, A. (2011) ‘Effect of nitrogen on the corrosion–erosion synergism in an austenitic stainless steel’, Tribology International. (Special Issue: ECOTRIB 2009), 44(5), pp. 610–616. doi: 10.1016/j.triboint.2010.12.013.Man, C. et al. (2019) ‘The enhancement of microstructure on the passive and pitting behaviors of selective laser melting 316L SS in simulated body fluid’, Applied Surface Science, 467–468, pp. 193–205. doi: 10.1016/j.apsusc.2018.10.150.Marchev, K. et al. (1999) ‘The m phase layer on ion nitrided austenitic stainless steel (III): an epitaxial relationship between the m phase and the γ parent phase and a review of structural identifications of this phase’, Surface and Coatings Technology, 116–119, pp. 184–188. doi: 10.1016/S0257-8972(99)00296-0.Menthe, E. and Rie, K.-T. (1999) ‘Further investigation of the structure and properties of austenitic stainless steel after plasma nitriding’, Surface and Coatings Technology, 116–119, pp. 199–204. doi: 10.1016/S0257-8972(99)00085-7.Mingolo, N., Tschiptschin, A. P. and Pinedo, C. E. (2006) ‘On the formation of expanded austenite during plasma nitriding of an AISI 316L austenitic stainless steel’, Surface and Coatings Technology. (Proceedings of the 33rd International Conference on Metallurgical Coatings and Thin Films), 201(7), pp. 4215–4218. doi: 10.1016/j.surfcoat.2006.08.060.Mitchell, D. R. G. et al. (2003) ‘Characterisation of PI3 and RF plasma nitrided austenitic stainless steels using plan and cross-sectional TEM techniques’, Surface and Coatings Technology, 165(2), pp. 107–118. doi: 10.1016/S0257-8972(02)00741-7.Montaño-Machado, V. et al. (2019) ‘Medical Devices: Coronary Stents’, in Narayan, R. (ed.) Encyclopedia of Biomedical Engineering. Oxford: Elsevier, pp. 386–398. doi: 10.1016/B978-0-12-801238-3.10995-X.Sivakumar, M. and Rajeswari, S. (1995) ‘Corrosion induced failure of a stainless steel orthopaedic implant device’, Steel Research, 66(1), pp. 35–38. doi: 10.1002/srin.199501768.Wang, Q. et al. (2018) ‘A self-healing stainless steel: Role of nitrogen in eliminating detrimental effect of cold working on pitting corrosion resistance’, Corrosion Science, 145, pp. 55–66. doi: 10.1016/j.corsci.2018.09.013.Yang, K. and Ren, Y. (2010) ‘Nickel-free austenitic stainless steels for medical applications’, Science and Technology of Advanced Materials, 11(1). doi: 10.1088/1468-6996/11/1/014105.Ziegenhagen, R. et al. (2019) ‘Corrosion Resistance of Stainless Steels Intended to Come into Direct or Prolonged Contact with the Skin’, Materials, 12(6), p. 987. doi: 10.3390/ma12060987.https://revistas.eia.edu.co/index.php/reveia/article/download/1461/1331Núm. 34 , Año 20201134117Revista EIAPublicationOREORE.xmltext/xml2672https://repository.eia.edu.co/bitstreams/af1890d8-e09b-4cab-933f-9c26cedbe132/download397a95217664ca3a78ae67dc452a0ac6MD5111190/5131oai:repository.eia.edu.co:11190/51312023-07-25 17:04:48.28https://creativecommons.org/licenses/by-nc-nd/4.0Revista EIA - 2020metadata.onlyhttps://repository.eia.edu.coRepositorio Institucional Universidad EIAbdigital@metabiblioteca.com |