Herramienta para la simulación del movimiento de un micro robot para aplicaciones médicas a partir de un arreglo de bobinas basadas en Maxwell – Helmholtz. (Herramienta de simulación para navegación de microrobots).
Objetivo: Los micro robots pueden ser movidos de varias maneras, una de ellas hace uso de señales magnéticas. Este artículo muestra un sistema de navegación magnético para mover y orientar un micro robot para un eventual uso médico, así como una herramienta gráfica para simular el movimiento de dic...
- Autores:
-
Muñoz Medina, Martin Alonso
Vivas, Oscar A.
Riccotti, Leonardo
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2018
- Institución:
- Universidad EIA .
- Repositorio:
- Repositorio EIA .
- Idioma:
- spa
- OAI Identifier:
- oai:repository.eia.edu.co:11190/5053
- Acceso en línea:
- https://repository.eia.edu.co/handle/11190/5053
https://doi.org/10.24050/reia.v15i30.1254
- Palabra clave:
- Micro robots
Campos Magnéticos
Maxwell – Helmholtz
Simulación Gráfica.
- Rights
- openAccess
- License
- Revista EIA - 2018
id |
REIA2_0d993c6c1a47f958e533fa33b8ddcbbc |
---|---|
oai_identifier_str |
oai:repository.eia.edu.co:11190/5053 |
network_acronym_str |
REIA2 |
network_name_str |
Repositorio EIA . |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Herramienta para la simulación del movimiento de un micro robot para aplicaciones médicas a partir de un arreglo de bobinas basadas en Maxwell – Helmholtz. (Herramienta de simulación para navegación de microrobots). |
dc.title.translated.eng.fl_str_mv |
Herramienta para la simulación del movimiento de un micro robot para aplicaciones médicas a partir de un arreglo de bobinas basadas en Maxwell – Helmholtz. (Herramienta de simulación para navegación de microrobots). |
title |
Herramienta para la simulación del movimiento de un micro robot para aplicaciones médicas a partir de un arreglo de bobinas basadas en Maxwell – Helmholtz. (Herramienta de simulación para navegación de microrobots). |
spellingShingle |
Herramienta para la simulación del movimiento de un micro robot para aplicaciones médicas a partir de un arreglo de bobinas basadas en Maxwell – Helmholtz. (Herramienta de simulación para navegación de microrobots). Micro robots Campos Magnéticos Maxwell – Helmholtz Simulación Gráfica. |
title_short |
Herramienta para la simulación del movimiento de un micro robot para aplicaciones médicas a partir de un arreglo de bobinas basadas en Maxwell – Helmholtz. (Herramienta de simulación para navegación de microrobots). |
title_full |
Herramienta para la simulación del movimiento de un micro robot para aplicaciones médicas a partir de un arreglo de bobinas basadas en Maxwell – Helmholtz. (Herramienta de simulación para navegación de microrobots). |
title_fullStr |
Herramienta para la simulación del movimiento de un micro robot para aplicaciones médicas a partir de un arreglo de bobinas basadas en Maxwell – Helmholtz. (Herramienta de simulación para navegación de microrobots). |
title_full_unstemmed |
Herramienta para la simulación del movimiento de un micro robot para aplicaciones médicas a partir de un arreglo de bobinas basadas en Maxwell – Helmholtz. (Herramienta de simulación para navegación de microrobots). |
title_sort |
Herramienta para la simulación del movimiento de un micro robot para aplicaciones médicas a partir de un arreglo de bobinas basadas en Maxwell – Helmholtz. (Herramienta de simulación para navegación de microrobots). |
dc.creator.fl_str_mv |
Muñoz Medina, Martin Alonso Vivas, Oscar A. Riccotti, Leonardo |
dc.contributor.author.spa.fl_str_mv |
Muñoz Medina, Martin Alonso Vivas, Oscar A. Riccotti, Leonardo |
dc.subject.spa.fl_str_mv |
Micro robots Campos Magnéticos Maxwell – Helmholtz Simulación Gráfica. |
topic |
Micro robots Campos Magnéticos Maxwell – Helmholtz Simulación Gráfica. |
description |
Objetivo: Los micro robots pueden ser movidos de varias maneras, una de ellas hace uso de señales magnéticas. Este artículo muestra un sistema de navegación magnético para mover y orientar un micro robot para un eventual uso médico, así como una herramienta gráfica para simular el movimiento de dicho micro robot.Materiales y métodos: El artículo presenta inicialmente el proceso de fabricación de un micro robot a partir de diferentes concentraciones de polvo magnético sobre un polímero, su movimiento experimental utilizando un arreglo de bobinas, y la implementación de una herramienta gráfica que simula dicho movimiento.Resultados: El micro robot fabricado pudo moverse en una pequeña arena experimental, variando su posición y orientación dependiendo de la corriente inyectada a dos bobinas que utilizan el arreglo de Maxwell – Helmholtz. La herramienta gráfica, que fue implementada en Unity 3D, mostró un comportamiento muy similar al real.Conclusiones: La herramienta gráfica probó que puede simular con precisión el movimiento real de un micro robot movido a través de dos bobinas magnéticas que utilizan el arreglo de Maxwell – Helmholtz. |
publishDate |
2018 |
dc.date.accessioned.none.fl_str_mv |
2018-11-26 00:00:00 2022-06-17T20:20:01Z |
dc.date.available.none.fl_str_mv |
2018-11-26 00:00:00 2022-06-17T20:20:01Z |
dc.date.issued.none.fl_str_mv |
2018-11-26 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.eng.fl_str_mv |
Journal article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_6501 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ARTREF |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
1794-1237 |
dc.identifier.uri.none.fl_str_mv |
https://repository.eia.edu.co/handle/11190/5053 |
dc.identifier.doi.none.fl_str_mv |
10.24050/reia.v15i30.1254 |
dc.identifier.eissn.none.fl_str_mv |
2463-0950 |
dc.identifier.url.none.fl_str_mv |
https://doi.org/10.24050/reia.v15i30.1254 |
identifier_str_mv |
1794-1237 10.24050/reia.v15i30.1254 2463-0950 |
url |
https://repository.eia.edu.co/handle/11190/5053 https://doi.org/10.24050/reia.v15i30.1254 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.bitstream.none.fl_str_mv |
https://revistas.eia.edu.co/index.php/reveia/article/download/1254/1194 |
dc.relation.citationedition.spa.fl_str_mv |
Núm. 30 , Año 2018 |
dc.relation.citationendpage.none.fl_str_mv |
160 |
dc.relation.citationissue.spa.fl_str_mv |
30 |
dc.relation.citationstartpage.none.fl_str_mv |
151 |
dc.relation.citationvolume.spa.fl_str_mv |
15 |
dc.relation.ispartofjournal.spa.fl_str_mv |
Revista EIA |
dc.rights.spa.fl_str_mv |
Revista EIA - 2018 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Revista EIA - 2018 https://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Fondo Editorial EIA - Universidad EIA |
dc.source.spa.fl_str_mv |
https://revistas.eia.edu.co/index.php/reveia/article/view/1254 |
institution |
Universidad EIA . |
bitstream.url.fl_str_mv |
https://repository.eia.edu.co/bitstreams/38cb4de7-c7e6-4a67-8a3a-969ad05e0957/download |
bitstream.checksum.fl_str_mv |
45c6146b61b89085e86a62c740b2ec91 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EIA |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814100885355102208 |
spelling |
Muñoz Medina, Martin Alonso6b4fd3a6803b30c3a810d883d5b5c8bb300Vivas, Oscar A.afe0b1f4c78414db503d8b22ff55b33d300Riccotti, Leonardoabd9c6fc9f1d5d99f96c59590b23a8ac3002018-11-26 00:00:002022-06-17T20:20:01Z2018-11-26 00:00:002022-06-17T20:20:01Z2018-11-261794-1237https://repository.eia.edu.co/handle/11190/505310.24050/reia.v15i30.12542463-0950https://doi.org/10.24050/reia.v15i30.1254 Objetivo: Los micro robots pueden ser movidos de varias maneras, una de ellas hace uso de señales magnéticas. Este artículo muestra un sistema de navegación magnético para mover y orientar un micro robot para un eventual uso médico, así como una herramienta gráfica para simular el movimiento de dicho micro robot.Materiales y métodos: El artículo presenta inicialmente el proceso de fabricación de un micro robot a partir de diferentes concentraciones de polvo magnético sobre un polímero, su movimiento experimental utilizando un arreglo de bobinas, y la implementación de una herramienta gráfica que simula dicho movimiento.Resultados: El micro robot fabricado pudo moverse en una pequeña arena experimental, variando su posición y orientación dependiendo de la corriente inyectada a dos bobinas que utilizan el arreglo de Maxwell – Helmholtz. La herramienta gráfica, que fue implementada en Unity 3D, mostró un comportamiento muy similar al real.Conclusiones: La herramienta gráfica probó que puede simular con precisión el movimiento real de un micro robot movido a través de dos bobinas magnéticas que utilizan el arreglo de Maxwell – Helmholtz. Objetivo: Los micro robots pueden ser movidos de varias maneras, una de ellas hace uso de señales magnéticas. Este artículo muestra un sistema de navegación magnético para mover y orientar un micro robot para un eventual uso médico, así como una herramienta gráfica para simular el movimiento de dicho micro robot.Materiales y métodos: El artículo presenta inicialmente el proceso de fabricación de un micro robot a partir de diferentes concentraciones de polvo magnético sobre un polímero, su movimiento experimental utilizando un arreglo de bobinas, y la implementación de una herramienta gráfica que simula dicho movimiento.Resultados: El micro robot fabricado pudo moverse en una pequeña arena experimental, variando su posición y orientación dependiendo de la corriente inyectada a dos bobinas que utilizan el arreglo de Maxwell – Helmholtz. La herramienta gráfica, que fue implementada en Unity 3D, mostró un comportamiento muy similar al real.Conclusiones: La herramienta gráfica probó que puede simular con precisión el movimiento real de un micro robot movido a través de dos bobinas magnéticas que utilizan el arreglo de Maxwell – Helmholtz.application/pdfspaFondo Editorial EIA - Universidad EIARevista EIA - 2018https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://revistas.eia.edu.co/index.php/reveia/article/view/1254Micro robotsCampos MagnéticosMaxwell – HelmholtzSimulación Gráfica.Herramienta para la simulación del movimiento de un micro robot para aplicaciones médicas a partir de un arreglo de bobinas basadas en Maxwell – Helmholtz. (Herramienta de simulación para navegación de microrobots).Herramienta para la simulación del movimiento de un micro robot para aplicaciones médicas a partir de un arreglo de bobinas basadas en Maxwell – Helmholtz. (Herramienta de simulación para navegación de microrobots).Artículo de revistaJournal articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionTexthttp://purl.org/redcol/resource_type/ARTREFhttp://purl.org/coar/version/c_970fb48d4fbd8a85https://revistas.eia.edu.co/index.php/reveia/article/download/1254/1194Núm. 30 , Año 20181603015115Revista EIAPublicationOREORE.xmltext/xml2905https://repository.eia.edu.co/bitstreams/38cb4de7-c7e6-4a67-8a3a-969ad05e0957/download45c6146b61b89085e86a62c740b2ec91MD5111190/5053oai:repository.eia.edu.co:11190/50532023-07-25 16:58:26.212https://creativecommons.org/licenses/by-nc-sa/4.0/Revista EIA - 2018metadata.onlyhttps://repository.eia.edu.coRepositorio Institucional Universidad EIAbdigital@metabiblioteca.com |