A cooperative game approach to a production planning problem

This paper deals with a production planning problem formulated as a Mixed Integer Linear Programming (MILP) model that has a competition component, given that the manufacturers are willing to produce as much products as they can in order to fulfil the market’s needs. This corresponds to a typical ga...

Full description

Autores:
Ramirez Rios, Diana Gineth
Landinez, D. C.
Consuegra, P. A.
García, J. L.
Quintana, Leonardo Augusto
Tipo de recurso:
Article of journal
Fecha de publicación:
2015
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/878
Acceso en línea:
https://hdl.handle.net/11323/878
https://repositorio.cuc.edu.co/
Palabra clave:
Cooperative Game Theory
Production Planning
Mixed Integer Linear Programming
Optimization
Shapley Value
Rights
openAccess
License
Atribución – No comercial – Compartir igual
id RCUC2_fe91824f8dc5808e2111a004c9163212
oai_identifier_str oai:repositorio.cuc.edu.co:11323/878
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv A cooperative game approach to a production planning problem
title A cooperative game approach to a production planning problem
spellingShingle A cooperative game approach to a production planning problem
Cooperative Game Theory
Production Planning
Mixed Integer Linear Programming
Optimization
Shapley Value
title_short A cooperative game approach to a production planning problem
title_full A cooperative game approach to a production planning problem
title_fullStr A cooperative game approach to a production planning problem
title_full_unstemmed A cooperative game approach to a production planning problem
title_sort A cooperative game approach to a production planning problem
dc.creator.fl_str_mv Ramirez Rios, Diana Gineth
Landinez, D. C.
Consuegra, P. A.
García, J. L.
Quintana, Leonardo Augusto
dc.contributor.author.spa.fl_str_mv Ramirez Rios, Diana Gineth
Landinez, D. C.
Consuegra, P. A.
García, J. L.
Quintana, Leonardo Augusto
dc.subject.eng.fl_str_mv Cooperative Game Theory
Production Planning
Mixed Integer Linear Programming
Optimization
Shapley Value
topic Cooperative Game Theory
Production Planning
Mixed Integer Linear Programming
Optimization
Shapley Value
description This paper deals with a production planning problem formulated as a Mixed Integer Linear Programming (MILP) model that has a competition component, given that the manufacturers are willing to produce as much products as they can in order to fulfil the market’s needs. This corresponds to a typical game theoretic problem applied to the productive sector, where a global optimization problem involves production planning in order to maximize the utilities for the different firms that manufacture the same type of products and compete in the market. This problem has been approached as a cooperative game, which involves a possible cooperation scheme among the manufacturers. The general problem was approached by Owen (1995) as the “production game” and the core was considered. This paper identifies the cooperative game theoretic model for the production planning MILP optimization problem and Shapley Value was chosen as the solution approach. The results obtained indicate the importance of cooperating among competitors. Moreover, this leads to economic strategies for small manufacturing companies that wish to survive in a competitive environment.
publishDate 2015
dc.date.issued.none.fl_str_mv 2015
dc.date.accessioned.none.fl_str_mv 2018-11-13T14:18:05Z
dc.date.available.none.fl_str_mv 2018-11-13T14:18:05Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/878
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/878
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.spa.fl_str_mv Atribución – No comercial – Compartir igual
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución – No comercial – Compartir igual
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/63bea580-f5ce-4e50-8d63-aed83e76f2d8/download
https://repositorio.cuc.edu.co/bitstreams/3e9c165f-6553-4ed8-9a69-0231a0c7c35d/download
https://repositorio.cuc.edu.co/bitstreams/3677cfcb-f55a-48c3-8d27-dfa676d8a612/download
https://repositorio.cuc.edu.co/bitstreams/0af67f6d-28ff-4453-b054-d2f89f4912ba/download
bitstream.checksum.fl_str_mv c479767e1ef72e90d8685d665c03e3c4
8a4605be74aa9ea9d79846c1fba20a33
4d787e4c37b8a582a3fc8be8cb4146f3
91a0d06baa81d720acba80fbf1a0e2f3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760755132858368
spelling Ramirez Rios, Diana GinethLandinez, D. C.Consuegra, P. A.García, J. L.Quintana, Leonardo Augusto2018-11-13T14:18:05Z2018-11-13T14:18:05Z2015https://hdl.handle.net/11323/878Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This paper deals with a production planning problem formulated as a Mixed Integer Linear Programming (MILP) model that has a competition component, given that the manufacturers are willing to produce as much products as they can in order to fulfil the market’s needs. This corresponds to a typical game theoretic problem applied to the productive sector, where a global optimization problem involves production planning in order to maximize the utilities for the different firms that manufacture the same type of products and compete in the market. This problem has been approached as a cooperative game, which involves a possible cooperation scheme among the manufacturers. The general problem was approached by Owen (1995) as the “production game” and the core was considered. This paper identifies the cooperative game theoretic model for the production planning MILP optimization problem and Shapley Value was chosen as the solution approach. The results obtained indicate the importance of cooperating among competitors. Moreover, this leads to economic strategies for small manufacturing companies that wish to survive in a competitive environment.Ramirez Rios, Diana Gineth-9abc1e8a-9687-4743-af44-da784d45d6a5-600Landinez, D. C.-62b2bbab-8ff9-44df-b596-0adeb42bafa9-600Consuegra, P. A.-d8720be7-cfc9-4e44-b0e1-fff59a4128fc-600García, J. L.-11f1873f-7b06-46f2-931d-5f5aca74150e-600Quintana, Leonardo Augusto-661c0379-85ba-4cd0-b192-7f957f1cd4cb-600engAtribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cooperative Game TheoryProduction PlanningMixed Integer Linear ProgrammingOptimizationShapley ValueA cooperative game approach to a production planning problemArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALA cooperative game approach to a production planning problem.pdfA cooperative game approach to a production planning problem.pdfapplication/pdf357915https://repositorio.cuc.edu.co/bitstreams/63bea580-f5ce-4e50-8d63-aed83e76f2d8/downloadc479767e1ef72e90d8685d665c03e3c4MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/3e9c165f-6553-4ed8-9a69-0231a0c7c35d/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILA cooperative game approach to a production planning problem.pdf.jpgA cooperative game approach to a production planning problem.pdf.jpgimage/jpeg63038https://repositorio.cuc.edu.co/bitstreams/3677cfcb-f55a-48c3-8d27-dfa676d8a612/download4d787e4c37b8a582a3fc8be8cb4146f3MD54TEXTA cooperative game approach to a production planning problem.pdf.txtA cooperative game approach to a production planning problem.pdf.txttext/plain29891https://repositorio.cuc.edu.co/bitstreams/0af67f6d-28ff-4453-b054-d2f89f4912ba/download91a0d06baa81d720acba80fbf1a0e2f3MD5511323/878oai:repositorio.cuc.edu.co:11323/8782024-09-17 10:59:40.691open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=