CNN-Promoter, new consensus promoter prediction program based on neural networks

A new promoter prediction program called CNN-Promoter is presented. CNN-Promoter allows DNA sequences to be submitted and predicts them as promoter or non-promoter. Several methods have been developed to predict the promoter regions of genomes in eukaryotic organisms including algorithms based on Ma...

Full description

Autores:
Bedoya, O. (Óscar)
Bustamante, S. (Santiago)
Tipo de recurso:
Article of journal
Fecha de publicación:
2011
Institución:
Universidad EIA .
Repositorio:
Repositorio EIA .
Idioma:
eng
OAI Identifier:
oai:repository.eia.edu.co:11190/165
Acceso en línea:
https://repository.eia.edu.co/handle/11190/165
Palabra clave:
REI00157
PERCEPTRONES
PERCEPTRONS
INTELIGENCIA ARTIFICIAL
ARTIFICIAL INTELLIGENCE
TECNOLOGÍAS PARA LA SALUD
TECHNOLOGY IN HEALTH
PROMOTER PREDICTION
NEURAL NETWORKS
CONSENSUS STRATEGY
PREDICCIÓN DE PROMOTORES
REDES NEURONALES
ESTRATEGIA DE CONSENSO
Rights
openAccess
License
Derechos Reservados - Universidad EIA, 2020
id REIA2_097df72f79241bde410c3ff75ada6743
oai_identifier_str oai:repository.eia.edu.co:11190/165
network_acronym_str REIA2
network_name_str Repositorio EIA .
repository_id_str
dc.title.spa.fl_str_mv CNN-Promoter, new consensus promoter prediction program based on neural networks
dc.title.alternative.spa.fl_str_mv CNN-Promoter, novo programa para a predição de promotores baseado em redes neuronais
CNN-Promoter, nuevo programa para la predicción de promotores basado en redes neuronales
title CNN-Promoter, new consensus promoter prediction program based on neural networks
spellingShingle CNN-Promoter, new consensus promoter prediction program based on neural networks
REI00157
PERCEPTRONES
PERCEPTRONS
INTELIGENCIA ARTIFICIAL
ARTIFICIAL INTELLIGENCE
TECNOLOGÍAS PARA LA SALUD
TECHNOLOGY IN HEALTH
PROMOTER PREDICTION
NEURAL NETWORKS
CONSENSUS STRATEGY
PREDICCIÓN DE PROMOTORES
REDES NEURONALES
ESTRATEGIA DE CONSENSO
title_short CNN-Promoter, new consensus promoter prediction program based on neural networks
title_full CNN-Promoter, new consensus promoter prediction program based on neural networks
title_fullStr CNN-Promoter, new consensus promoter prediction program based on neural networks
title_full_unstemmed CNN-Promoter, new consensus promoter prediction program based on neural networks
title_sort CNN-Promoter, new consensus promoter prediction program based on neural networks
dc.creator.fl_str_mv Bedoya, O. (Óscar)
Bustamante, S. (Santiago)
dc.contributor.author.spa.fl_str_mv Bedoya, O. (Óscar)
Bustamante, S. (Santiago)
dc.subject.lcsh.spa.fl_str_mv REI00157
topic REI00157
PERCEPTRONES
PERCEPTRONS
INTELIGENCIA ARTIFICIAL
ARTIFICIAL INTELLIGENCE
TECNOLOGÍAS PARA LA SALUD
TECHNOLOGY IN HEALTH
PROMOTER PREDICTION
NEURAL NETWORKS
CONSENSUS STRATEGY
PREDICCIÓN DE PROMOTORES
REDES NEURONALES
ESTRATEGIA DE CONSENSO
dc.subject.arcmarc.spa.fl_str_mv PERCEPTRONES
PERCEPTRONS
INTELIGENCIA ARTIFICIAL
ARTIFICIAL INTELLIGENCE
dc.subject.eia.spa.fl_str_mv TECNOLOGÍAS PARA LA SALUD
TECHNOLOGY IN HEALTH
dc.subject.keywords.spa.fl_str_mv PROMOTER PREDICTION
NEURAL NETWORKS
CONSENSUS STRATEGY
PREDICCIÓN DE PROMOTORES
REDES NEURONALES
ESTRATEGIA DE CONSENSO
description A new promoter prediction program called CNN-Promoter is presented. CNN-Promoter allows DNA sequences to be submitted and predicts them as promoter or non-promoter. Several methods have been developed to predict the promoter regions of genomes in eukaryotic organisms including algorithms based on Markov’s models, decision trees, and statistical methods. Although there are plenty of programs proposed, there is still a need to improve the sensitivity and specificity values. In this paper, a new program is proposed; it is based on the consensus strategy of using experts to make a better prediction. The consensus strategy is developed by using neural networks. During the training process, the sensitivity and specificity were 100 % and during the test process the model reaches a sensitivity of 74.5 % and a specificity of 82.7 %.
publishDate 2011
dc.date.created.spa.fl_str_mv 2011-07
dc.date.submitted.spa.fl_str_mv 2011-02-24
dc.date.accepted.spa.fl_str_mv 2011-06-23
dc.date.accessioned.spa.fl_str_mv 2013-11-19T13:43:20Z
dc.date.available.spa.fl_str_mv 2013-11-19T13:43:20Z
dc.date.issued.spa.fl_str_mv 2013-11-19
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv ISSN 17941237
dc.identifier.uri.spa.fl_str_mv https://repository.eia.edu.co/handle/11190/165
dc.identifier.bibliographiccitation.spa.fl_str_mv Bedoya, O., and Bustamante, S. (2011). CNN-Promoter, new consensus promoter prediction program based on neural networks, Revista EIA, 8 (15), 153-164. doi: http://hdl.handle.net/11190/165
identifier_str_mv ISSN 17941237
Bedoya, O., and Bustamante, S. (2011). CNN-Promoter, new consensus promoter prediction program based on neural networks, Revista EIA, 8 (15), 153-164. doi: http://hdl.handle.net/11190/165
url https://repository.eia.edu.co/handle/11190/165
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartof.spa.fl_str_mv Revista EIA
dc.relation.references.spa.fl_str_mv Abeel, T.; Saeys, Y.; Bonnet, E.; Rouzé, P. and Van de Peer, Y. (2008). “Generic eukaryotic core promoter prediction using structural features of DNA”. Genome Research, vol. 18, No. 2 (February), pp. 310-323.
Allen, J. E.; Pertea, M. and Salzberg, S. L. (2004). “Computational gene prediction using multiple sources of evidence”. Genome Research, vol. 14, No. 1 (January), pp. 142-148.
Bajic, V.; Seah, S.; Chong, A; Zhang, G; Koh, J. L. Y. and Brusic, V. (2002). “Dragon Promoter Finder: Recognition of vertebrate RNA polymerase II promoters”. Bioinformatics, vol. 18, No. 1 (January), pp. 198-199.
Barlow, T. W. Feed-forward neural networks for secondary structure prediction. (1995). Journal of Molecular Graphics and Modelling, vol. 13, No. 3 (June), pp.175-183.
Burden, S.; Lin, Y.-X. and Zhang, R. (2005). “Improving promoter prediction for the NNPP2.2 algorithm: A case study using Escherichia coli DNA sequences”. Bioinformatics, vol. 21, No. 5 (March), pp. 601-607.
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad EIA, 2020
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Derechos Reservados - Universidad EIA, 2020
https://creativecommons.org/licenses/by-nc/4.0/
Atribución-NoComercial
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 12 p.
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.editor.spa.fl_str_mv Fondo Editorial EIA
institution Universidad EIA .
bitstream.url.fl_str_mv https://repository.eia.edu.co/bitstreams/d4076974-1dce-4f45-96a6-74067aa072c9/download
https://repository.eia.edu.co/bitstreams/2d0fdaa8-982e-4714-a78a-49f179fa4c9d/download
https://repository.eia.edu.co/bitstreams/3ee06374-3535-4a78-a615-a66071632347/download
https://repository.eia.edu.co/bitstreams/b51b9be3-4f84-480d-a9a7-9ed71d8b9fe2/download
bitstream.checksum.fl_str_mv 2ff67ce87d1576f38c5cb4da616291ee
dbab686e6b7233377fdbec667d30dbae
66874b0b9366b748c60895d2fb6339f8
141e8bc5e1e9f82bc69d111ff8002613
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EIA
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814100877604028416
spelling Bedoya, O. (Óscar)4371022165a2ff0147783c7a5daed799-1Bustamante, S. (Santiago)6f963a05b2b31ff58a20405c4e60c5d9-1oscar.bedoya@correounivalle.edu.cosbustam@univalle.edu.co2013-11-19T13:43:20Z2013-11-19T13:43:20Z2011-072013-11-192011-02-242011-06-23ISSN 17941237https://repository.eia.edu.co/handle/11190/165Bedoya, O., and Bustamante, S. (2011). CNN-Promoter, new consensus promoter prediction program based on neural networks, Revista EIA, 8 (15), 153-164. doi: http://hdl.handle.net/11190/165A new promoter prediction program called CNN-Promoter is presented. CNN-Promoter allows DNA sequences to be submitted and predicts them as promoter or non-promoter. Several methods have been developed to predict the promoter regions of genomes in eukaryotic organisms including algorithms based on Markov’s models, decision trees, and statistical methods. Although there are plenty of programs proposed, there is still a need to improve the sensitivity and specificity values. In this paper, a new program is proposed; it is based on the consensus strategy of using experts to make a better prediction. The consensus strategy is developed by using neural networks. During the training process, the sensitivity and specificity were 100 % and during the test process the model reaches a sensitivity of 74.5 % and a specificity of 82.7 %.En este artículo se presenta un programa nuevo para la predicción de promotores llamado CNN-Promoter, que toma como entrada secuencias de ADN y las clasifica como promotor o no promotor. Se han desarrollado diversos métodos para predecir las regiones promotoras en organismos eucariotas, muchos de los cuales se basan en modelos de Markov, árboles de decisión y métodos estadísticos. A pesar de la variedad de programas existentes para la predicción de promotores, se necesita aún mejorar los valores de sensibilidad y especificidad. Se propone un nuevo programa que se basa en la estrategia de mezcla de expertos usando redes neuronales. Los resultados obtenidos en las pruebas alcanzan valores de sensibilidad y especificidad de 100 % en el entrenamiento y de 74,5 % de sensibilidad y 82,7 % de especificidad en los conjuntos de validación y prueba.12 p.application/pdfengRevista EIAAbeel, T.; Saeys, Y.; Bonnet, E.; Rouzé, P. and Van de Peer, Y. (2008). “Generic eukaryotic core promoter prediction using structural features of DNA”. Genome Research, vol. 18, No. 2 (February), pp. 310-323.Allen, J. E.; Pertea, M. and Salzberg, S. L. (2004). “Computational gene prediction using multiple sources of evidence”. Genome Research, vol. 14, No. 1 (January), pp. 142-148.Bajic, V.; Seah, S.; Chong, A; Zhang, G; Koh, J. L. Y. and Brusic, V. (2002). “Dragon Promoter Finder: Recognition of vertebrate RNA polymerase II promoters”. Bioinformatics, vol. 18, No. 1 (January), pp. 198-199.Barlow, T. W. Feed-forward neural networks for secondary structure prediction. (1995). Journal of Molecular Graphics and Modelling, vol. 13, No. 3 (June), pp.175-183.Burden, S.; Lin, Y.-X. and Zhang, R. (2005). “Improving promoter prediction for the NNPP2.2 algorithm: A case study using Escherichia coli DNA sequences”. Bioinformatics, vol. 21, No. 5 (March), pp. 601-607.Derechos Reservados - Universidad EIA, 2020https://creativecommons.org/licenses/by-nc/4.0/El autor de la obra, actuando en nombre propio, hace entrega del ejemplar respectivo y de sus anexos en formato digital o electrónico y autoriza a la ESCUELA DE INGENIERIA DE ANTIOQUIA, para que en los términos establecidos en la Ley 23 de 1982, Ley 44 de 1993, Decisión andina 351 de 1993, Decreto 460 de 1995, y demás normas generales sobre la materia, utilice y use por cualquier medio conocido o por conocer, los derechos patrimoniales de reproducción, comunicación pública, transformación y distribución de la obra objeto del presente documento. PARÁGRAFO: La presente autorización se hace extensiva no sólo a las dependencias y derechos de uso sobre la obra en formato o soporte material, sino también para formato virtual, electrónico, digital, y en red, internet, extranet, intranet, etc., y en general en cualquier formato conocido o por conocer. EL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realiza sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma. PARÁGRAFO: En caso de presentarse cualquier reclamación o acción por parte de un tercero en cuanto a los derechos de autor sobre la obra en cuestión, EL AUTOR, asumirá toda la responsabilidad, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos la ESCUELA DE INGENIERÍA DE ANTIOQUIA actúa como un tercero de buena fe.info:eu-repo/semantics/openAccessAtribución-NoComercialhttp://purl.org/coar/access_right/c_abf2REI00157PERCEPTRONESPERCEPTRONSINTELIGENCIA ARTIFICIALARTIFICIAL INTELLIGENCETECNOLOGÍAS PARA LA SALUDTECHNOLOGY IN HEALTHPROMOTER PREDICTIONNEURAL NETWORKSCONSENSUS STRATEGYPREDICCIÓN DE PROMOTORESREDES NEURONALESESTRATEGIA DE CONSENSOCNN-Promoter, new consensus promoter prediction program based on neural networksCNN-Promoter, novo programa para a predição de promotores baseado em redes neuronaisCNN-Promoter, nuevo programa para la predicción de promotores basado en redes neuronalesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionTexthttps://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85Fondo Editorial EIAPublicationTHUMBNAILREI00157.pdf.jpgREI00157.pdf.jpgGenerated Thumbnailimage/jpeg11646https://repository.eia.edu.co/bitstreams/d4076974-1dce-4f45-96a6-74067aa072c9/download2ff67ce87d1576f38c5cb4da616291eeMD54ORIGINALREI00157.pdfREI00157.pdfapplication/pdf1118721https://repository.eia.edu.co/bitstreams/2d0fdaa8-982e-4714-a78a-49f179fa4c9d/downloaddbab686e6b7233377fdbec667d30dbaeMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81494https://repository.eia.edu.co/bitstreams/3ee06374-3535-4a78-a615-a66071632347/download66874b0b9366b748c60895d2fb6339f8MD52TEXTREI00157.pdf.txtREI00157.pdf.txtExtracted texttext/plain37991https://repository.eia.edu.co/bitstreams/b51b9be3-4f84-480d-a9a7-9ed71d8b9fe2/download141e8bc5e1e9f82bc69d111ff8002613MD5311190/165oai:repository.eia.edu.co:11190/1652023-07-25 16:48:30.149https://creativecommons.org/licenses/by-nc/4.0/Derechos Reservados - Universidad EIA, 2020open.accesshttps://repository.eia.edu.coRepositorio Institucional Universidad EIAbdigital@metabiblioteca.comRWwgYXV0b3IgZGUgbGEgb2JyYSwgYWN0dWFuZG8gZW4gbm9tYnJlIHByb3BpbywgSGFjZSBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBlbiBmb3JtYXRvIGRpZ2l0YWwgbyBlbGVjdHLDs25pY28uIAoKWSBhdXRvcml6YSBhIGxhIEVTQ1VFTEEgREUgSU5HRU5JRVJJQSBERSBBTlRJT1FVSUEsIHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuOgoKIC0gbGEgTGV5IDIzIGRlIDE5ODIKIC0gTGV5IDQ0IGRlIDE5OTMKLSBEZWNpc2nDs24gYW5kaW5hIDM1MSBkZSAxOTkzCiAtIERlY3JldG8gNDYwIGRlIDE5OTUKCiB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgeSB1c2UgcG9yIGN1YWxxdWllciBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLCBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSByZXByb2R1Y2Npw7NuLAogY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLiAKCiBQQVJHUkFGTzogTGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBzZSBoYWNlIGV4dGVuc2l2YSBubyBzb2xvIGEgbGFzIGRlcGVuZGVuY2lhcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCAKIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIHZpcnR1YWwsIGVsZWN0csOzbmljbywgZGlnaXRhbCwgeSBjdXlvIHVzbyBzZSBkZSBlbiByZWQsIGludGVybmV0LCBleHRyYW5ldCwgaW50cmFuZXQsIGV0Yy4sIHkgZW4gZ2VuZXJhbCBlbiBjdWFscXVpZXIKIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgogRUwgQVVUT1IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXphIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLAogcG9yIGxvIHRhbnRvIGxhIG9icmEgZXMgZGUgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuClBBUkFHUkFGTzogRW4gY2FzbyBkZSBwcmVzZW50YXJzZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSBlbiAKY3Vlc3Rpw7NuLCBFTCBBVVRPUiwgYXN1bWlyw6HCoSB0b2RhIGxhIHJlc3BvbnNhYmlsaWRhZCwgeSBzYWxkcsOhwqEgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3M7IHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MgTGEgRVNDVUVMQSAKREUgSU5HRU5JRVJJQSBERSBBTlRJT1FVSUEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4K