On real valued ω-continuous functions

The aim of this paper is to introduce and study upper and lower !-continuous functions. Some characterizations and several proper- ties concerning upper (resp. lower) !-continuous functions are obtained.

Autores:
Carpintero, Carlos
Rajesh, N.
Rosas Rodriguez, Ennis Rafael
Tipo de recurso:
Article of journal
Fecha de publicación:
2018
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/2199
Acceso en línea:
https://hdl.handle.net/11323/2199
https://repositorio.cuc.edu.co/
Palabra clave:
!-closed space
!-open sets
!-continuous functions
Rights
openAccess
License
Atribución – No comercial – Compartir igual
id RCUC2_fe9f43639b399304a1831a23e9a088c5
oai_identifier_str oai:repositorio.cuc.edu.co:11323/2199
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv On real valued ω-continuous functions
title On real valued ω-continuous functions
spellingShingle On real valued ω-continuous functions
!-closed space
!-open sets
!-continuous functions
title_short On real valued ω-continuous functions
title_full On real valued ω-continuous functions
title_fullStr On real valued ω-continuous functions
title_full_unstemmed On real valued ω-continuous functions
title_sort On real valued ω-continuous functions
dc.creator.fl_str_mv Carpintero, Carlos
Rajesh, N.
Rosas Rodriguez, Ennis Rafael
dc.contributor.author.spa.fl_str_mv Carpintero, Carlos
Rajesh, N.
Rosas Rodriguez, Ennis Rafael
dc.subject.spa.fl_str_mv !-closed space
!-open sets
!-continuous functions
topic !-closed space
!-open sets
!-continuous functions
description The aim of this paper is to introduce and study upper and lower !-continuous functions. Some characterizations and several proper- ties concerning upper (resp. lower) !-continuous functions are obtained.
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2019-01-24T15:32:46Z
dc.date.available.none.fl_str_mv 2019-01-24T15:32:46Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 2066-7752
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/2199
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 2066-7752
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/2199
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv K. Al-Zoubi, B. Al-Nashef, The topology of ω-open subsets, Al-Manarah J., (9) (2003), 169–179. A. Al-Omari, M. S. M. Noorani, Contra-ω-continuous and almost ωcontinuous functions, Int. J. Math. Math. Sci., (9) (2007), 169–179. A. Al-Omari, T. Noiri, M. S. M. Noorani, Weak and strong forms of ω-continuous functions, Int. J. Math. Math. Sci., (9) (2009), 1–13. H. Z. Hdeib, ω-closed mappings, Rev. Colombiana Mat., 16 (1982),65–78. H. Z. Hdeib, ω-continuous functions, Dirasat J., 16 (2) (1989),136–142
dc.rights.spa.fl_str_mv Atribución – No comercial – Compartir igual
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución – No comercial – Compartir igual
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Acta Universitatis Sapientiae, Mathematica
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/912c9826-6389-4eab-a710-d01f5bb5c87f/download
https://repositorio.cuc.edu.co/bitstreams/c12b89bf-3eff-4dc7-bed8-454dbdcbf7bb/download
https://repositorio.cuc.edu.co/bitstreams/85bc3b3c-1f1c-48b2-8118-9ebf2c2868c3/download
https://repositorio.cuc.edu.co/bitstreams/0aeefd47-ff26-4851-9a94-90f1f9917bbe/download
bitstream.checksum.fl_str_mv a4b11f7d1af5f2c2bd584ccf00d8976e
8a4605be74aa9ea9d79846c1fba20a33
aef7d6015159870949581d0aa30c3475
73e21e0d74cd65e5626a49b5025c19c6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760728991858688
spelling Carpintero, CarlosRajesh, N.Rosas Rodriguez, Ennis Rafael2019-01-24T15:32:46Z2019-01-24T15:32:46Z20182066-7752https://hdl.handle.net/11323/2199Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The aim of this paper is to introduce and study upper and lower !-continuous functions. Some characterizations and several proper- ties concerning upper (resp. lower) !-continuous functions are obtained.Carpintero, Carlos-a355945f-e98f-41c1-bf2e-c139d8aa37cb-0Rajesh, N.-4507320c-a2f2-4c9e-8ab4-7896d97c6957-0Rosas Rodriguez, Ennis Rafael-0000-0001-8123-9344-600engActa Universitatis Sapientiae, MathematicaAtribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2!-closed space!-open sets!-continuous functionsOn real valued ω-continuous functionsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionK. Al-Zoubi, B. Al-Nashef, The topology of ω-open subsets, Al-Manarah J., (9) (2003), 169–179. A. Al-Omari, M. S. M. Noorani, Contra-ω-continuous and almost ωcontinuous functions, Int. J. Math. Math. Sci., (9) (2007), 169–179. A. Al-Omari, T. Noiri, M. S. M. Noorani, Weak and strong forms of ω-continuous functions, Int. J. Math. Math. Sci., (9) (2009), 1–13. H. Z. Hdeib, ω-closed mappings, Rev. Colombiana Mat., 16 (1982),65–78. H. Z. Hdeib, ω-continuous functions, Dirasat J., 16 (2) (1989),136–142PublicationORIGINALOn real valued !-continuous functions.pdfOn real valued !-continuous functions.pdfapplication/pdf340266https://repositorio.cuc.edu.co/bitstreams/912c9826-6389-4eab-a710-d01f5bb5c87f/downloada4b11f7d1af5f2c2bd584ccf00d8976eMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/c12b89bf-3eff-4dc7-bed8-454dbdcbf7bb/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILOn real valued !-continuous functions.pdf.jpgOn real valued !-continuous functions.pdf.jpgimage/jpeg38426https://repositorio.cuc.edu.co/bitstreams/85bc3b3c-1f1c-48b2-8118-9ebf2c2868c3/downloadaef7d6015159870949581d0aa30c3475MD54TEXTOn real valued !-continuous functions.pdf.txtOn real valued !-continuous functions.pdf.txttext/plain14164https://repositorio.cuc.edu.co/bitstreams/0aeefd47-ff26-4851-9a94-90f1f9917bbe/download73e21e0d74cd65e5626a49b5025c19c6MD5511323/2199oai:repositorio.cuc.edu.co:11323/21992024-09-17 10:50:55.155open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=