A cooperative game approach to a production planning problem
This paper deals with a production planning problem formulated as a Mixed Integer Linear Programming (MILP) model that has a competition component, given that the manufacturers are willing to produce as much products as they can in order to fulfil the market’s needs. This corresponds to a typical ga...
- Autores:
-
Ramirez Rios, Diana Gineth
Landinez, D. C.
Consuegra, P. A.
García, J. L.
Quintana, Leonardo Augusto
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2015
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/878
- Acceso en línea:
- https://hdl.handle.net/11323/878
https://repositorio.cuc.edu.co/
- Palabra clave:
- Cooperative Game Theory
Production Planning
Mixed Integer Linear Programming
Optimization
Shapley Value
- Rights
- openAccess
- License
- Atribución – No comercial – Compartir igual
id |
RCUC2_fe91824f8dc5808e2111a004c9163212 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/878 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
A cooperative game approach to a production planning problem |
title |
A cooperative game approach to a production planning problem |
spellingShingle |
A cooperative game approach to a production planning problem Cooperative Game Theory Production Planning Mixed Integer Linear Programming Optimization Shapley Value |
title_short |
A cooperative game approach to a production planning problem |
title_full |
A cooperative game approach to a production planning problem |
title_fullStr |
A cooperative game approach to a production planning problem |
title_full_unstemmed |
A cooperative game approach to a production planning problem |
title_sort |
A cooperative game approach to a production planning problem |
dc.creator.fl_str_mv |
Ramirez Rios, Diana Gineth Landinez, D. C. Consuegra, P. A. García, J. L. Quintana, Leonardo Augusto |
dc.contributor.author.spa.fl_str_mv |
Ramirez Rios, Diana Gineth Landinez, D. C. Consuegra, P. A. García, J. L. Quintana, Leonardo Augusto |
dc.subject.eng.fl_str_mv |
Cooperative Game Theory Production Planning Mixed Integer Linear Programming Optimization Shapley Value |
topic |
Cooperative Game Theory Production Planning Mixed Integer Linear Programming Optimization Shapley Value |
description |
This paper deals with a production planning problem formulated as a Mixed Integer Linear Programming (MILP) model that has a competition component, given that the manufacturers are willing to produce as much products as they can in order to fulfil the market’s needs. This corresponds to a typical game theoretic problem applied to the productive sector, where a global optimization problem involves production planning in order to maximize the utilities for the different firms that manufacture the same type of products and compete in the market. This problem has been approached as a cooperative game, which involves a possible cooperation scheme among the manufacturers. The general problem was approached by Owen (1995) as the “production game” and the core was considered. This paper identifies the cooperative game theoretic model for the production planning MILP optimization problem and Shapley Value was chosen as the solution approach. The results obtained indicate the importance of cooperating among competitors. Moreover, this leads to economic strategies for small manufacturing companies that wish to survive in a competitive environment. |
publishDate |
2015 |
dc.date.issued.none.fl_str_mv |
2015 |
dc.date.accessioned.none.fl_str_mv |
2018-11-13T14:18:05Z |
dc.date.available.none.fl_str_mv |
2018-11-13T14:18:05Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/878 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
url |
https://hdl.handle.net/11323/878 https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Corporación Universidad de la Costa REDICUC - Repositorio CUC |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.spa.fl_str_mv |
Atribución – No comercial – Compartir igual |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución – No comercial – Compartir igual http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/63bea580-f5ce-4e50-8d63-aed83e76f2d8/download https://repositorio.cuc.edu.co/bitstreams/3e9c165f-6553-4ed8-9a69-0231a0c7c35d/download https://repositorio.cuc.edu.co/bitstreams/3677cfcb-f55a-48c3-8d27-dfa676d8a612/download https://repositorio.cuc.edu.co/bitstreams/0af67f6d-28ff-4453-b054-d2f89f4912ba/download |
bitstream.checksum.fl_str_mv |
c479767e1ef72e90d8685d665c03e3c4 8a4605be74aa9ea9d79846c1fba20a33 4d787e4c37b8a582a3fc8be8cb4146f3 91a0d06baa81d720acba80fbf1a0e2f3 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760755132858368 |
spelling |
Ramirez Rios, Diana GinethLandinez, D. C.Consuegra, P. A.García, J. L.Quintana, Leonardo Augusto2018-11-13T14:18:05Z2018-11-13T14:18:05Z2015https://hdl.handle.net/11323/878Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This paper deals with a production planning problem formulated as a Mixed Integer Linear Programming (MILP) model that has a competition component, given that the manufacturers are willing to produce as much products as they can in order to fulfil the market’s needs. This corresponds to a typical game theoretic problem applied to the productive sector, where a global optimization problem involves production planning in order to maximize the utilities for the different firms that manufacture the same type of products and compete in the market. This problem has been approached as a cooperative game, which involves a possible cooperation scheme among the manufacturers. The general problem was approached by Owen (1995) as the “production game” and the core was considered. This paper identifies the cooperative game theoretic model for the production planning MILP optimization problem and Shapley Value was chosen as the solution approach. The results obtained indicate the importance of cooperating among competitors. Moreover, this leads to economic strategies for small manufacturing companies that wish to survive in a competitive environment.Ramirez Rios, Diana Gineth-9abc1e8a-9687-4743-af44-da784d45d6a5-600Landinez, D. C.-62b2bbab-8ff9-44df-b596-0adeb42bafa9-600Consuegra, P. A.-d8720be7-cfc9-4e44-b0e1-fff59a4128fc-600García, J. L.-11f1873f-7b06-46f2-931d-5f5aca74150e-600Quintana, Leonardo Augusto-661c0379-85ba-4cd0-b192-7f957f1cd4cb-600engAtribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cooperative Game TheoryProduction PlanningMixed Integer Linear ProgrammingOptimizationShapley ValueA cooperative game approach to a production planning problemArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALA cooperative game approach to a production planning problem.pdfA cooperative game approach to a production planning problem.pdfapplication/pdf357915https://repositorio.cuc.edu.co/bitstreams/63bea580-f5ce-4e50-8d63-aed83e76f2d8/downloadc479767e1ef72e90d8685d665c03e3c4MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/3e9c165f-6553-4ed8-9a69-0231a0c7c35d/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILA cooperative game approach to a production planning problem.pdf.jpgA cooperative game approach to a production planning problem.pdf.jpgimage/jpeg63038https://repositorio.cuc.edu.co/bitstreams/3677cfcb-f55a-48c3-8d27-dfa676d8a612/download4d787e4c37b8a582a3fc8be8cb4146f3MD54TEXTA cooperative game approach to a production planning problem.pdf.txtA cooperative game approach to a production planning problem.pdf.txttext/plain29891https://repositorio.cuc.edu.co/bitstreams/0af67f6d-28ff-4453-b054-d2f89f4912ba/download91a0d06baa81d720acba80fbf1a0e2f3MD5511323/878oai:repositorio.cuc.edu.co:11323/8782024-09-17 10:59:40.691open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |