Evaluating sulfates and nitrates as enemies of the recent constructions: Spectroscopic and thermodynamical study

Salt crystallization is one of the major problems currently faced by the field of architecture and construction. Its effects are devastating to the extent that they may even lead to loss of material. Although many innovative and resistant materials have been developed in the last years, in most of t...

Full description

Autores:
Morillas, Héctor
Upasen, Settakorn
Maguregui, Maite
Marcaida, Iker
Gallego‐Cartagena, Euler
Silva Oliveira, Marcos Leandro
F.O. Silva, Luis
Tipo de recurso:
http://purl.org/coar/resource_type/c_816b
Fecha de publicación:
2018
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/2958
Acceso en línea:
https://hdl.handle.net/11323/2958
https://repositorio.cuc.edu.co/
Palabra clave:
mortars
nitrocalcite
soluble salts
thenardite
trona
Rights
openAccess
License
Atribución – No comercial – Compartir igual
id RCUC2_fdf51a9d920f7e96fde600c21169df69
oai_identifier_str oai:repositorio.cuc.edu.co:11323/2958
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Evaluating sulfates and nitrates as enemies of the recent constructions: Spectroscopic and thermodynamical study
title Evaluating sulfates and nitrates as enemies of the recent constructions: Spectroscopic and thermodynamical study
spellingShingle Evaluating sulfates and nitrates as enemies of the recent constructions: Spectroscopic and thermodynamical study
mortars
nitrocalcite
soluble salts
thenardite
trona
title_short Evaluating sulfates and nitrates as enemies of the recent constructions: Spectroscopic and thermodynamical study
title_full Evaluating sulfates and nitrates as enemies of the recent constructions: Spectroscopic and thermodynamical study
title_fullStr Evaluating sulfates and nitrates as enemies of the recent constructions: Spectroscopic and thermodynamical study
title_full_unstemmed Evaluating sulfates and nitrates as enemies of the recent constructions: Spectroscopic and thermodynamical study
title_sort Evaluating sulfates and nitrates as enemies of the recent constructions: Spectroscopic and thermodynamical study
dc.creator.fl_str_mv Morillas, Héctor
Upasen, Settakorn
Maguregui, Maite
Marcaida, Iker
Gallego‐Cartagena, Euler
Silva Oliveira, Marcos Leandro
F.O. Silva, Luis
dc.contributor.author.spa.fl_str_mv Morillas, Héctor
Upasen, Settakorn
Maguregui, Maite
Marcaida, Iker
Gallego‐Cartagena, Euler
Silva Oliveira, Marcos Leandro
F.O. Silva, Luis
dc.subject.spa.fl_str_mv mortars
nitrocalcite
soluble salts
thenardite
trona
topic mortars
nitrocalcite
soluble salts
thenardite
trona
description Salt crystallization is one of the major problems currently faced by the field of architecture and construction. Its effects are devastating to the extent that they may even lead to loss of material. Although many innovative and resistant materials have been developed in the last years, in most of the constructions, salt crystallization is a persistent problem. Salts crystallizations are formed by the dissolution and subsequent precipitation of the soluble salts present in the material itself or due to the formation of new ones because of the reaction between original components of the building materials with salts coming from infiltration waters or with acid aerosols present in the atmosphere. Among others, some of the most common salts that can crystallize in the building materials are nitrates and sulfates. Both of them are soluble compounds, which can mobilize throughout the material easily, reprecipitate, and generate volume changes responsible for fissures, fractures, and even the loss of building material. In this work, a specific study of salts crystallizations in a recent construction erected in 2013 in Amorebieta (Basque Country, North of Spain) using a different kind of materials has been studied. The materials affected by salts are joint mortars, which in a first step were characterized by X‐ray diffraction and Raman microscopy to determine the mineralogical composition. In a second step, a soluble salts tests by ion chromatography was applied to approach quantitatively the impact of the salts. Finally, in a third step, the reactions that give rise to the decay products (thenardite, nitrocalcite, and/or epsomite mainly) were proposed and confirmed through a thermodynamic modelling
publishDate 2018
dc.date.issued.none.fl_str_mv 2018-10-26
dc.date.accessioned.none.fl_str_mv 2019-03-19T20:57:56Z
dc.date.available.none.fl_str_mv 2019-03-19T20:57:56Z
dc.type.spa.fl_str_mv Pre-Publicación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_816b
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/preprint
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTOTR
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_816b
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/2958
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/2958
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] S. Chatterji, J. Cryst. Growth 2005, 277, 566. [2] M. Schiro, E. Ruiz‐Agudo, C. Rodriguez‐Navarro, Phys. Rev. Lett. 2012, 109, 265503/1. [3] L. A. Rijniers, H. P. Huinink, L. Pel, K. Kopinga, Phys. Rev. Lett. 2005, 94, 075503/1. [4] W. Ou, W. Lu, K. Qu, L. Geng, I.‐M. Chou, Int. J. Heat Mass Transfer 2016, 101, 834. [5] R. M. Espinosa‐Marzal, G. W. Scherer, Environ. Earth Sci. 2008, 56, 605. [6] S. Ordoñez, A. La Iglesia, M. Louis, A. Garcia‐del‐Cura, Construct. Build Mater. 2016, 112, 343. [7] J. Desarnaud, D. Bonn, N. Shahidzadeh, Sci. Rep. 2016, 6, 30856. [8] H. Morillas, M. Maguregui, C. Paris, L. Bellot‐Gurlet, P. Colomban, J. M. Madariaga, Microchem. J. 2015, 123, 148. [9] O. Gómez‐Laserna, M. A. Olazabal, H. Morillas, N. Prieto‐ Taboada, I. Martinez‐Arkarazo, G. Arana, J. M. Madariaga, J. Raman Spectrosc. 2013, 44, 1277. [10] O. Gómez‐Laserna, N. Prieto‐Taboada, H. Morillas, I. Arrizabalaga, M. A. Olazabal, G. Arana, J. M. Madariaga, Anal. Methods 2015, 7, 4608. [11] M. Maguregui, A. Sarmiento, R. Escribano, I. Martinez‐ Arkarazo, K. Castro, J. M. Madariaga, Anal. Bioanal. Chem. 2009, 395, 2119. [12] W. De Boever, T. Bultreys, H. Derluyn, L. Van Hoorebeke, V. Cnudde, Sci. Total Environ. 2016, 554–555, 102. [13] V. Matovic, S. Eric, D. Sreckovic‐Batocanin, P. Colomban, A. Kremenovic, Environ. Earth Sci. 2014, 72, 1939. [14] T. Aguayo, E. Clavijo, F. Eisner, C. Ossa‐Izquierdo, M. M. Campos‐Vallette, J. Raman Spectrosc. 2011, 42, 2143. [15] C. Cultrone, E. Sebastian, Environ. Geol. 2008, 56, 729. [16] A. Broggi, E. Petrucci, M. P. Bracciale, M. L. Santarelli, J. Raman Spectrosc. 2012, 43, 1560. [17] R. Giustetto, E. M. Moschella, M. Cristellotti, E. Costa, Stud. Conserv. 2017, 62, 474. [18] M. Steiger, J. Cryst. Growth 2005, 282, 455. [19] H. Morillas, M. Maguregui, O. Gómez‐Laserna, J. Trebolazabala, J. M. Madariaga, J. Raman Spectrosc. 2012, 43, 1630. [20] H. Morillas, M. Maguregui, O. Gómez‐Laserna, J. Trebolazabala, J. M. Madariaga, J. Raman Spectrosc. 2013, 44, 1700. [21] A. Hamilton, R. I. Menzies, J. Raman Spectrosc. 2010, 41, 1014. [22] H. Morillas, M. Maguregui, J. Trebolazabala, J. M. Madariaga, Spectrochim. Acta A 2015, 136, 1195. [23] M. Maguregui, A. Sarmiento, I. Martinez‐Arkarazo, M. Angulo, K. Castro, G. Arana, N. Etxebarria, J. M. Madariaga, Anal. Bioanal. Chem. 2008, 391, 1361. [24] S. Gibeaux, C. Thomachot‐Schneider, S. Eyssautier‐Chuine, B. Marin, P. Vazquez, Environ. Earth Sci. 2018, 77, 327. [25] L. Pereira‐Pardo, B. Prieto, B. Silva, Int. J. Conserv. Sci. 2017, 8, 351. [26] C. Nunes, O. Skružná, J. Válek, J. Cult. Herit. 2018, 30, 57. [27] S. Mancigotti, A. Hamilton, in WIT Transactions on The Built Environment, (Eds: V. Echarri, C. A. Brebbia), WIT Press, Southampton, UK 2017 207. [28] T. A. Saidov, L. Pel, K. Kopinga, Mater. Struct. 2017, 50, 145. [29] H. Morillas, M. Maguregui, C. García‐Florentino, I. Marcaida, J. M. Madariaga, Sci. Total Environ. 2016, 550, 285. [30] H. Morillas, I. Marcaida, M. Maguregui, J. A. Carrero, J. M. Madariaga, Sci. Total Environ. 2016, 542, 716. [31] H. Morillas, I. Marcaida, C. García‐Florentino, M. Maguregui, G. Arana, J. M. Madariaga, Sci. Total Environ. 2018, 615, 691. [32] J. M. Sanchez‐Perez, I. Antiguedad, I. Arrate, C. Garcıa‐ Linares, I. Morell, Sci. Total Environ. 2003, 317, 173. [33] L. F. Du, T. Zhao, C. Zhang, Z. An, Q. Wu, B. Liu, P. Li, M. Ma, Agric. Sci. China 2011, 10, 423. [34] V. Matovic, S. Eric, A. Kremenovic, P. Colomban, D. Sreckovic‐ Batocanin, N. Matovic, J. Cult. Heritage 2012, 13, 175. [35] N. Prieto‐Taboada, S. Fdez‐Ortiz De Vallejuelo, M. Veneranda, I. Marcaida, H. Morillas, M. Maguregui, K. Castro, E. De Carolis, M. Osanna, J. M. Madariaga, Sci. Rep‐UK 2018, 8, 1613. [36] P. López‐Arce, A. Zornoza‐Indart, C. Vázquez‐Calvo, M. Gomez‐Heras, M. Alvarez de Buergo, R. Fort, Spectrosc. Lett. 2011, 44, 505. [37] S. Kramar, M. Urosevic, H. Pristacz, B. Mirtič, J. Raman Spectrosc. 2010, 41, 1441. [38] M. Maguregui, N. Prieto‐Taboada, J. Trebolazabala, N. Goienaga, N. Arrieta, J. Aramendia, L. Gomez‐Nubla, A. Sarmiento, M. Olivares, J. A. Carrero, I. Martinez‐Arkarazo, K. Castro, G. Arana, M. A. Olazabal, L. A. Fernandez, J. M. Madariaga, CHEMCH 1st International Congress Chemistry for Cultural Heritage, Ravenna 2010. [39] R. T. Downs, M. Hall‐Wallace, 18th General Meeting of the International Mineralogical Association, Edinburgh, Scotland. Programme With Abstracts, 2002, 128. [40] http://wwcvw.iupac.org/index.php?id=410 [last accessed, July 2018]. [41] http://www.lwr.kth.se/English/OurSoftware/vminteq/ (last accessed, July 2018). [42] M. Maguregui, K. Castro, H. Morillas, J. Trebolazabala, U. Knuutinen, R. Wiesinger, M. Schreiner, J. M. Madariaga, Anal. Methods 2014, 6, 372. [43] H. Morillas, M. Maguregui, J. Bastante, G. Huallparimachi, I. Marcaida, C. García‐Florentino, F. Astete, J. M. Madariaga, Microchem. J. 2018, 137, 422. [44] H. Morillas, M. Maguregui, I. Marcaida, J. Trebolazabala, I. Salcedo, J. M. Madariaga, Microchem. J. 2015, 121, 48. [45] M. Steiger, S. Asmussen, Geochim. Cosmochim. Acta 2008, 72, 4291. [46] C. Rodriguez‐Navarro, E. Doehne, E. Sebastian, Cem. Concr. Res. 2000, 30, 1527. [47] M. J. A. Mijarsh, M. A. Megat‐Johari, Z. A. Ahmad, Cem. Concr. Compos. 2015, 60, 65. [48] H. Morillas, P. Vazquez, M. Maguregui, I. Marcaida, L. F. O. Silva, Construct. Build Mater. 2018, 178, 384. [49] S. Medina‐Carrasco, J. M. Valverde, Cryst. Growth Des. 2018. Ahead of Print [50] A. E. Charola, J. Pühringer, M. Steiger, Environ. Geol. 2007, 57, 339. [51] H. Morillas, M. Maguregui, G. Huallparimachi, I. Marcaida, C. García‐Florentino, L. Lumbreras, F. Astete, J. M. Madariaga, Microchem. J. 2018, 139, 42. [52] H. Morillas, J. García‐Galan, M. Maguregui, C. García‐ Florentino, I. Marcaida, J. A. Carrero, J. M. Madariaga, Microchem. J. 2016, 128, 288. [53] H. Siedel, Environ. Earth Sci. 2013, 69, 1249. [54] C. García‐Florentino, M. Maguregui, H. Morillas, U. Balziskueta, A. Azcarate, G. Arana, J. M. Madariaga, J. Raman Spectrosc. 2016, 47, 1458.
dc.rights.spa.fl_str_mv Atribución – No comercial – Compartir igual
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución – No comercial – Compartir igual
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Universidad de la Costa
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/09380702-a083-4957-929d-9f9a98948a78/download
https://repositorio.cuc.edu.co/bitstreams/fab7b277-0981-4348-8f92-93d5c7067d1a/download
https://repositorio.cuc.edu.co/bitstreams/e96b9365-d996-4e14-8c65-f3de3be8198f/download
https://repositorio.cuc.edu.co/bitstreams/422e752b-8ca7-49e0-88f4-a0fc68210efb/download
bitstream.checksum.fl_str_mv 55ce78d6dafeb34a5ba7e6a14666daa0
8a4605be74aa9ea9d79846c1fba20a33
e2138a81b0196f473a463ef5a4012d6e
3c4f689c4cac5b1d3e56ed26a6159ea5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166905160007680
spelling Morillas, HéctorUpasen, SettakornMaguregui, MaiteMarcaida, IkerGallego‐Cartagena, EulerSilva Oliveira, Marcos LeandroF.O. Silva, Luis2019-03-19T20:57:56Z2019-03-19T20:57:56Z2018-10-26https://hdl.handle.net/11323/2958Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Salt crystallization is one of the major problems currently faced by the field of architecture and construction. Its effects are devastating to the extent that they may even lead to loss of material. Although many innovative and resistant materials have been developed in the last years, in most of the constructions, salt crystallization is a persistent problem. Salts crystallizations are formed by the dissolution and subsequent precipitation of the soluble salts present in the material itself or due to the formation of new ones because of the reaction between original components of the building materials with salts coming from infiltration waters or with acid aerosols present in the atmosphere. Among others, some of the most common salts that can crystallize in the building materials are nitrates and sulfates. Both of them are soluble compounds, which can mobilize throughout the material easily, reprecipitate, and generate volume changes responsible for fissures, fractures, and even the loss of building material. In this work, a specific study of salts crystallizations in a recent construction erected in 2013 in Amorebieta (Basque Country, North of Spain) using a different kind of materials has been studied. The materials affected by salts are joint mortars, which in a first step were characterized by X‐ray diffraction and Raman microscopy to determine the mineralogical composition. In a second step, a soluble salts tests by ion chromatography was applied to approach quantitatively the impact of the salts. Finally, in a third step, the reactions that give rise to the decay products (thenardite, nitrocalcite, and/or epsomite mainly) were proposed and confirmed through a thermodynamic modellingMorillas, Héctor-de98ef61-2ef9-4ce5-a2f1-abcc1a0c4fa6-0Upasen, Settakorn-452ae13b-f41f-4cab-a79c-1e9f48426c16-0Maguregui, Maite-7669a346-d1d3-4a4c-8689-b207baca04d9-0Marcaida, Iker-234ff4c3-490a-43d6-aa8b-dbc603658b55-0Gallego‐Cartagena, Euler-0000-0003-3316-5007-600Silva Oliveira, Marcos Leandro-0000-0001-6044-8737-600F.O. Silva, Luis-195c5ec3-0632-432d-9db0-a6654d3642dd-0engUniversidad de la CostaAtribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2mortarsnitrocalcitesoluble saltsthenarditetronaEvaluating sulfates and nitrates as enemies of the recent constructions: Spectroscopic and thermodynamical studyPre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersion[1] S. Chatterji, J. Cryst. Growth 2005, 277, 566. [2] M. Schiro, E. Ruiz‐Agudo, C. Rodriguez‐Navarro, Phys. Rev. Lett. 2012, 109, 265503/1. [3] L. A. Rijniers, H. P. Huinink, L. Pel, K. Kopinga, Phys. Rev. Lett. 2005, 94, 075503/1. [4] W. Ou, W. Lu, K. Qu, L. Geng, I.‐M. Chou, Int. J. Heat Mass Transfer 2016, 101, 834. [5] R. M. Espinosa‐Marzal, G. W. Scherer, Environ. Earth Sci. 2008, 56, 605. [6] S. Ordoñez, A. La Iglesia, M. Louis, A. Garcia‐del‐Cura, Construct. Build Mater. 2016, 112, 343. [7] J. Desarnaud, D. Bonn, N. Shahidzadeh, Sci. Rep. 2016, 6, 30856. [8] H. Morillas, M. Maguregui, C. Paris, L. Bellot‐Gurlet, P. Colomban, J. M. Madariaga, Microchem. J. 2015, 123, 148. [9] O. Gómez‐Laserna, M. A. Olazabal, H. Morillas, N. Prieto‐ Taboada, I. Martinez‐Arkarazo, G. Arana, J. M. Madariaga, J. Raman Spectrosc. 2013, 44, 1277. [10] O. Gómez‐Laserna, N. Prieto‐Taboada, H. Morillas, I. Arrizabalaga, M. A. Olazabal, G. Arana, J. M. Madariaga, Anal. Methods 2015, 7, 4608. [11] M. Maguregui, A. Sarmiento, R. Escribano, I. Martinez‐ Arkarazo, K. Castro, J. M. Madariaga, Anal. Bioanal. Chem. 2009, 395, 2119. [12] W. De Boever, T. Bultreys, H. Derluyn, L. Van Hoorebeke, V. Cnudde, Sci. Total Environ. 2016, 554–555, 102. [13] V. Matovic, S. Eric, D. Sreckovic‐Batocanin, P. Colomban, A. Kremenovic, Environ. Earth Sci. 2014, 72, 1939. [14] T. Aguayo, E. Clavijo, F. Eisner, C. Ossa‐Izquierdo, M. M. Campos‐Vallette, J. Raman Spectrosc. 2011, 42, 2143. [15] C. Cultrone, E. Sebastian, Environ. Geol. 2008, 56, 729. [16] A. Broggi, E. Petrucci, M. P. Bracciale, M. L. Santarelli, J. Raman Spectrosc. 2012, 43, 1560. [17] R. Giustetto, E. M. Moschella, M. Cristellotti, E. Costa, Stud. Conserv. 2017, 62, 474. [18] M. Steiger, J. Cryst. Growth 2005, 282, 455. [19] H. Morillas, M. Maguregui, O. Gómez‐Laserna, J. Trebolazabala, J. M. Madariaga, J. Raman Spectrosc. 2012, 43, 1630. [20] H. Morillas, M. Maguregui, O. Gómez‐Laserna, J. Trebolazabala, J. M. Madariaga, J. Raman Spectrosc. 2013, 44, 1700. [21] A. Hamilton, R. I. Menzies, J. Raman Spectrosc. 2010, 41, 1014. [22] H. Morillas, M. Maguregui, J. Trebolazabala, J. M. Madariaga, Spectrochim. Acta A 2015, 136, 1195. [23] M. Maguregui, A. Sarmiento, I. Martinez‐Arkarazo, M. Angulo, K. Castro, G. Arana, N. Etxebarria, J. M. Madariaga, Anal. Bioanal. Chem. 2008, 391, 1361. [24] S. Gibeaux, C. Thomachot‐Schneider, S. Eyssautier‐Chuine, B. Marin, P. Vazquez, Environ. Earth Sci. 2018, 77, 327. [25] L. Pereira‐Pardo, B. Prieto, B. Silva, Int. J. Conserv. Sci. 2017, 8, 351. [26] C. Nunes, O. Skružná, J. Válek, J. Cult. Herit. 2018, 30, 57. [27] S. Mancigotti, A. Hamilton, in WIT Transactions on The Built Environment, (Eds: V. Echarri, C. A. Brebbia), WIT Press, Southampton, UK 2017 207. [28] T. A. Saidov, L. Pel, K. Kopinga, Mater. Struct. 2017, 50, 145. [29] H. Morillas, M. Maguregui, C. García‐Florentino, I. Marcaida, J. M. Madariaga, Sci. Total Environ. 2016, 550, 285. [30] H. Morillas, I. Marcaida, M. Maguregui, J. A. Carrero, J. M. Madariaga, Sci. Total Environ. 2016, 542, 716. [31] H. Morillas, I. Marcaida, C. García‐Florentino, M. Maguregui, G. Arana, J. M. Madariaga, Sci. Total Environ. 2018, 615, 691. [32] J. M. Sanchez‐Perez, I. Antiguedad, I. Arrate, C. Garcıa‐ Linares, I. Morell, Sci. Total Environ. 2003, 317, 173. [33] L. F. Du, T. Zhao, C. Zhang, Z. An, Q. Wu, B. Liu, P. Li, M. Ma, Agric. Sci. China 2011, 10, 423. [34] V. Matovic, S. Eric, A. Kremenovic, P. Colomban, D. Sreckovic‐ Batocanin, N. Matovic, J. Cult. Heritage 2012, 13, 175. [35] N. Prieto‐Taboada, S. Fdez‐Ortiz De Vallejuelo, M. Veneranda, I. Marcaida, H. Morillas, M. Maguregui, K. Castro, E. De Carolis, M. Osanna, J. M. Madariaga, Sci. Rep‐UK 2018, 8, 1613. [36] P. López‐Arce, A. Zornoza‐Indart, C. Vázquez‐Calvo, M. Gomez‐Heras, M. Alvarez de Buergo, R. Fort, Spectrosc. Lett. 2011, 44, 505. [37] S. Kramar, M. Urosevic, H. Pristacz, B. Mirtič, J. Raman Spectrosc. 2010, 41, 1441. [38] M. Maguregui, N. Prieto‐Taboada, J. Trebolazabala, N. Goienaga, N. Arrieta, J. Aramendia, L. Gomez‐Nubla, A. Sarmiento, M. Olivares, J. A. Carrero, I. Martinez‐Arkarazo, K. Castro, G. Arana, M. A. Olazabal, L. A. Fernandez, J. M. Madariaga, CHEMCH 1st International Congress Chemistry for Cultural Heritage, Ravenna 2010. [39] R. T. Downs, M. Hall‐Wallace, 18th General Meeting of the International Mineralogical Association, Edinburgh, Scotland. Programme With Abstracts, 2002, 128. [40] http://wwcvw.iupac.org/index.php?id=410 [last accessed, July 2018]. [41] http://www.lwr.kth.se/English/OurSoftware/vminteq/ (last accessed, July 2018). [42] M. Maguregui, K. Castro, H. Morillas, J. Trebolazabala, U. Knuutinen, R. Wiesinger, M. Schreiner, J. M. Madariaga, Anal. Methods 2014, 6, 372. [43] H. Morillas, M. Maguregui, J. Bastante, G. Huallparimachi, I. Marcaida, C. García‐Florentino, F. Astete, J. M. Madariaga, Microchem. J. 2018, 137, 422. [44] H. Morillas, M. Maguregui, I. Marcaida, J. Trebolazabala, I. Salcedo, J. M. Madariaga, Microchem. J. 2015, 121, 48. [45] M. Steiger, S. Asmussen, Geochim. Cosmochim. Acta 2008, 72, 4291. [46] C. Rodriguez‐Navarro, E. Doehne, E. Sebastian, Cem. Concr. Res. 2000, 30, 1527. [47] M. J. A. Mijarsh, M. A. Megat‐Johari, Z. A. Ahmad, Cem. Concr. Compos. 2015, 60, 65. [48] H. Morillas, P. Vazquez, M. Maguregui, I. Marcaida, L. F. O. Silva, Construct. Build Mater. 2018, 178, 384. [49] S. Medina‐Carrasco, J. M. Valverde, Cryst. Growth Des. 2018. Ahead of Print [50] A. E. Charola, J. Pühringer, M. Steiger, Environ. Geol. 2007, 57, 339. [51] H. Morillas, M. Maguregui, G. Huallparimachi, I. Marcaida, C. García‐Florentino, L. Lumbreras, F. Astete, J. M. Madariaga, Microchem. J. 2018, 139, 42. [52] H. Morillas, J. García‐Galan, M. Maguregui, C. García‐ Florentino, I. Marcaida, J. A. Carrero, J. M. Madariaga, Microchem. J. 2016, 128, 288. [53] H. Siedel, Environ. Earth Sci. 2013, 69, 1249. [54] C. García‐Florentino, M. Maguregui, H. Morillas, U. Balziskueta, A. Azcarate, G. Arana, J. M. Madariaga, J. Raman Spectrosc. 2016, 47, 1458.PublicationORIGINALEvaluating sulfates and nitrates as enemies of the recent constructions Spectroscopic and thermodynamical study.pdfEvaluating sulfates and nitrates as enemies of the recent constructions Spectroscopic and thermodynamical study.pdfapplication/pdf182621https://repositorio.cuc.edu.co/bitstreams/09380702-a083-4957-929d-9f9a98948a78/download55ce78d6dafeb34a5ba7e6a14666daa0MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/fab7b277-0981-4348-8f92-93d5c7067d1a/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILEvaluating sulfates and nitrates as enemies of the recent constructions Spectroscopic and thermodynamical study.pdf.jpgEvaluating sulfates and nitrates as enemies of the recent constructions Spectroscopic and thermodynamical study.pdf.jpgimage/jpeg49277https://repositorio.cuc.edu.co/bitstreams/e96b9365-d996-4e14-8c65-f3de3be8198f/downloade2138a81b0196f473a463ef5a4012d6eMD54TEXTEvaluating sulfates and nitrates as enemies of the recent constructions Spectroscopic and thermodynamical study.pdf.txtEvaluating sulfates and nitrates as enemies of the recent constructions Spectroscopic and thermodynamical study.pdf.txttext/plain2075https://repositorio.cuc.edu.co/bitstreams/422e752b-8ca7-49e0-88f4-a0fc68210efb/download3c4f689c4cac5b1d3e56ed26a6159ea5MD5511323/2958oai:repositorio.cuc.edu.co:11323/29582024-09-17 14:24:27.038open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=