How does the beach ecosystem change without tourists during COVID-19 lockdown?

Urban tourist beach ecosystems provide the essential service of recreation. These ecosystems also support critical ecological functions where biodiversity conservation is not usually a priority. The sudden lockdown due to the COVID-19 pandemic created a unique opportunity to evaluate the effects of...

Full description

Autores:
Soto, E.H.
Botero, C. M.
Milanés Batista, Celene
Rodríguez-Santiago, A.
Palacios-Moreno, M.
Díaz-Ferguson, E.
Velázquez, Y. R.
Abbehusen, A.
Guerra-Castro, E.
Simoes, N.
Muciño-Reyes, M.
Souza Filho, J. R.
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7864
Acceso en línea:
https://hdl.handle.net/11323/7864
https://doi.org/10.1016/j.biocon.2021.108972
https://repositorio.cuc.edu.co/
Palabra clave:
Tourist beaches
Bioindicators
Stressors
Coronavirus
Coastal biodiversity
Wildlife conservation
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_ff5d510bd3e3d208dc9f6cefdf7ee668
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7864
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv How does the beach ecosystem change without tourists during COVID-19 lockdown?
title How does the beach ecosystem change without tourists during COVID-19 lockdown?
spellingShingle How does the beach ecosystem change without tourists during COVID-19 lockdown?
Tourist beaches
Bioindicators
Stressors
Coronavirus
Coastal biodiversity
Wildlife conservation
title_short How does the beach ecosystem change without tourists during COVID-19 lockdown?
title_full How does the beach ecosystem change without tourists during COVID-19 lockdown?
title_fullStr How does the beach ecosystem change without tourists during COVID-19 lockdown?
title_full_unstemmed How does the beach ecosystem change without tourists during COVID-19 lockdown?
title_sort How does the beach ecosystem change without tourists during COVID-19 lockdown?
dc.creator.fl_str_mv Soto, E.H.
Botero, C. M.
Milanés Batista, Celene
Rodríguez-Santiago, A.
Palacios-Moreno, M.
Díaz-Ferguson, E.
Velázquez, Y. R.
Abbehusen, A.
Guerra-Castro, E.
Simoes, N.
Muciño-Reyes, M.
Souza Filho, J. R.
dc.contributor.author.spa.fl_str_mv Soto, E.H.
Botero, C. M.
Milanés Batista, Celene
Rodríguez-Santiago, A.
Palacios-Moreno, M.
Díaz-Ferguson, E.
Velázquez, Y. R.
Abbehusen, A.
Guerra-Castro, E.
Simoes, N.
Muciño-Reyes, M.
Souza Filho, J. R.
dc.subject.spa.fl_str_mv Tourist beaches
Bioindicators
Stressors
Coronavirus
Coastal biodiversity
Wildlife conservation
topic Tourist beaches
Bioindicators
Stressors
Coronavirus
Coastal biodiversity
Wildlife conservation
description Urban tourist beach ecosystems provide the essential service of recreation. These ecosystems also support critical ecological functions where biodiversity conservation is not usually a priority. The sudden lockdown due to the COVID-19 pandemic created a unique opportunity to evaluate the effects of human absence in these urban-coastal ecosystems. This study examined bioindicators from 29 urban tourist beaches in seven Latin-American countries and assesses their response to lockdown about some relevant anthropogenic stressors such as pollution, noise, human activities, and user density. The presence of animals and plants, as well as the intensity of stressors, were assessed through a standardized protocol during lockdown conditions. Additionally, the environmental conditions of the beaches before and during lockdown were qualitatively compared using multivariate non-parametric statistics. We found notable positive changes in biological components and a clear decrease in human stressors on almost all the beaches. Dune vegetation increased on most sites. Similarly, high burrow densities of ghost crabs were observed on beaches, except those where cleaning activity persisted. Because of the lockdown, there was an exceptionally low frequency of beach users, which in turn reduced litter, noise and unnatural odors. The observed patterns suggest that tourist beaches can be restored to natural settings relatively quickly. We propose several indicators to measure changes in beaches once lockdown is relaxed. Adequate conservation strategies will render the recreational service of tourist beaches more environmental-friendly.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-02-11T20:49:48Z
dc.date.available.none.fl_str_mv 2021-02-11T20:49:48Z
dc.date.issued.none.fl_str_mv 2021-03
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 0006-3207
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7864
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1016/j.biocon.2021.108972
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 0006-3207
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/7864
https://doi.org/10.1016/j.biocon.2021.108972
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Afghan, A., Cerrano, C., Luzi, G., Calcinai, B., Puce, S., Pulido Mantas, T., Roveta, C., Di Camillo, C.G., 2020. Main anthropogenic impacts on benthic macrofauna of sandy beaches: a review. J. Mar. Sci. Eng. 8, 405.
Amyot, J., Grant, J., 2014. Environmental Function Analysis: a decision support tool for integrated sandy beach planning. Ocean Coast. Manag. 102, 317–327. https://doi. org/10.1016/j.ocecoaman.2014.10.009.
Andres,´ M., Barragan, J.M., Garcia-Sambria, J., 2017. Relationships between coastal urbanization and ecosystems in Spain. CITIES 68, 8–17.
Araújo, M., Silva-Cavalcanti, J., Costa, M., 2018. Anthropogenic litter on beaches with different levels of development and use: a snapshot of a coast in Pernambuco (Brazil). Front. Mar. Sci. 5, 233. https://doi.org/10.3389/fmars.2018.00233.
Ariza, E., Sarda, ´ R., Jimenez, ´ J.A., Mora, J., Avila, ´ C., 2007. Beyond performance assessment measurements for beach management: application to Spanish Mediterranean beaches. Coast. Manag. 36 (1), 47–66. https://doi.org/10.1080/ 08920750701682023.
Bates, A.E., Primack, R., Moraga, P., Duarte, C., 2020. COVID-19 pandemic and associated lockdown as a “Global Human Confinement Experiment” to investigate biodiversity conservation. Biol. Conserv. 248, 108,665. doi.org/https://doi.org/10 .1016/j.biocon.2020.108665.
Batista-Milan´es, C., 2018. Coastal risk. In: Finkl, C., Makowski, C. (Eds.), Encyclopedia of Coastal Science, Encyclopedia of Earth Sciences Series, 2nd, 1. Springer Nature, Cham, Switzerland, pp. 524–534.
Becken, S., 2016. Climate Change Impacts on Coastal Tourism. CoastAdapt Impact Sheet. National Climate Change Adaptation Research Facility, Gold Coast, p. 6.
Bessa, F., Gonçalves, S.C., Franco, J., Andre,´ J., Cunha, P., Marques, J., 2014. Temporal changes in macrofauna as response indicator to potential human pressures on sandy beaches. Ecol. Indic. 41, 49–57.
Bir, B., 2020. https://www.aa.com.tr/en/health/single-use-items-not-safest-option-am idcovid-19/1787067. (Accessed 4 September 2020).
Birk, S., Chapman, D., Carvalho, L., et al., 2020. Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. Nat. Ecol. Evol. 4, 1060–1068. https://doi.org/10.1038/s41559-020-1216-4.
Blankensteyn, A., 2006. O uso do caranguejo maria-farinha Ocypode quadrata (Fabricius, 1787) (Crustacea, Ocypodidae) como indicador de impactos antropogenicos ˆ em praias arenosas da Ilha de Santa Catarina, Santa Catarina, Brasil. Rev. Bras. de Zool. 23 (3), 870–876. https://doi.org/10.1590/S0101-81752006000300034.
Bom, F., Colling, L., 2020. Impact of vehicles on benthic macrofauna on a subtropical sand beach. Mar. Ecol. 41, e12595 https://doi.org/10.1111/maec.12595.
Botero, C., Pereira, C., Tosic, M., Manjarrez, G., 2015. Design of an index for monitoring the environmental quality of tourist beaches from a holistic approach. Ocean Coast. Manag. 108, 65–73. https://doi.org/10.1016/j.ocecoaman.2014.07.017.
Botero, C.M., Cabrera, J.A., Zielinski, S., 2018. Tourist beaches. In: Finkl, C., Makowski, C. (Eds.), Encyclopedia of Coastal Science, Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-48,657-4_ 401–1.
Boudouresque, C.F., Ponel, P., Astruch, P., Barcelo, A., Blanfune,´ A., Geoffroy, D., Thibaut, T., 2017. The high heritage value of the Mediterranean sandy beaches, with a particular focus on the Posidonia oceanica “banquettes”: a review. Sci. Rep. Port- Cros Natl. Park 31, 23–70.
Boyes, K., 2016. Applying Wildlife Conservation Tourism to Marine Endangered Species: Identifying Indicators for Triple Bottom Line Sustainability. University of Washington (Master of Marine Affairs Thesis, 78 pages).
Bracken, M., Friberg, S., Gonzalez-Dorantes, C., Williams, S., 2008. Functional consequences of realistic biodiversity changes in a marine ecosystem. Proc. Natl. Acad. Sci. U. S. A. 105, 924–928.
Brown, A., McLachlan, A., 2002. Sandy shore ecosystems and the threats facing them: some predictions for the year 2025. Env. Conserv. 29, 62–77. https://doi.org/ 10.1017/S037689290200005X.
Canning-Clode, J., Sepúlveda, P., Almeida, S., Monteiro, J., 2020. Will COVID-19 containment and treatment measures drive shifts in marine litter pollution? Front. Mar. Sci. 7, 691. https://doi.org/10.3389/fmars.2020.00691.
Canteiro, M., Cordova-Tapia, ´ F., Brazeiro, A., 2018. Tourism impact assessment: a tool to evaluate the environmental impacts of touristic activities in Natural Protected Areas. Tour. Manag. Pers. 28, 220–227. https://doi.org/10.1016/j.tmp.2018.09.007.
Clarke, K., 1993. Non-parametric multivariate analyses of changes in community structure. Austral. Jour. Ecol. 18, 117–143. https://doi.org/10.1111/j.1442- 9993.1993.tb00438.x.
Clarke, K., Gorley, R., Somerfield, P., Warwick, R., 2014. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation. In: Plymouth. Ltd, PRIMER-E.
Cristiano, S.C., Rockett, G.C., Portz, L.C., Souza Filho, J.R., 2020. Beach landscape management as a sustainable tourism resource in Fernando de Noronha Island (Brazil). Mar. Poll. Bull. 150, 1–13. https://doi.org/10.1016/j. marpolbul.2019.110621.
Davis, R.A., 2019. Human impact on coasts. In: Finkl, C.W., Makowski, C. (Eds.), Encyclopedia of Coastal Science, Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-93,806-6_175.
Defeo, O., McLachlan, A., Schoeman, D.S., Schlacher, T.A., Dugan, J., Jones, A., Lastra, M., Scapini, F., 2009. Threats to sandy beach ecosystems: a review. Est. Coast. Shelf Sci. 81, 1–12. https://doi.org/10.1016/j.ecss.2008.09.022.
Derryberry, E.P., Phillips, J.N., Derryberry, G.E., Blum, M.J., Luther, D., 2020. Singing in a silent spring: birds respond to a half-century soundscape reversion during the COVID-19 shutdown. Science 340, 574–579.
Dodds, R., Holmes, M., 2019a. Beach tourists; what factors satisfy them and drive them to return. Ocean Coast. Manag. 168, 158–166. https://doi.org/10.1016/j. ocecoaman.2018.10.034.
Dodds, R., Holmes, M.R., 2019b. Preferences at city and rural beaches: are the tourists different? Jour. of Coast. Res. 36 (2), 393–402. https://doi.org/10.2112/ JCOASTRES-D-19-00048.1.
Francis, C., Ortega, C., Cruz, A., 2009. Noise pollution changes avian communities and species interactions. Curr. Biol. 19 (16), 1415–1419. DOI: doi:https://doi. org/10.1016/j.cub.2009.06.052.
Gaynor, K., Hojnowski, C., Carter, N., Brashares, J., 2018. The influence of human disturbance on wildlife nocturnality. Science 360, 1232–1235. https://doi.org/ 10.1126/science.aar7121.
Gheskiere, T., Vincx, M., Weslawski, J.M., Scapini, F., Degraer, S., 2005. Meiofauna as descriptor of tourism-induced changes at sandy beaches. Mar Environ Res. 60 (2), 245–65. DOI: https://doi.org/10.1016/j.marenvres.2004.10.006. Epub 2004 Dec 7. PMID: 15757751.
Gilby, B.L., Henderson, C.J., Olds, A.D., Ballantyne, J.A., Bingham, E.L., Elliott, B.B., Jones, T.R., Kimber, O., Mosman, J.D., Schlacher, T.A., 2021. Negative ecological consequences of animal redistribution on beaches during COVID-19 lockdown. Biol Conserv. 253, 108926.
GORC, 2000. Decreto-Ley 212. Gestion´ de la Zona Costera. Official Gazette of the Republic of Cuba. Citma. Cuba, La Habana, p. 18.
Green, R., Giese, M., 2004. Negative effects of wildlife tourism on wildlife. Chapter 5, part. Wildlife Tourism. Impacts, Management and Planning. Editor, Karen Higginbottom, In, p. 2.
Guerra-Castro, E., Hidalgo, G., Castillo, R., Mucino-Reyes, ˜ M., Norena-Barroso, ˜ E., Quiroz-Deaquino, J., Mascaro, M., Simoes, N., 2020. Sandy beach macrofauna of Yucatan ´ State (Mexico) and oil industry development in the Gulf of Mexico: first approach for detecting environmental impacts. Front. Mar. Sci. 7, 589656 https:// doi.org/10.3389/fmars.2020.589656.
Halpern, B.S., Walbridge, S., Selkoe, K.A., Kappel, C.V., Micheli, F., D’Agrosa, C., Bruno, J.F., Casey, K.S., Ebert, C., Fox, H.E., Fujita, R., Heinemann, D., Lenihan, H.S., Madin, E.M.P., Perry, M.T., Selig, E.R., Spalding, M., Steneck, R., Watson, R., 2008. A global map of human impact on marine ecosystems. Science 319, 948. https://doi. org/10.1126/science.1149345.
Halpern, B.S., Frazier, M., Afflerbach, J., Lowndes, J.S., Micheli, F., O’Hara, C., Scarborough, C., Selkoe, K.A., 2019. Recent pace of change in human impact on the world’s ocean. Sci. Rep. 9, 11,609. doi.org/https://doi. org/10.1038/s41598-019-47,201-9.
Harley, C., Hughes, A., Hultgren, K., Miner, B., Sorte, C., Thornber, C., Rodriguez, L., Tomanek, L., Williams, S., 2006. The impacts of climate change in coastal marine systems. Ecol. Lett. 9, 228–241. https://doi.org/10.1111/j.1461-0248.2005.00871. x.
Harris, L., Nel, R., Holness, S., Sink, K., Schoeman, D., 2014. Setting conservation targets for sandy beach ecosystems. Est. Coast. Shelf. Sci. 150, 45–57.
Hockings, M., Dudley, N., Elliott, W., Ferreira, M., Mackinnon, K., Pasha, M., Phillips, A., Stolton, S., Woodley, S., Appleton, M., Chassot, O., Fitzsimons, J., Galliers, C., Golden Kroner, R., Goodrich, J., Hopkins, J, Jackson, W., Jonas, H., Long, B., Yang, A. 2020. COVID-19 and protected and conserved areas. Parks. 26, 7–24. https://doi. org/10.2305/IUCN.CH.2020.PARKS-26-1MH.en.
Ioannides, D., Gyimothy, ´ S., 2020. The COVID-19 crisis as an opportunity for escaping the unsustainable global tourism path. Tour. Geogr. 22 (3), 624–632. https://doi. org/10.1080/14616688.2020.1763445.
Jaramillo, E., 2012. Ecological implications of extreme events on exposed sandy beaches: insights from the 2010 Chilean earthquake. In: VI th International Sandy Beach Symposium. Public Presentation, SouthAfrica. In: June 26th.
Jarratt, D., Davies, N., 2019. Planning for climate change impacts: coastal tourism destination resilience policies. Tour. Plann. and Develop 17 (4), 423–440. https:// doi.org/10.1080/21568316.2019.1667861.
Jones, A., Gladstone, W., Hacking, N., 2007. Australian sandy-beach ecosystems and climate change: ecology and management. Zoologist 34 (2), 190–202. https://doi. org/10.7882/AZ.2007.018.
Kühn, S., Bravo, E., van Franeker, J., 2015. Deleterious effects of litter on marine life. In: Bergmann, M., Gutow, L., Klages, M. (Eds.), Marine Anthropogenic Litter. Springer International Publishing, Cham, pp. 75–116.
Legendre, P., Legendre, L., 2012. Numerical Ecology. Elsevier, Amsterdam.
Lucrezi, S., Schlacher, T.A., 2014. The ecology of ghost crabs. Oce. and Mar. Biol: An Ann. Rev. 52, 201–256.
Lucrezi, S., Schlacher, T.A., Walker, S., 2009. Monitoring human impacts on sandy shore ecosystems: a test of ghost crabs (Ocypode spp.) as biological indicators on an urban beach. Environ. Monit. Assess. 152, 413–424. https://doi.org/10.1007/s10661-008- 0326-2.
Manenti, R., Mori, E., Di Canio, V., Mercurio, S., Picone, M., Caffi, M., Brambilla, M., Ficetola, G., Rubolini, D., 2020. The good, the bad and the ugly of COVID-19 lockdown effects on wildlife conservation: insights from the first European locked down country. Biol. Conserv. 249, 108,728. doi.org/https://doi.org/10.1016/j. biocon.2020.108728.
Marion, J., 2019. Impacts to Wildlife: Managing Visitors and Resources to Protect Wildlife. Contributing Paper. Prepared for the Interagency Visitor Use Management Council, March 2019. In: Edition One.
Marion, J., Leung, Y., Eagleston, H., Burroughs, K., 2016. A review and synthesis of recreation ecology research findings on visitor impacts to wilderness and protected natural areas. Jour. of Forest. 114 (3), 352–362. https://doi.org/10.5849/jof.15- 498.
Marshall, F., Banks, K., Cook, G., 2014. Ecosystem indicators for Southeast Florida beaches. Ecol. Indic. 44, 81–91. https://doi.org/10.1016/j.ecolind.2013.12.021. Martínez, A., Eckert, E.M., Artois, T., Careddu, G., Casu, M., Curini-Galletti, M., Gazale, V., Gobert, S., Ivanenko, V., Jondelius, U., Marzano, M., Pesole, G., Zanello, A., Todaro, M.A., Fontaneto, D., 2020. Human access impacts biodiversity of microscopic animals in sandy beaches. Commun. Biol. 3, 175. https://doi.org/ 10.1038/s42003-020-0912-6.
Martins, G.A.L., 2007. A macrofauna bentonicaˆ das praias arenosas expostas do Parque Nacional de Superagüi – PR: Subsídios ao Plano de Manejo. In: Dissertaçao˜ (Mestrado em Ecologia e Conservaçao).˜ Setor de Ciˆencias Biologicas´ da Universidade Federal do Parana.´ Curitiba, Programa de Pos´ Graduaçao˜ em Ecologia e Conservaça˜o.
MBON Pole to Pole, 2019. Sampling protocol for assessment of marine diversity on sandy beaches. In: Marine Biodiversity Observation Network Pole to Pole of the Americas. https://doi.org/10.25607/OBP-665 (14 pp.).
McLachlan, A., Defeo, O., Jaramillo, E., Short, A.D., 2013. Sandy beach conservation and recreation: guidelines for optimising management strategies for multi-purpose use. Oc. Coast. Manag. 71, 256–268. https://doi.org/10.1016/j.ocecoaman.2012.10.005.
Mendoza-Gonzalez, ´ G., Martínez, M., Guevara, R., P´erez-Maqueo, O., Garza-Lagler, M., Howard, A., 2018. Towards a sustainable sun, sea, and sand tourism: the value of ocean view and proximity to the coast. Sustainability 10, 1012. https://doi.org/ 10.3390/su10041012.
Milanes, ´ C., Pereira, C., Botero, C., 2019. Improving a decree law about coastal zone management in a small island developing state: the case of Cuba. Marine Policy 101, 93–107. https://doi.org/10.1016/j.marpol.2018.12.030 (March).
Milanes, ´ C., Planas, J., Pelot, R., Núnez, ˜ J., 2020. A new methodology incorporating public participation within Cuba’s ICZM program. Oce. Coast. Manag. 186 (105), 101. https://doi.org/10.1016/j.ocecoaman.2020.105101.
Moraes, F., Milanes, ´ C., 2020. Os limites espaciais da zona costeira para fins de gestao ˜ a partir de uma perspectiva integrada. Cap. 1 pp. [22–50]. In: Souto, R.D. (org.) Gestao ˜ Ambiental e Sustentabilidade em Areas ´ Costeiras e Marinhas: Conceitos e Praticas. ´ Vol. 1. Rio de Janeiro: Instituto Virtual para o Desenvolvimento Sustentavel ´ - IVI DES.org, 2020. [260 p].
Niefer, I.A., 2002. Analise´ do perfil dos visitantes das Ilhas do Superagüi e do Mel: Marketing como instrumento para um turismo sustentavel.´ In: Tese (Doutorado em Engenharia Florestal). Universidade Federal do Parana.´ Curitiba, Setor de Cienciasˆ Agraria´ s.
Ocana, ˜ F., de Jesús, A., Hernandez, ´ H., 2020. Co-occurring factors affecting ghost crab density at four sandy beaches in the Mexican Caribbean. Reg. Stu. in Mar. Sci. 36 (101), 310. https://doi.org/10.1016/j.rsma.2020.101310.
Olds, A.D., Vargas-Fonseca, E., Connolly, R.M., Gilby, B.L., Huijbers, C.M., Hyndes, G.A., Layman, C.A., Whitfield, A.K., Schlacher, T.A., 2018. The ecology of fish in the surf zones of ocean beaches: a global review. Fish and Fisher. 19, 78–89.
Peng, C., Zhao, X., Liu, G., 2015. Noise in the sea and its impacts on marine organisms. Int. J. Environ. Res. Public Health, 12, 12,304–12,323; doi:https://doi.org/10.33 90/ijerph121012304.
Peterson, C., Bishop, M., 2005. Assessing the environmental impacts of beach nourishment. BioScience 55. In: 887e896.
R Core Team, 2019. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL. https://www.R-project. org/.
Reyes-Martínez, M.J., Lercari, D., Ruíz-Delgado, M.C., Sanchez-Moyano, ´ J.E., Jimenez- ´ Rodríguez, A., P´erez-Hurtado, A., García-García, F.J., 2015. Human pressure on sandy beaches: implications for trophic functioning. Estuar. Coasts 38, 1782–1796. https://doi.org/10.1007/s12237-014-9910-6.
Rickard, C., McLachlan, A., Kerley, G.,1994. The effects of vehicular and pedestrian traffic on dune vegetation in South Africa. Oc. Coast. Manag. 23 (3), 225–247. DOI: doi:https://doi.org/10.1016/0964-5691(94)90021-3.
Rutz, C., Loretto, M., Bates, A., Davidson, S., Duarte, C., Jetz, W., Johnson, M., Kato, A., Kays, R., Mueller, T., Primack, R., Ropert-Coudert, Y., Tucker, M., Wikelski, M., Cagnacci, F., 2020. COVID-19 lockdown allows researchers to quantify the effects of human activity on wildlife. Nat. Ecol. Evo. 4, 1156–1159. https://doi.org/10.1038/ s41559-020-1237-z.
Schlacher, T., Thomson, L., 2012. Beach recreation impacts benthic invertebrates on ocean-exposed sandy shores. Biol. Conserv. 147 (1), 123–132. https://doi.org/ 10.1016/j.biocon.2011.12.022.
Schlacher, T., Schoeman, D., Lastra, M., Jones, A., Dugan, J., Scapini, F., McLachlan, A., 2006. Neglected ecosystems bear the brunt of change. Ethol. Ecol. Evol. 18, 349e351.
Schlacher, T., Nielsen, T., Weston, M., 2013. Human recreation alters behaviour profiles of non-breeding birds on open-coast sandy shores. Estuar. Coast. Shelf Sci. 118, 31–42. https://doi.org/10.1016/j.ecss.2012.12.016.
Schlacher, T., Schoeman, D., Jones, A., Dugan, J., Hubbard, D., Defeo, O., Peterson, C., Weston, M., Maslo, B., Olds, A., Scapini, F., Nel, R., Harris, L., Lucrezi, S., Lastra, M., Huijbers, C., Connolly, R., 2014. Metrics to assess ecological condition, change, and impacts in sandy beach ecosystems. Jour. of Env. Manag. 144, 322–335. https://doi. org/10.1016/j.jenvman.2014.05.036.
Schlacher, T.A., Jones, A.R., Dugan, J.E., Weston, M.A., Harris, L.L., Schoeman, D.S., Hubbard, D., Scapini, F., Nel, R., Lastra, M., McLachlan, A., Peterson, C.H., 2014a. Open-coast sandy beaches and coastal dunes. Chapter 5. In: Lockwood, J.L., Maslo, B. (Eds.), Coastal Conservation. Cambridge University Press, Cambridge, pp. In: 37e94.
Schlacher, T.A., Lucrezi, S., Connolly, R.M., Peterson, C.H., Gilby, B.L., Maslo, B., Olds, A.D., Walker, S.J., Leon, J.X., Huijbers, C.M., Weston, M.A., Turra, A., Hyndes, G.A., Holt, R.A., Schoeman, D.S., 2016. Human threats to sandy beaches: a meta-analysis of ghost crabs illustrates global anthropogenic impacts. Estuar. Coast. and Shelf Sci. 169, 56–73.
Souza Filho, J.R., Silva, I.R., Nunes, F.N., 2019. Avaliaçao ˜ qualitativa dos serviços ecossistˆemicos oferecidos pelas praias da APA Lagoa Encantada/Rio Almada, Bahia, Brasil. Caminhos de Geografia Uberlandia ˆ 20 (72), 15–32. https://doi.org/ 10.14393/RCG207241182.
Souza, J.L, Silva, I.R., 2015. Avaliaçao ˜ da qualidade ambiental das praias da ilha de Itaparica, Baía de Todos os Santos, Bahia. Soc. & Nat. 27 (3), 469–484. DOI: https://doi.org/10.1590/1982-451,320,150,308.
Stelling-Wood, T.P., Clark, G.F., Poore, A.G.B., 2016. Responses of ghost crabs to habitat modification of urban sandy beaches. Mar. Env. Res. 116, 32–40. https://doi.org/ 10.1016/j.marenvres.2016.02.009.
Steven, R., Castley, J.G., 2013. Tourism as a threat to critically endangered and endangered birds: global patterns and trends in conservation hotspots. Biodivers. Conserv. 22, 1063–1082. https://doi.org/10.1007/s10531-013-0470-z.
Suciu, M., Tavares, D., Costa, L., Silva, M., Zalmon, I., 2017. Evaluation of environmental quality of sandy beaches in southeastern Brazil. Mar. Poll. Bull. 199, 133–142. https://doi.org/10.1016/j.marpolbul.2017.04.045.
Veloso, V.G., Silva, E.S., Caetano, C.H.S., Cardoso, R.S., 2006. Comparison between the macroinfauna of urbanized and protected beaches in Rio de Janeiro State, Brazil. Biol. Conserv. 127, 510–515.
Vilar de Araujo, C.C., Melo Rosa, D., Fernandes, J.M., 2008. Densidade e distribuiçao ˜ espacial do caranguejo Ocypode quadrata (Fabricius, 1787) (Crustacea, Ocypodidae) em trˆes praias arenosas do Espírito Santo, Brasil. Biotemas 21, 73–80. https://doi. org/10.5007/2175-7925.2008v21n4p73.
Wickham, H., 2014. Tidy data. J. Stat. Softw. 59 (10), 1–23. https://doi.org/10.18637/ jss.v059.i10.
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L., François, R., et al., 2019. Welcome to the Tidyverse. Journal of Open Source Software 4 (43), 1686. https:// doi.org/10.21105/joss.01686. Williams, A., Micallef, A., 2009. Beach Management: Principles and Practice. Earthscan Publishers, London.
Wilson, C., Tisdell, C., 2003. Conservation and economic benefits of wildlife-based marine tourism: sea turtles and whales as case studies. Human Dimensions of Wildlife: An International Journal 8 (1), 49–58. https://doi.org/10.1080/ 10871200390180145.
Winter, P.L., Selin, S., Cerveny, L., Bricker, K., 2020. Outdoor recreation, nature-based tourism. and sustainability. Sustainability 12 (1), 81.
Zambrano-Monserrate, M., Ruano, M., 2019. Does environmental noise affect housing rental prices in developing countries? Evidence from Ecuador. Land Use Policy 87,104,059.
Zambrano-Monserrate, M., Silva-Zambrano, C., Ruano, M., 2018. The economic value of natural protected areas in Ecuador: a case of Villamil Beach National Recreation Area. Ocean Coast. Manag. 157, 193–202. https://doi.org/10.1016/j. ocecoaman.2018.02.020.
Zambrano-Monserrate, M., Ruano, M., Sanchez-Alcalde, ´ L., 2020. Indirect effects of COVID-19 on the environment. Sci.Total Env. 728 (138), 813. https://doi.org/ 10.1016/j.scitotenv.2020.138813.
Zhang, F., Wang, X.A., Nunes, P., Ma, C., 2015. The recreational value of gold coast beaches, Australia: an application of the travel cost method. Eco. Serv. 11, 106–114. https://doi.org/10.1016/j.ecoser.2014.09.001.
Zielinski, S., Botero, C.M., 2020. Beach tourism in times of COVID-19 pandemic: critical issues, knowledge gaps and research opportunities. Int. J. Environ. Res. Public Health 17, 7288. https://doi.org/10.3390/ijerph17197288.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Biological Conservation
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S0006320721000240#!
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstream/11323/7864/1/How%20does%20the%20beach%20ecosystem%20change.pdf
https://repositorio.cuc.edu.co/bitstream/11323/7864/2/license_rdf
https://repositorio.cuc.edu.co/bitstream/11323/7864/3/license.txt
https://repositorio.cuc.edu.co/bitstream/11323/7864/4/How%20does%20the%20beach%20ecosystem%20change.pdf.jpg
https://repositorio.cuc.edu.co/bitstream/11323/7864/5/How%20does%20the%20beach%20ecosystem%20change.pdf.txt
bitstream.checksum.fl_str_mv 4b11ce8fddd9be1235fc0e4e9b3aba31
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
65ebfdff53d8c3f47085635282715235
0cd5bee00b877951e8b986c8d2516e4f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de La Costa
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808400243493961728
spelling Soto, E.H.5719856ccff1941087e4fd2302879d3bBotero, C. M.9dca4a5635d4db524587d5a846b3cec7Milanés Batista, Celenee2359b54c07155f612fda968e08b4309Rodríguez-Santiago, A.850e29f54e3675ad86274918e1f8dd2bPalacios-Moreno, M.11d5e15f7c90c342925bfaabe97abcecDíaz-Ferguson, E.ce65842d0ee983ff80c753afeb1baba2Velázquez, Y. R.76b6adefd2c504aef6f3c798ddc5c19dAbbehusen, A.60fae2282f444dd720e21fb3680bf337Guerra-Castro, E.931df97bf2ef31d3b4dfcb2f7a3022d1Simoes, N.fbcf44e3e8bd401fdce4fd5cf472e48cMuciño-Reyes, M.609219a16e595ed4ec6cf23a6158f9b6Souza Filho, J. R.cbadfed4f1d641b13b231a3307fb90522021-02-11T20:49:48Z2021-02-11T20:49:48Z2021-030006-3207https://hdl.handle.net/11323/7864https://doi.org/10.1016/j.biocon.2021.108972Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Urban tourist beach ecosystems provide the essential service of recreation. These ecosystems also support critical ecological functions where biodiversity conservation is not usually a priority. The sudden lockdown due to the COVID-19 pandemic created a unique opportunity to evaluate the effects of human absence in these urban-coastal ecosystems. This study examined bioindicators from 29 urban tourist beaches in seven Latin-American countries and assesses their response to lockdown about some relevant anthropogenic stressors such as pollution, noise, human activities, and user density. The presence of animals and plants, as well as the intensity of stressors, were assessed through a standardized protocol during lockdown conditions. Additionally, the environmental conditions of the beaches before and during lockdown were qualitatively compared using multivariate non-parametric statistics. We found notable positive changes in biological components and a clear decrease in human stressors on almost all the beaches. Dune vegetation increased on most sites. Similarly, high burrow densities of ghost crabs were observed on beaches, except those where cleaning activity persisted. Because of the lockdown, there was an exceptionally low frequency of beach users, which in turn reduced litter, noise and unnatural odors. The observed patterns suggest that tourist beaches can be restored to natural settings relatively quickly. We propose several indicators to measure changes in beaches once lockdown is relaxed. Adequate conservation strategies will render the recreational service of tourist beaches more environmental-friendly.application/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Biological Conservationhttps://www.sciencedirect.com/science/article/pii/S0006320721000240#!Tourist beachesBioindicatorsStressorsCoronavirusCoastal biodiversityWildlife conservationHow does the beach ecosystem change without tourists during COVID-19 lockdown?Artículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionAfghan, A., Cerrano, C., Luzi, G., Calcinai, B., Puce, S., Pulido Mantas, T., Roveta, C., Di Camillo, C.G., 2020. Main anthropogenic impacts on benthic macrofauna of sandy beaches: a review. J. Mar. Sci. Eng. 8, 405.Amyot, J., Grant, J., 2014. Environmental Function Analysis: a decision support tool for integrated sandy beach planning. Ocean Coast. Manag. 102, 317–327. https://doi. org/10.1016/j.ocecoaman.2014.10.009.Andres,´ M., Barragan, J.M., Garcia-Sambria, J., 2017. Relationships between coastal urbanization and ecosystems in Spain. CITIES 68, 8–17.Araújo, M., Silva-Cavalcanti, J., Costa, M., 2018. Anthropogenic litter on beaches with different levels of development and use: a snapshot of a coast in Pernambuco (Brazil). Front. Mar. Sci. 5, 233. https://doi.org/10.3389/fmars.2018.00233.Ariza, E., Sarda, ´ R., Jimenez, ´ J.A., Mora, J., Avila, ´ C., 2007. Beyond performance assessment measurements for beach management: application to Spanish Mediterranean beaches. Coast. Manag. 36 (1), 47–66. https://doi.org/10.1080/ 08920750701682023.Bates, A.E., Primack, R., Moraga, P., Duarte, C., 2020. COVID-19 pandemic and associated lockdown as a “Global Human Confinement Experiment” to investigate biodiversity conservation. Biol. Conserv. 248, 108,665. doi.org/https://doi.org/10 .1016/j.biocon.2020.108665.Batista-Milan´es, C., 2018. Coastal risk. In: Finkl, C., Makowski, C. (Eds.), Encyclopedia of Coastal Science, Encyclopedia of Earth Sciences Series, 2nd, 1. Springer Nature, Cham, Switzerland, pp. 524–534.Becken, S., 2016. Climate Change Impacts on Coastal Tourism. CoastAdapt Impact Sheet. National Climate Change Adaptation Research Facility, Gold Coast, p. 6.Bessa, F., Gonçalves, S.C., Franco, J., Andre,´ J., Cunha, P., Marques, J., 2014. Temporal changes in macrofauna as response indicator to potential human pressures on sandy beaches. Ecol. Indic. 41, 49–57.Bir, B., 2020. https://www.aa.com.tr/en/health/single-use-items-not-safest-option-am idcovid-19/1787067. (Accessed 4 September 2020).Birk, S., Chapman, D., Carvalho, L., et al., 2020. Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. Nat. Ecol. Evol. 4, 1060–1068. https://doi.org/10.1038/s41559-020-1216-4.Blankensteyn, A., 2006. O uso do caranguejo maria-farinha Ocypode quadrata (Fabricius, 1787) (Crustacea, Ocypodidae) como indicador de impactos antropogenicos ˆ em praias arenosas da Ilha de Santa Catarina, Santa Catarina, Brasil. Rev. Bras. de Zool. 23 (3), 870–876. https://doi.org/10.1590/S0101-81752006000300034.Bom, F., Colling, L., 2020. Impact of vehicles on benthic macrofauna on a subtropical sand beach. Mar. Ecol. 41, e12595 https://doi.org/10.1111/maec.12595.Botero, C., Pereira, C., Tosic, M., Manjarrez, G., 2015. Design of an index for monitoring the environmental quality of tourist beaches from a holistic approach. Ocean Coast. Manag. 108, 65–73. https://doi.org/10.1016/j.ocecoaman.2014.07.017.Botero, C.M., Cabrera, J.A., Zielinski, S., 2018. Tourist beaches. In: Finkl, C., Makowski, C. (Eds.), Encyclopedia of Coastal Science, Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-48,657-4_ 401–1.Boudouresque, C.F., Ponel, P., Astruch, P., Barcelo, A., Blanfune,´ A., Geoffroy, D., Thibaut, T., 2017. The high heritage value of the Mediterranean sandy beaches, with a particular focus on the Posidonia oceanica “banquettes”: a review. Sci. Rep. Port- Cros Natl. Park 31, 23–70.Boyes, K., 2016. Applying Wildlife Conservation Tourism to Marine Endangered Species: Identifying Indicators for Triple Bottom Line Sustainability. University of Washington (Master of Marine Affairs Thesis, 78 pages).Bracken, M., Friberg, S., Gonzalez-Dorantes, C., Williams, S., 2008. Functional consequences of realistic biodiversity changes in a marine ecosystem. Proc. Natl. Acad. Sci. U. S. A. 105, 924–928.Brown, A., McLachlan, A., 2002. Sandy shore ecosystems and the threats facing them: some predictions for the year 2025. Env. Conserv. 29, 62–77. https://doi.org/ 10.1017/S037689290200005X.Canning-Clode, J., Sepúlveda, P., Almeida, S., Monteiro, J., 2020. Will COVID-19 containment and treatment measures drive shifts in marine litter pollution? Front. Mar. Sci. 7, 691. https://doi.org/10.3389/fmars.2020.00691.Canteiro, M., Cordova-Tapia, ´ F., Brazeiro, A., 2018. Tourism impact assessment: a tool to evaluate the environmental impacts of touristic activities in Natural Protected Areas. Tour. Manag. Pers. 28, 220–227. https://doi.org/10.1016/j.tmp.2018.09.007.Clarke, K., 1993. Non-parametric multivariate analyses of changes in community structure. Austral. Jour. Ecol. 18, 117–143. https://doi.org/10.1111/j.1442- 9993.1993.tb00438.x.Clarke, K., Gorley, R., Somerfield, P., Warwick, R., 2014. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation. In: Plymouth. Ltd, PRIMER-E.Cristiano, S.C., Rockett, G.C., Portz, L.C., Souza Filho, J.R., 2020. Beach landscape management as a sustainable tourism resource in Fernando de Noronha Island (Brazil). Mar. Poll. Bull. 150, 1–13. https://doi.org/10.1016/j. marpolbul.2019.110621.Davis, R.A., 2019. Human impact on coasts. In: Finkl, C.W., Makowski, C. (Eds.), Encyclopedia of Coastal Science, Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-93,806-6_175.Defeo, O., McLachlan, A., Schoeman, D.S., Schlacher, T.A., Dugan, J., Jones, A., Lastra, M., Scapini, F., 2009. Threats to sandy beach ecosystems: a review. Est. Coast. Shelf Sci. 81, 1–12. https://doi.org/10.1016/j.ecss.2008.09.022.Derryberry, E.P., Phillips, J.N., Derryberry, G.E., Blum, M.J., Luther, D., 2020. Singing in a silent spring: birds respond to a half-century soundscape reversion during the COVID-19 shutdown. Science 340, 574–579.Dodds, R., Holmes, M., 2019a. Beach tourists; what factors satisfy them and drive them to return. Ocean Coast. Manag. 168, 158–166. https://doi.org/10.1016/j. ocecoaman.2018.10.034.Dodds, R., Holmes, M.R., 2019b. Preferences at city and rural beaches: are the tourists different? Jour. of Coast. Res. 36 (2), 393–402. https://doi.org/10.2112/ JCOASTRES-D-19-00048.1.Francis, C., Ortega, C., Cruz, A., 2009. Noise pollution changes avian communities and species interactions. Curr. Biol. 19 (16), 1415–1419. DOI: doi:https://doi. org/10.1016/j.cub.2009.06.052.Gaynor, K., Hojnowski, C., Carter, N., Brashares, J., 2018. The influence of human disturbance on wildlife nocturnality. Science 360, 1232–1235. https://doi.org/ 10.1126/science.aar7121.Gheskiere, T., Vincx, M., Weslawski, J.M., Scapini, F., Degraer, S., 2005. Meiofauna as descriptor of tourism-induced changes at sandy beaches. Mar Environ Res. 60 (2), 245–65. DOI: https://doi.org/10.1016/j.marenvres.2004.10.006. Epub 2004 Dec 7. PMID: 15757751.Gilby, B.L., Henderson, C.J., Olds, A.D., Ballantyne, J.A., Bingham, E.L., Elliott, B.B., Jones, T.R., Kimber, O., Mosman, J.D., Schlacher, T.A., 2021. Negative ecological consequences of animal redistribution on beaches during COVID-19 lockdown. Biol Conserv. 253, 108926.GORC, 2000. Decreto-Ley 212. Gestion´ de la Zona Costera. Official Gazette of the Republic of Cuba. Citma. Cuba, La Habana, p. 18.Green, R., Giese, M., 2004. Negative effects of wildlife tourism on wildlife. Chapter 5, part. Wildlife Tourism. Impacts, Management and Planning. Editor, Karen Higginbottom, In, p. 2.Guerra-Castro, E., Hidalgo, G., Castillo, R., Mucino-Reyes, ˜ M., Norena-Barroso, ˜ E., Quiroz-Deaquino, J., Mascaro, M., Simoes, N., 2020. Sandy beach macrofauna of Yucatan ´ State (Mexico) and oil industry development in the Gulf of Mexico: first approach for detecting environmental impacts. Front. Mar. Sci. 7, 589656 https:// doi.org/10.3389/fmars.2020.589656.Halpern, B.S., Walbridge, S., Selkoe, K.A., Kappel, C.V., Micheli, F., D’Agrosa, C., Bruno, J.F., Casey, K.S., Ebert, C., Fox, H.E., Fujita, R., Heinemann, D., Lenihan, H.S., Madin, E.M.P., Perry, M.T., Selig, E.R., Spalding, M., Steneck, R., Watson, R., 2008. A global map of human impact on marine ecosystems. Science 319, 948. https://doi. org/10.1126/science.1149345.Halpern, B.S., Frazier, M., Afflerbach, J., Lowndes, J.S., Micheli, F., O’Hara, C., Scarborough, C., Selkoe, K.A., 2019. Recent pace of change in human impact on the world’s ocean. Sci. Rep. 9, 11,609. doi.org/https://doi. org/10.1038/s41598-019-47,201-9.Harley, C., Hughes, A., Hultgren, K., Miner, B., Sorte, C., Thornber, C., Rodriguez, L., Tomanek, L., Williams, S., 2006. The impacts of climate change in coastal marine systems. Ecol. Lett. 9, 228–241. https://doi.org/10.1111/j.1461-0248.2005.00871. x.Harris, L., Nel, R., Holness, S., Sink, K., Schoeman, D., 2014. Setting conservation targets for sandy beach ecosystems. Est. Coast. Shelf. Sci. 150, 45–57.Hockings, M., Dudley, N., Elliott, W., Ferreira, M., Mackinnon, K., Pasha, M., Phillips, A., Stolton, S., Woodley, S., Appleton, M., Chassot, O., Fitzsimons, J., Galliers, C., Golden Kroner, R., Goodrich, J., Hopkins, J, Jackson, W., Jonas, H., Long, B., Yang, A. 2020. COVID-19 and protected and conserved areas. Parks. 26, 7–24. https://doi. org/10.2305/IUCN.CH.2020.PARKS-26-1MH.en.Ioannides, D., Gyimothy, ´ S., 2020. The COVID-19 crisis as an opportunity for escaping the unsustainable global tourism path. Tour. Geogr. 22 (3), 624–632. https://doi. org/10.1080/14616688.2020.1763445.Jaramillo, E., 2012. Ecological implications of extreme events on exposed sandy beaches: insights from the 2010 Chilean earthquake. In: VI th International Sandy Beach Symposium. Public Presentation, SouthAfrica. In: June 26th.Jarratt, D., Davies, N., 2019. Planning for climate change impacts: coastal tourism destination resilience policies. Tour. Plann. and Develop 17 (4), 423–440. https:// doi.org/10.1080/21568316.2019.1667861.Jones, A., Gladstone, W., Hacking, N., 2007. Australian sandy-beach ecosystems and climate change: ecology and management. Zoologist 34 (2), 190–202. https://doi. org/10.7882/AZ.2007.018.Kühn, S., Bravo, E., van Franeker, J., 2015. Deleterious effects of litter on marine life. In: Bergmann, M., Gutow, L., Klages, M. (Eds.), Marine Anthropogenic Litter. Springer International Publishing, Cham, pp. 75–116.Legendre, P., Legendre, L., 2012. Numerical Ecology. Elsevier, Amsterdam.Lucrezi, S., Schlacher, T.A., 2014. The ecology of ghost crabs. Oce. and Mar. Biol: An Ann. Rev. 52, 201–256.Lucrezi, S., Schlacher, T.A., Walker, S., 2009. Monitoring human impacts on sandy shore ecosystems: a test of ghost crabs (Ocypode spp.) as biological indicators on an urban beach. Environ. Monit. Assess. 152, 413–424. https://doi.org/10.1007/s10661-008- 0326-2.Manenti, R., Mori, E., Di Canio, V., Mercurio, S., Picone, M., Caffi, M., Brambilla, M., Ficetola, G., Rubolini, D., 2020. The good, the bad and the ugly of COVID-19 lockdown effects on wildlife conservation: insights from the first European locked down country. Biol. Conserv. 249, 108,728. doi.org/https://doi.org/10.1016/j. biocon.2020.108728.Marion, J., 2019. Impacts to Wildlife: Managing Visitors and Resources to Protect Wildlife. Contributing Paper. Prepared for the Interagency Visitor Use Management Council, March 2019. In: Edition One.Marion, J., Leung, Y., Eagleston, H., Burroughs, K., 2016. A review and synthesis of recreation ecology research findings on visitor impacts to wilderness and protected natural areas. Jour. of Forest. 114 (3), 352–362. https://doi.org/10.5849/jof.15- 498.Marshall, F., Banks, K., Cook, G., 2014. Ecosystem indicators for Southeast Florida beaches. Ecol. Indic. 44, 81–91. https://doi.org/10.1016/j.ecolind.2013.12.021. Martínez, A., Eckert, E.M., Artois, T., Careddu, G., Casu, M., Curini-Galletti, M., Gazale, V., Gobert, S., Ivanenko, V., Jondelius, U., Marzano, M., Pesole, G., Zanello, A., Todaro, M.A., Fontaneto, D., 2020. Human access impacts biodiversity of microscopic animals in sandy beaches. Commun. Biol. 3, 175. https://doi.org/ 10.1038/s42003-020-0912-6.Martins, G.A.L., 2007. A macrofauna bentonicaˆ das praias arenosas expostas do Parque Nacional de Superagüi – PR: Subsídios ao Plano de Manejo. In: Dissertaçao˜ (Mestrado em Ecologia e Conservaçao).˜ Setor de Ciˆencias Biologicas´ da Universidade Federal do Parana.´ Curitiba, Programa de Pos´ Graduaçao˜ em Ecologia e Conservaça˜o.MBON Pole to Pole, 2019. Sampling protocol for assessment of marine diversity on sandy beaches. In: Marine Biodiversity Observation Network Pole to Pole of the Americas. https://doi.org/10.25607/OBP-665 (14 pp.).McLachlan, A., Defeo, O., Jaramillo, E., Short, A.D., 2013. Sandy beach conservation and recreation: guidelines for optimising management strategies for multi-purpose use. Oc. Coast. Manag. 71, 256–268. https://doi.org/10.1016/j.ocecoaman.2012.10.005.Mendoza-Gonzalez, ´ G., Martínez, M., Guevara, R., P´erez-Maqueo, O., Garza-Lagler, M., Howard, A., 2018. Towards a sustainable sun, sea, and sand tourism: the value of ocean view and proximity to the coast. Sustainability 10, 1012. https://doi.org/ 10.3390/su10041012.Milanes, ´ C., Pereira, C., Botero, C., 2019. Improving a decree law about coastal zone management in a small island developing state: the case of Cuba. Marine Policy 101, 93–107. https://doi.org/10.1016/j.marpol.2018.12.030 (March).Milanes, ´ C., Planas, J., Pelot, R., Núnez, ˜ J., 2020. A new methodology incorporating public participation within Cuba’s ICZM program. Oce. Coast. Manag. 186 (105), 101. https://doi.org/10.1016/j.ocecoaman.2020.105101.Moraes, F., Milanes, ´ C., 2020. Os limites espaciais da zona costeira para fins de gestao ˜ a partir de uma perspectiva integrada. Cap. 1 pp. [22–50]. In: Souto, R.D. (org.) Gestao ˜ Ambiental e Sustentabilidade em Areas ´ Costeiras e Marinhas: Conceitos e Praticas. ´ Vol. 1. Rio de Janeiro: Instituto Virtual para o Desenvolvimento Sustentavel ´ - IVI DES.org, 2020. [260 p].Niefer, I.A., 2002. Analise´ do perfil dos visitantes das Ilhas do Superagüi e do Mel: Marketing como instrumento para um turismo sustentavel.´ In: Tese (Doutorado em Engenharia Florestal). Universidade Federal do Parana.´ Curitiba, Setor de Cienciasˆ Agraria´ s.Ocana, ˜ F., de Jesús, A., Hernandez, ´ H., 2020. Co-occurring factors affecting ghost crab density at four sandy beaches in the Mexican Caribbean. Reg. Stu. in Mar. Sci. 36 (101), 310. https://doi.org/10.1016/j.rsma.2020.101310.Olds, A.D., Vargas-Fonseca, E., Connolly, R.M., Gilby, B.L., Huijbers, C.M., Hyndes, G.A., Layman, C.A., Whitfield, A.K., Schlacher, T.A., 2018. The ecology of fish in the surf zones of ocean beaches: a global review. Fish and Fisher. 19, 78–89.Peng, C., Zhao, X., Liu, G., 2015. Noise in the sea and its impacts on marine organisms. Int. J. Environ. Res. Public Health, 12, 12,304–12,323; doi:https://doi.org/10.33 90/ijerph121012304.Peterson, C., Bishop, M., 2005. Assessing the environmental impacts of beach nourishment. BioScience 55. In: 887e896.R Core Team, 2019. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL. https://www.R-project. org/.Reyes-Martínez, M.J., Lercari, D., Ruíz-Delgado, M.C., Sanchez-Moyano, ´ J.E., Jimenez- ´ Rodríguez, A., P´erez-Hurtado, A., García-García, F.J., 2015. Human pressure on sandy beaches: implications for trophic functioning. Estuar. Coasts 38, 1782–1796. https://doi.org/10.1007/s12237-014-9910-6.Rickard, C., McLachlan, A., Kerley, G.,1994. The effects of vehicular and pedestrian traffic on dune vegetation in South Africa. Oc. Coast. Manag. 23 (3), 225–247. DOI: doi:https://doi.org/10.1016/0964-5691(94)90021-3.Rutz, C., Loretto, M., Bates, A., Davidson, S., Duarte, C., Jetz, W., Johnson, M., Kato, A., Kays, R., Mueller, T., Primack, R., Ropert-Coudert, Y., Tucker, M., Wikelski, M., Cagnacci, F., 2020. COVID-19 lockdown allows researchers to quantify the effects of human activity on wildlife. Nat. Ecol. Evo. 4, 1156–1159. https://doi.org/10.1038/ s41559-020-1237-z.Schlacher, T., Thomson, L., 2012. Beach recreation impacts benthic invertebrates on ocean-exposed sandy shores. Biol. Conserv. 147 (1), 123–132. https://doi.org/ 10.1016/j.biocon.2011.12.022.Schlacher, T., Schoeman, D., Lastra, M., Jones, A., Dugan, J., Scapini, F., McLachlan, A., 2006. Neglected ecosystems bear the brunt of change. Ethol. Ecol. Evol. 18, 349e351.Schlacher, T., Nielsen, T., Weston, M., 2013. Human recreation alters behaviour profiles of non-breeding birds on open-coast sandy shores. Estuar. Coast. Shelf Sci. 118, 31–42. https://doi.org/10.1016/j.ecss.2012.12.016.Schlacher, T., Schoeman, D., Jones, A., Dugan, J., Hubbard, D., Defeo, O., Peterson, C., Weston, M., Maslo, B., Olds, A., Scapini, F., Nel, R., Harris, L., Lucrezi, S., Lastra, M., Huijbers, C., Connolly, R., 2014. Metrics to assess ecological condition, change, and impacts in sandy beach ecosystems. Jour. of Env. Manag. 144, 322–335. https://doi. org/10.1016/j.jenvman.2014.05.036.Schlacher, T.A., Jones, A.R., Dugan, J.E., Weston, M.A., Harris, L.L., Schoeman, D.S., Hubbard, D., Scapini, F., Nel, R., Lastra, M., McLachlan, A., Peterson, C.H., 2014a. Open-coast sandy beaches and coastal dunes. Chapter 5. In: Lockwood, J.L., Maslo, B. (Eds.), Coastal Conservation. Cambridge University Press, Cambridge, pp. In: 37e94.Schlacher, T.A., Lucrezi, S., Connolly, R.M., Peterson, C.H., Gilby, B.L., Maslo, B., Olds, A.D., Walker, S.J., Leon, J.X., Huijbers, C.M., Weston, M.A., Turra, A., Hyndes, G.A., Holt, R.A., Schoeman, D.S., 2016. Human threats to sandy beaches: a meta-analysis of ghost crabs illustrates global anthropogenic impacts. Estuar. Coast. and Shelf Sci. 169, 56–73.Souza Filho, J.R., Silva, I.R., Nunes, F.N., 2019. Avaliaçao ˜ qualitativa dos serviços ecossistˆemicos oferecidos pelas praias da APA Lagoa Encantada/Rio Almada, Bahia, Brasil. Caminhos de Geografia Uberlandia ˆ 20 (72), 15–32. https://doi.org/ 10.14393/RCG207241182.Souza, J.L, Silva, I.R., 2015. Avaliaçao ˜ da qualidade ambiental das praias da ilha de Itaparica, Baía de Todos os Santos, Bahia. Soc. & Nat. 27 (3), 469–484. DOI: https://doi.org/10.1590/1982-451,320,150,308.Stelling-Wood, T.P., Clark, G.F., Poore, A.G.B., 2016. Responses of ghost crabs to habitat modification of urban sandy beaches. Mar. Env. Res. 116, 32–40. https://doi.org/ 10.1016/j.marenvres.2016.02.009.Steven, R., Castley, J.G., 2013. Tourism as a threat to critically endangered and endangered birds: global patterns and trends in conservation hotspots. Biodivers. Conserv. 22, 1063–1082. https://doi.org/10.1007/s10531-013-0470-z.Suciu, M., Tavares, D., Costa, L., Silva, M., Zalmon, I., 2017. Evaluation of environmental quality of sandy beaches in southeastern Brazil. Mar. Poll. Bull. 199, 133–142. https://doi.org/10.1016/j.marpolbul.2017.04.045.Veloso, V.G., Silva, E.S., Caetano, C.H.S., Cardoso, R.S., 2006. Comparison between the macroinfauna of urbanized and protected beaches in Rio de Janeiro State, Brazil. Biol. Conserv. 127, 510–515.Vilar de Araujo, C.C., Melo Rosa, D., Fernandes, J.M., 2008. Densidade e distribuiçao ˜ espacial do caranguejo Ocypode quadrata (Fabricius, 1787) (Crustacea, Ocypodidae) em trˆes praias arenosas do Espírito Santo, Brasil. Biotemas 21, 73–80. https://doi. org/10.5007/2175-7925.2008v21n4p73.Wickham, H., 2014. Tidy data. J. Stat. Softw. 59 (10), 1–23. https://doi.org/10.18637/ jss.v059.i10.Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L., François, R., et al., 2019. Welcome to the Tidyverse. Journal of Open Source Software 4 (43), 1686. https:// doi.org/10.21105/joss.01686. Williams, A., Micallef, A., 2009. Beach Management: Principles and Practice. Earthscan Publishers, London.Wilson, C., Tisdell, C., 2003. Conservation and economic benefits of wildlife-based marine tourism: sea turtles and whales as case studies. Human Dimensions of Wildlife: An International Journal 8 (1), 49–58. https://doi.org/10.1080/ 10871200390180145.Winter, P.L., Selin, S., Cerveny, L., Bricker, K., 2020. Outdoor recreation, nature-based tourism. and sustainability. Sustainability 12 (1), 81.Zambrano-Monserrate, M., Ruano, M., 2019. Does environmental noise affect housing rental prices in developing countries? Evidence from Ecuador. Land Use Policy 87,104,059.Zambrano-Monserrate, M., Silva-Zambrano, C., Ruano, M., 2018. The economic value of natural protected areas in Ecuador: a case of Villamil Beach National Recreation Area. Ocean Coast. Manag. 157, 193–202. https://doi.org/10.1016/j. ocecoaman.2018.02.020.Zambrano-Monserrate, M., Ruano, M., Sanchez-Alcalde, ´ L., 2020. Indirect effects of COVID-19 on the environment. Sci.Total Env. 728 (138), 813. https://doi.org/ 10.1016/j.scitotenv.2020.138813.Zhang, F., Wang, X.A., Nunes, P., Ma, C., 2015. The recreational value of gold coast beaches, Australia: an application of the travel cost method. Eco. Serv. 11, 106–114. https://doi.org/10.1016/j.ecoser.2014.09.001.Zielinski, S., Botero, C.M., 2020. Beach tourism in times of COVID-19 pandemic: critical issues, knowledge gaps and research opportunities. Int. J. Environ. Res. Public Health 17, 7288. https://doi.org/10.3390/ijerph17197288.ORIGINALHow does the beach ecosystem change.pdfHow does the beach ecosystem change.pdfapplication/pdf2575442https://repositorio.cuc.edu.co/bitstream/11323/7864/1/How%20does%20the%20beach%20ecosystem%20change.pdf4b11ce8fddd9be1235fc0e4e9b3aba31MD51open accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstream/11323/7864/2/license_rdf42fd4ad1e89814f5e4a476b409eb708cMD52open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstream/11323/7864/3/license.txte30e9215131d99561d40d6b0abbe9badMD53open accessTHUMBNAILHow does the beach ecosystem change.pdf.jpgHow does the beach ecosystem change.pdf.jpgimage/jpeg58315https://repositorio.cuc.edu.co/bitstream/11323/7864/4/How%20does%20the%20beach%20ecosystem%20change.pdf.jpg65ebfdff53d8c3f47085635282715235MD54open accessTEXTHow does the beach ecosystem change.pdf.txtHow does the beach ecosystem change.pdf.txttext/plain78623https://repositorio.cuc.edu.co/bitstream/11323/7864/5/How%20does%20the%20beach%20ecosystem%20change.pdf.txt0cd5bee00b877951e8b986c8d2516e4fMD55open access11323/7864oai:repositorio.cuc.edu.co:11323/78642023-12-14 17:34:10.809CC0 1.0 Universal|||http://creativecommons.org/publicdomain/zero/1.0/open accessRepositorio Universidad de La Costabdigital@metabiblioteca.comQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==