Evaluación del desempeño de un amortiguador de masa sintonizado no lineal mediante simulaciones híbridas en tiempo real

Introducción: En este artículo se describe la simulación híbrida en tiempo real (RTHS) de un amortiguador no lineal de masa sintonizado (NTMD) y se comparan los resultados con los obtenidos de ensayos experimentales convencionales de una estructura a cortante, de un piso, con el NTMD.  Objetivo: El...

Full description

Autores:
Riascos-González, Carlos Andrés
Thomson, Peter
Dyke, Shirley
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
spa
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/12213
Acceso en línea:
https://hdl.handle.net/11323/12213
https://doi.org/10.17981/ingecuc.15.2.2019.02
Palabra clave:
non-linear tuned mass damper
real-time hybrid simulation
shaking table
damper-structure interaction
structural control
amortiguador no lineal de masa sintonizado
simulación híbrida en tiempo real
mesa vibratoria
interacción amortiguador-estructura
control estructural
Rights
openAccess
License
INGE CUC - 2019
id RCUC2_fef2d0410fbbe55377e5bf77d5df6fd6
oai_identifier_str oai:repositorio.cuc.edu.co:11323/12213
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Evaluación del desempeño de un amortiguador de masa sintonizado no lineal mediante simulaciones híbridas en tiempo real
dc.title.translated.eng.fl_str_mv Performance Evaluation of a Non-linear Tuned Mass Damper Through Real-Time Hybrid Simulation
title Evaluación del desempeño de un amortiguador de masa sintonizado no lineal mediante simulaciones híbridas en tiempo real
spellingShingle Evaluación del desempeño de un amortiguador de masa sintonizado no lineal mediante simulaciones híbridas en tiempo real
non-linear tuned mass damper
real-time hybrid simulation
shaking table
damper-structure interaction
structural control
amortiguador no lineal de masa sintonizado
simulación híbrida en tiempo real
mesa vibratoria
interacción amortiguador-estructura
control estructural
title_short Evaluación del desempeño de un amortiguador de masa sintonizado no lineal mediante simulaciones híbridas en tiempo real
title_full Evaluación del desempeño de un amortiguador de masa sintonizado no lineal mediante simulaciones híbridas en tiempo real
title_fullStr Evaluación del desempeño de un amortiguador de masa sintonizado no lineal mediante simulaciones híbridas en tiempo real
title_full_unstemmed Evaluación del desempeño de un amortiguador de masa sintonizado no lineal mediante simulaciones híbridas en tiempo real
title_sort Evaluación del desempeño de un amortiguador de masa sintonizado no lineal mediante simulaciones híbridas en tiempo real
dc.creator.fl_str_mv Riascos-González, Carlos Andrés
Thomson, Peter
Dyke, Shirley
dc.contributor.author.spa.fl_str_mv Riascos-González, Carlos Andrés
Thomson, Peter
Dyke, Shirley
dc.subject.eng.fl_str_mv non-linear tuned mass damper
real-time hybrid simulation
shaking table
damper-structure interaction
structural control
topic non-linear tuned mass damper
real-time hybrid simulation
shaking table
damper-structure interaction
structural control
amortiguador no lineal de masa sintonizado
simulación híbrida en tiempo real
mesa vibratoria
interacción amortiguador-estructura
control estructural
dc.subject.spa.fl_str_mv amortiguador no lineal de masa sintonizado
simulación híbrida en tiempo real
mesa vibratoria
interacción amortiguador-estructura
control estructural
description Introducción: En este artículo se describe la simulación híbrida en tiempo real (RTHS) de un amortiguador no lineal de masa sintonizado (NTMD) y se comparan los resultados con los obtenidos de ensayos experimentales convencionales de una estructura a cortante, de un piso, con el NTMD.  Objetivo: El objetivo de este artículo es valuar la efectividad de una RTHS para estimar el desempeño de un NTMD. Metodología: La metodología consistió de las siguientes tres etapas: identificación de la estructura principal, diseño del NTMD y evaluación experimental del sistema estructura-NTMD. Para la tercera etapa, se utilizaron RTHS y ensayos sobre mesa vibratoria. Resultados: Los resultados de los ensayos en mesa vibratoria demostraron que el NTMD redujo el 77% y 63% de las aceleraciones pico y RMS de la estructura principal, con respecto a la estructura sin control. Los valores de estas reducciones obtenidos con RTHS fueron 73% y 63%, respectivamente. Los índices de precisión del sistema de transferencia correspondieron a una amplitud generalizada de 1.01 y un retraso de 2 ms. Conclusiones: el NTMD, con una razón de masas del 10%, alcanzó reducciones superiores al 60% de la respuesta estructural. La RTHS y el ensayo de mesa vibratoria demostraron que el sistema estructura-NTMD tuvo solo un pico en la respuesta en frecuencia. El ruido en la retroalimentación de la RTHS aumentó el grado de amortiguamiento de la estructura controlada. Finalmente, los resultados experimentales demostraron que la RTHS es una técnica que predice efectivamente la aceleración RMS del sistema estructura-NTMD y puede sobreestimar ligeramente su aceleración pico.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-07-01 00:00:00
2024-04-09T20:15:13Z
dc.date.available.none.fl_str_mv 2019-07-01 00:00:00
2024-04-09T20:15:13Z
dc.date.issued.none.fl_str_mv 2019-07-01
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.local.eng.fl_str_mv Journal article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0122-6517
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/12213
dc.identifier.url.none.fl_str_mv https://doi.org/10.17981/ingecuc.15.2.2019.02
dc.identifier.doi.none.fl_str_mv 10.17981/ingecuc.15.2.2019.02
dc.identifier.eissn.none.fl_str_mv 2382-4700
identifier_str_mv 0122-6517
10.17981/ingecuc.15.2.2019.02
2382-4700
url https://hdl.handle.net/11323/12213
https://doi.org/10.17981/ingecuc.15.2.2019.02
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartofjournal.spa.fl_str_mv Inge Cuc
dc.relation.references.spa.fl_str_mv  J. A. Oviedo and M. D. P. Duque, “Status of seismic response control techniques in Colombia,” Rev. EIA, vol. 2009, no. 12, pp. 113–124, Jan. 2009.
 A. Filiatrault and C. Christopoulos, Principles of passive supplemental damping and seismic isolation. IUSS Press, Pavia, Italy, 2006.
 C. Sun, S. Nagarajaiah and A. J. Dick, “Experimental investigation of vibration attenuation using nonlinear tuned mass damper and pendulum tuned mass damper in parallel,” Nonlinear Dyn., vol 78, no. 4, pp. 2699–2715, Aug. 2014. https://doi.org/10.1007/s11071-014-1619-3
 G. Gatti, “Fundamental insight on the performance of a nonlinear tuned mass damper,” Meccanica, vol. 53, no. 1–2, pp. 111–123, Jul. 2018. https://doi.org/10.1007/s11012-017-0723-0
 V. Gattulli and A. Luongo, “Nonlinear tuned mass damper for self-excited oscillations,” Wind Struct., vol. 7, no. 4, pp. 251–264, Aug. 2004. https://doi.org/10.12989/was.2004.7.4.251
 Y. R. Wang, C. K. Feng and S. Y. Chen, “Damping effects of linear and nonlinear tuned mass dampers on nonlinear hinged-hinged beam,” J. Sound Vib., vol. 430, pp. 150–173, Sep. 2018. https://doi.org/10.1016/j.jsv.2018.05.033
 B. Farshi and A. Assadi, “Development of a chaotic nonlinear tuned mass damper for optimal vibration response,” Commun. Nonlinear Sci. Numer. Simul., vol. 16, no. 11, pp. 4514–4523, Nov. 2011. https://doi.org/10.1016/j.cnsns.2011.02.011
 K.-C. Chen, J.-H. Wang, B.-S. Huang, C.-C. Liu, and W.-G. Huang, “Vibrations of the TAIPEI 101 skyscraper caused by the 2011 Tohoku earthquake, Japan,” Earth, Planets Sp., vol. 64, no. 12, pp. 1277–1286, Jan. 2013.
 P. V. B. Guimarães, M. V. G. de Morais and S. M. Avila, “Tuned Mass Damper Inverted Pendulum to Reduce Offshore Wind Turbine Vibrations,” in Vibration Engineering and Technology of Machinerym, J. K. Sinha, Ed., Mánchester: University of Manchester, UK., 2015, pp. 379–388. https://doi.org/10.1007/978-3-319-09918-7_34
 G. Mosqueda, B. Stojadinovic and S. A. Mahin, “Energy-based procedure for monitoring experimental errors in hybrid simulations,” in 8NCEE, 100th Anniversary Earthquake Conference, San Francisco, CA, Apr. 18–22 2006, pp. 1535–1544
 G. Mosqueda, B. Stojadinovic and S. A. Mahin, “Real-time error monitoring for hybrid simulation. Part I: methodology and experimental verification,” J. Struct. Eng., vol. 133, no. 8, pp. 1100–1108, Aug. 2007. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:8(1100)
 A. Maghareh, A. I. Ozdagli and S. J. Dyke, “Modeling and implementation of distributed real-time hybrid simulation,” in NCEE 2014, 10th U.S. National Conference on Earthquake Engineering: Frontiers of Earthquake Engineering, Anchorage, Alaska, Jul. 21–25, 2014. https://doi.org/10.4231/D32B8VC4F
 Y. Qian, G. Ou, A. Maghareh and S. J. Dyke, “Parametric identification of a servo-hydraulic actuator for real-time hybrid simulation,” Mech. Syst. Signal Process., vol. 48, no. 1–2, pp. 260–273, Oct. 2014. https://doi.org/10.1016/j.ymssp.2014.03.001
 M. L. Brodersen, G. Ou, J. Høgsberg and S. Dyke, “Analysis of hybrid viscous damper by real time hybrid simulations,” Eng. Struct., vol. 126, pp. 675–688, Nov. 2016. https://doi.org/10.1016/j.engstruct.2016.08.020
 R. Zhang, P. V Lauenstein and B. M. Phillips, “Real-time hybrid simulation of a shear building with a uni-axial shake table,” Eng. Struct., vol. 119, pp. 217–229, Jul. 2016. https://doi.org/10.1016/j.engstruct.2016.04.022
 J. T. Wang, Y. Gui, F. Zhu, F. Jin and M. X. Zhou, “Real-time hybrid simulation of multi-story structures installed with tuned liquid damper,” Struct. Control Heal. Monit., vol. 23, no. 7, pp. 1015–1031, Dec. 2016. https://doi.org/10.1002/stc.1822
 F. Zhu, J. T. Wang, F. Jin and L. Q. Lu, “Real-time hybrid simulation of full-scale tuned liquid column dampers to control multi-order modal responses of structures,” Eng. Struct., vol. 138, pp. 74–90, May. 2017. https://doi.org/10.1016/j.engstruct.2017.02.004
 C. Chen, J. M. Ricles, T. L. Karavasilis, Y. Chae and R. Sause, “Evaluation of a real-time hybrid simulation system for performance evaluation of structures with rate dependent devices subjected to seismic loading,” Eng. Struct., vol. 35, pp. 71–82, Feb. 2012. https://doi.org/10.1016/j.engstruct.2011.10.006
 M. S. Williams and A. Blakeborough, “Laboratory testing of structures under dynamic loads: An introductory review,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 359, no. 1786. pp. 1651–1669, Sep. 2001. https://doi.org/10.1098/rsta.2001.0860
 W. J. Chung, C. B. Yun, N. S. Kim and J. W. Seo, “Shaking table and pseudodynamic tests for the evaluation of the seismic performance of base-isolated structures,” Eng. Struct., vol. 21, no. 4, pp. 365–379, Apr. 1999. https://doi.org/10.1016/S0141-0296(97)00211-3
 G. Ou, S. J. Dyke and A. Prakash, “Real time hybrid simulation with online model updating: An analysis of accuracy,” Mech. Syst. Signal Process., vol. 84, Part. B. pp. 223–240, Feb. 2017. https://doi.org/10.1016/j.ymssp.2016.06.015
 X. Gao, N. Castaneda and S. J. Dyke, “Real time hybrid simulation: From dynamic system, motion control to experimental error,” Earthq. Eng. Struct. Dyn., vol. 42, no. 6, pp. 815–832, Aug. 2013. https://doi.org/10.1002/eqe.2246
 G. Ou, A. Prakash and S. Dyke, “Modified Runge-Kutta Integration Algorithm for Improved Stability and Accuracy in Real Time Hybrid Simulation,” J. Earthq. Eng., vol. 19, no. 7, pp. 1112–1139, Jun. 2015. https://doi.org/10.1080/13632469.2015.1027018.
 G. Ou, A. I. Ozdagli, S. J. Dyke and B. Wu, “Robust integrated actuator control: Experimental verification and real-time hybrid-simulation implementation,” Earthq. Eng. Struct. Dyn., vol. 44, no. 3, pp. 441–460, Oct. 2015. https://doi.org/10.1002/eqe.2479
 A. Friedman et al., “Large-scale real-time hybrid simulation for evaluation of advanced damping system performance,” J. Struct. Eng., vol. 141, no. 6, p. 04014150, Jul. 2015. https://doi.org/10.1061/(ASCE)ST.1943-541X. 0001093
 C. Riascos, J. Marulanda and P. Thomson, “Semi-active tuned liquid column damper implementation with real-time hybrid simulations,” Active and Passive Smart Structures and Integrated Systems 2016, vol. 9799, p. 979919, Apr. 2016. https://doi.org/10.1117/12.2220004
 G. Mosqueda, B. Stojadinović and S. A. Mahin, “Implementation and accuracy of continuous hybrid simulation with geographically distributed substructures,” Earthq. Eng. Res. Center, University of California, Berkeley, CA, Tech. Rep. UCB/EERC, 2005.
 R. Christenson et al., “Hybrid Simulation: A Discussion of Current Assessment Measures,” Earthq. Eng. Res., NSF, NEES, West Lafayette, Indiana, Tech. Rep. Cmmi, 2014.
 A. Y. Tuan and G. Q. Shang, “Vibration control in a 101-storey building using a tuned mass damper,” J. Appl. Sci. Eng., vol. 17, no. 2, pp. 141–156, Jan. 2014. https://doi.org/10.6180/jase.2014.17.2.05
 R. N. Jabary and G. S. P. Madabhushi, “Tuned Mass Damper Positioning Effects on the Seismic Response of a Soil-MDOF-Structure System,” J. Earthq. Eng., vol. 22, no. 2, pp. 281–302, Jan. 2018. https://doi.org/10.1080/13632469.2016.1224743
 J. L. Almazán, J. C. De la Llera, J. A. Inaudi, D. López-García and L. E. Izquierdo, “A bidirectional and homogeneous tuned mass damper: A new device for passive control of vibrations,” Eng. Struct., vol. 29, no. 7, pp. 1548–1560, Jul. 2007. https://doi.org/10.1016/j.engstruct.2006.09.005
 F. Weber, C. Boston and M. Maślanka, “An adaptive tuned mass damper based on the emulation of positive and negative stiffness with an MR damper,” Smart Mater. Struct., vol. 20, no. 1, Dec. 2011. https://doi.org/10.1088/0964-1726/20/1/015012
 D. C. Johnson, “Mechanical Vibrations,” Nature, vol. 169, no. 641, pp. 271–288, Abr. 1952. https://doi.org/10.1038/169641b0
T. T. Soong and G. F. Dargush, Passive energy dissipation systems in structural engineering, New York, USA: MCEER, 1997.
dc.relation.citationendpage.none.fl_str_mv 22
dc.relation.citationstartpage.none.fl_str_mv 11
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationvolume.spa.fl_str_mv 15
dc.relation.bitstream.none.fl_str_mv https://revistascientificas.cuc.edu.co/ingecuc/article/download/1963/2332
https://revistascientificas.cuc.edu.co/ingecuc/article/download/1963/2378
https://revistascientificas.cuc.edu.co/ingecuc/article/download/1963/2381
dc.relation.citationedition.spa.fl_str_mv Núm. 2 , Año 2019 : (Julio-Diciembre)
dc.rights.spa.fl_str_mv INGE CUC - 2019
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv INGE CUC - 2019
http://creativecommons.org/licenses/by-nc-nd/4.0
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
text/html
application/xml
dc.publisher.spa.fl_str_mv Universidad de la Costa
dc.source.spa.fl_str_mv https://revistascientificas.cuc.edu.co/ingecuc/article/view/1963
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstream/11323/12213/1/ORE.xml
bitstream.checksum.fl_str_mv a049a57e60325dc3ca92c4b42f1ef10c
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Universidad de La Costa
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1808400190425530368
spelling Riascos-González, Carlos Andrés67e19906484b0f417011dd52d2a3e917300Thomson, Peter98c0262866fbfb9b3fa43565109699f3500Dyke, Shirleyd09ad12401463137900ab6a4ff1456675002019-07-01 00:00:002024-04-09T20:15:13Z2019-07-01 00:00:002024-04-09T20:15:13Z2019-07-010122-6517https://hdl.handle.net/11323/12213https://doi.org/10.17981/ingecuc.15.2.2019.0210.17981/ingecuc.15.2.2019.022382-4700Introducción: En este artículo se describe la simulación híbrida en tiempo real (RTHS) de un amortiguador no lineal de masa sintonizado (NTMD) y se comparan los resultados con los obtenidos de ensayos experimentales convencionales de una estructura a cortante, de un piso, con el NTMD.  Objetivo: El objetivo de este artículo es valuar la efectividad de una RTHS para estimar el desempeño de un NTMD. Metodología: La metodología consistió de las siguientes tres etapas: identificación de la estructura principal, diseño del NTMD y evaluación experimental del sistema estructura-NTMD. Para la tercera etapa, se utilizaron RTHS y ensayos sobre mesa vibratoria. Resultados: Los resultados de los ensayos en mesa vibratoria demostraron que el NTMD redujo el 77% y 63% de las aceleraciones pico y RMS de la estructura principal, con respecto a la estructura sin control. Los valores de estas reducciones obtenidos con RTHS fueron 73% y 63%, respectivamente. Los índices de precisión del sistema de transferencia correspondieron a una amplitud generalizada de 1.01 y un retraso de 2 ms. Conclusiones: el NTMD, con una razón de masas del 10%, alcanzó reducciones superiores al 60% de la respuesta estructural. La RTHS y el ensayo de mesa vibratoria demostraron que el sistema estructura-NTMD tuvo solo un pico en la respuesta en frecuencia. El ruido en la retroalimentación de la RTHS aumentó el grado de amortiguamiento de la estructura controlada. Finalmente, los resultados experimentales demostraron que la RTHS es una técnica que predice efectivamente la aceleración RMS del sistema estructura-NTMD y puede sobreestimar ligeramente su aceleración pico.Introduction: In this paper, the real-time hybrid simulation (RTHS) of a non-linear tuned mass damper (NTMD) is described, and the results are compared with those obtained from conventional experimental tests of a one-story shear frame structure with the NTMD. Objective: The aim of this article is to evaluate the effectiveness of a RTHS for the estimation of the performance of a NTMD. Method: the methodology consisted of the following three stages: main structure identification, NTMD design, and experimental evaluation of the structure-NTMD system. For the third stage, both real-time hybrid simulations and shaking table testing were conducted.  Results:  results from shaking table tests demonstrate that the NTMD reduced the peak and RMS accelerations of the main structure 77% and 63% respectively, with respect to the structure without control. The values of these reductions obtained with RTHS were 73% and 63%, respectively. The assessment indices of the transfer system correspond to a generalized amplitude of 1.01 and a delay of 2 ms.  Conclusions: the NTMD, with a 10% mass ratio, achieved reductions greater than 60% in the acceleration response of the structure. The RTHS and shaking table test indicated that the structure-NTMD system had only one peak in the frequency response. Noise in RTHS feedback increased the damping level of the controlled structure. Finally, experimental results showed that the RTHS is a technique that predicts effectively the RMS acceleration of the structure-NTMD system, and it can slightly overestimate its peak acceleration.application/pdftext/htmlapplication/xmlspaUniversidad de la CostaINGE CUC - 2019http://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.http://purl.org/coar/access_right/c_abf2https://revistascientificas.cuc.edu.co/ingecuc/article/view/1963non-linear tuned mass damperreal-time hybrid simulationshaking tabledamper-structure interactionstructural controlamortiguador no lineal de masa sintonizadosimulación híbrida en tiempo realmesa vibratoriainteracción amortiguador-estructuracontrol estructuralEvaluación del desempeño de un amortiguador de masa sintonizado no lineal mediante simulaciones híbridas en tiempo realPerformance Evaluation of a Non-linear Tuned Mass Damper Through Real-Time Hybrid SimulationArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articleJournal articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Inge Cuc J. A. Oviedo and M. D. P. Duque, “Status of seismic response control techniques in Colombia,” Rev. EIA, vol. 2009, no. 12, pp. 113–124, Jan. 2009. A. Filiatrault and C. Christopoulos, Principles of passive supplemental damping and seismic isolation. IUSS Press, Pavia, Italy, 2006. C. Sun, S. Nagarajaiah and A. J. Dick, “Experimental investigation of vibration attenuation using nonlinear tuned mass damper and pendulum tuned mass damper in parallel,” Nonlinear Dyn., vol 78, no. 4, pp. 2699–2715, Aug. 2014. https://doi.org/10.1007/s11071-014-1619-3 G. Gatti, “Fundamental insight on the performance of a nonlinear tuned mass damper,” Meccanica, vol. 53, no. 1–2, pp. 111–123, Jul. 2018. https://doi.org/10.1007/s11012-017-0723-0 V. Gattulli and A. Luongo, “Nonlinear tuned mass damper for self-excited oscillations,” Wind Struct., vol. 7, no. 4, pp. 251–264, Aug. 2004. https://doi.org/10.12989/was.2004.7.4.251 Y. R. Wang, C. K. Feng and S. Y. Chen, “Damping effects of linear and nonlinear tuned mass dampers on nonlinear hinged-hinged beam,” J. Sound Vib., vol. 430, pp. 150–173, Sep. 2018. https://doi.org/10.1016/j.jsv.2018.05.033 B. Farshi and A. Assadi, “Development of a chaotic nonlinear tuned mass damper for optimal vibration response,” Commun. Nonlinear Sci. Numer. Simul., vol. 16, no. 11, pp. 4514–4523, Nov. 2011. https://doi.org/10.1016/j.cnsns.2011.02.011 K.-C. Chen, J.-H. Wang, B.-S. Huang, C.-C. Liu, and W.-G. Huang, “Vibrations of the TAIPEI 101 skyscraper caused by the 2011 Tohoku earthquake, Japan,” Earth, Planets Sp., vol. 64, no. 12, pp. 1277–1286, Jan. 2013. P. V. B. Guimarães, M. V. G. de Morais and S. M. Avila, “Tuned Mass Damper Inverted Pendulum to Reduce Offshore Wind Turbine Vibrations,” in Vibration Engineering and Technology of Machinerym, J. K. Sinha, Ed., Mánchester: University of Manchester, UK., 2015, pp. 379–388. https://doi.org/10.1007/978-3-319-09918-7_34 G. Mosqueda, B. Stojadinovic and S. A. Mahin, “Energy-based procedure for monitoring experimental errors in hybrid simulations,” in 8NCEE, 100th Anniversary Earthquake Conference, San Francisco, CA, Apr. 18–22 2006, pp. 1535–1544 G. Mosqueda, B. Stojadinovic and S. A. Mahin, “Real-time error monitoring for hybrid simulation. Part I: methodology and experimental verification,” J. Struct. Eng., vol. 133, no. 8, pp. 1100–1108, Aug. 2007. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:8(1100) A. Maghareh, A. I. Ozdagli and S. J. Dyke, “Modeling and implementation of distributed real-time hybrid simulation,” in NCEE 2014, 10th U.S. National Conference on Earthquake Engineering: Frontiers of Earthquake Engineering, Anchorage, Alaska, Jul. 21–25, 2014. https://doi.org/10.4231/D32B8VC4F Y. Qian, G. Ou, A. Maghareh and S. J. Dyke, “Parametric identification of a servo-hydraulic actuator for real-time hybrid simulation,” Mech. Syst. Signal Process., vol. 48, no. 1–2, pp. 260–273, Oct. 2014. https://doi.org/10.1016/j.ymssp.2014.03.001 M. L. Brodersen, G. Ou, J. Høgsberg and S. Dyke, “Analysis of hybrid viscous damper by real time hybrid simulations,” Eng. Struct., vol. 126, pp. 675–688, Nov. 2016. https://doi.org/10.1016/j.engstruct.2016.08.020 R. Zhang, P. V Lauenstein and B. M. Phillips, “Real-time hybrid simulation of a shear building with a uni-axial shake table,” Eng. Struct., vol. 119, pp. 217–229, Jul. 2016. https://doi.org/10.1016/j.engstruct.2016.04.022 J. T. Wang, Y. Gui, F. Zhu, F. Jin and M. X. Zhou, “Real-time hybrid simulation of multi-story structures installed with tuned liquid damper,” Struct. Control Heal. Monit., vol. 23, no. 7, pp. 1015–1031, Dec. 2016. https://doi.org/10.1002/stc.1822 F. Zhu, J. T. Wang, F. Jin and L. Q. Lu, “Real-time hybrid simulation of full-scale tuned liquid column dampers to control multi-order modal responses of structures,” Eng. Struct., vol. 138, pp. 74–90, May. 2017. https://doi.org/10.1016/j.engstruct.2017.02.004 C. Chen, J. M. Ricles, T. L. Karavasilis, Y. Chae and R. Sause, “Evaluation of a real-time hybrid simulation system for performance evaluation of structures with rate dependent devices subjected to seismic loading,” Eng. Struct., vol. 35, pp. 71–82, Feb. 2012. https://doi.org/10.1016/j.engstruct.2011.10.006 M. S. Williams and A. Blakeborough, “Laboratory testing of structures under dynamic loads: An introductory review,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 359, no. 1786. pp. 1651–1669, Sep. 2001. https://doi.org/10.1098/rsta.2001.0860 W. J. Chung, C. B. Yun, N. S. Kim and J. W. Seo, “Shaking table and pseudodynamic tests for the evaluation of the seismic performance of base-isolated structures,” Eng. Struct., vol. 21, no. 4, pp. 365–379, Apr. 1999. https://doi.org/10.1016/S0141-0296(97)00211-3 G. Ou, S. J. Dyke and A. Prakash, “Real time hybrid simulation with online model updating: An analysis of accuracy,” Mech. Syst. Signal Process., vol. 84, Part. B. pp. 223–240, Feb. 2017. https://doi.org/10.1016/j.ymssp.2016.06.015 X. Gao, N. Castaneda and S. J. Dyke, “Real time hybrid simulation: From dynamic system, motion control to experimental error,” Earthq. Eng. Struct. Dyn., vol. 42, no. 6, pp. 815–832, Aug. 2013. https://doi.org/10.1002/eqe.2246 G. Ou, A. Prakash and S. Dyke, “Modified Runge-Kutta Integration Algorithm for Improved Stability and Accuracy in Real Time Hybrid Simulation,” J. Earthq. Eng., vol. 19, no. 7, pp. 1112–1139, Jun. 2015. https://doi.org/10.1080/13632469.2015.1027018. G. Ou, A. I. Ozdagli, S. J. Dyke and B. Wu, “Robust integrated actuator control: Experimental verification and real-time hybrid-simulation implementation,” Earthq. Eng. Struct. Dyn., vol. 44, no. 3, pp. 441–460, Oct. 2015. https://doi.org/10.1002/eqe.2479 A. Friedman et al., “Large-scale real-time hybrid simulation for evaluation of advanced damping system performance,” J. Struct. Eng., vol. 141, no. 6, p. 04014150, Jul. 2015. https://doi.org/10.1061/(ASCE)ST.1943-541X. 0001093 C. Riascos, J. Marulanda and P. Thomson, “Semi-active tuned liquid column damper implementation with real-time hybrid simulations,” Active and Passive Smart Structures and Integrated Systems 2016, vol. 9799, p. 979919, Apr. 2016. https://doi.org/10.1117/12.2220004 G. Mosqueda, B. Stojadinović and S. A. Mahin, “Implementation and accuracy of continuous hybrid simulation with geographically distributed substructures,” Earthq. Eng. Res. Center, University of California, Berkeley, CA, Tech. Rep. UCB/EERC, 2005. R. Christenson et al., “Hybrid Simulation: A Discussion of Current Assessment Measures,” Earthq. Eng. Res., NSF, NEES, West Lafayette, Indiana, Tech. Rep. Cmmi, 2014. A. Y. Tuan and G. Q. Shang, “Vibration control in a 101-storey building using a tuned mass damper,” J. Appl. Sci. Eng., vol. 17, no. 2, pp. 141–156, Jan. 2014. https://doi.org/10.6180/jase.2014.17.2.05 R. N. Jabary and G. S. P. Madabhushi, “Tuned Mass Damper Positioning Effects on the Seismic Response of a Soil-MDOF-Structure System,” J. Earthq. Eng., vol. 22, no. 2, pp. 281–302, Jan. 2018. https://doi.org/10.1080/13632469.2016.1224743 J. L. Almazán, J. C. De la Llera, J. A. Inaudi, D. López-García and L. E. Izquierdo, “A bidirectional and homogeneous tuned mass damper: A new device for passive control of vibrations,” Eng. Struct., vol. 29, no. 7, pp. 1548–1560, Jul. 2007. https://doi.org/10.1016/j.engstruct.2006.09.005 F. Weber, C. Boston and M. Maślanka, “An adaptive tuned mass damper based on the emulation of positive and negative stiffness with an MR damper,” Smart Mater. Struct., vol. 20, no. 1, Dec. 2011. https://doi.org/10.1088/0964-1726/20/1/015012 D. C. Johnson, “Mechanical Vibrations,” Nature, vol. 169, no. 641, pp. 271–288, Abr. 1952. https://doi.org/10.1038/169641b0T. T. Soong and G. F. Dargush, Passive energy dissipation systems in structural engineering, New York, USA: MCEER, 1997.2211215https://revistascientificas.cuc.edu.co/ingecuc/article/download/1963/2332https://revistascientificas.cuc.edu.co/ingecuc/article/download/1963/2378https://revistascientificas.cuc.edu.co/ingecuc/article/download/1963/2381Núm. 2 , Año 2019 : (Julio-Diciembre)OREORE.xmltext/xml2717https://repositorio.cuc.edu.co/bitstream/11323/12213/1/ORE.xmla049a57e60325dc3ca92c4b42f1ef10cMD51open access11323/12213oai:repositorio.cuc.edu.co:11323/122132024-04-09 15:15:13.671An error occurred on the license name.|||http://creativecommons.org/licenses/by-nc-nd/4.0metadata only accessRepositorio Universidad de La Costarepdigital@cuc.edu.co