Clasificador bayesiano de dos clases para seleccionar la mejor regla de prioridad en un problema Job Shop: Open Shop
El objetivo de este trabajo es seleccionar, por medio de un clasificador bayesiano de dos clases, la mejor regla de prioridad que puede ser aplicada en un problema Job Shop: Open Shop. En una primera fase se expone el diseño del clasificador, entrenado con 300 problemas generados aleatoriamente. En...
- Autores:
-
Castrillón Gomez, Omar Danilo
Sarache, William Ariel
Ruiz Herrera, Santiago
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Universidad EIA .
- Repositorio:
- Repositorio EIA .
- Idioma:
- spa
- OAI Identifier:
- oai:repository.eia.edu.co:11190/4954
- Acceso en línea:
- https://repository.eia.edu.co/handle/11190/4954
https://doi.org/10.24050/reia.v16i31.867
- Palabra clave:
- Programación de la producción
Reglas de prioridad
Clasificador Bayesiano
Job Shop
Open Shop
Producción
Optimizacion.
- Rights
- openAccess
- License
- Revista EIA - 2019
Summary: | El objetivo de este trabajo es seleccionar, por medio de un clasificador bayesiano de dos clases, la mejor regla de prioridad que puede ser aplicada en un problema Job Shop: Open Shop. En una primera fase se expone el diseño del clasificador, entrenado con 300 problemas generados aleatoriamente. En 150 de ellos, la mejor regla de prioridad para secuenciarlos fue FIFO (First in First Out) y en los restantes fue la regla LPT (Long Process Time). En una segunda fase, un conjunto de 300 problemas diferentes, con las mismas características de la primera fase, fueron generados aleatoriamente. Estos problemas fueron clasificados previamente (sin secuenciarlos) por medio la técnica bayesiana propuesta. Los resultados demuestran que en el 96% de los casos, el clasificador propuesto logra identificar la mejor regla de prioridad para secuenciar pedidos |
---|