Design and implementation of a system to determine property tax through the processing and analysis of satellite images
One of the main objectives when implementing metaheuristics in engineering problems, is to solve complex situations and look for feasible solutions within a defined interval by the design dimensions. With the support of heuristic techniques such as neural networks, it was possible to find the sectio...
- Autores:
-
Silva, Jesús
solano, darwin
Jimenez, Roberto
Pineda, Omar
- Tipo de recurso:
- http://purl.org/coar/resource_type/c_816b
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/7281
- Acceso en línea:
- https://hdl.handle.net/11323/7281
https://repositorio.cuc.edu.co/
- Palabra clave:
- Gaussian function
Processing and analysis of satellite images
Property tax
- Rights
- closedAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
RCUC2_fc20739a5bdc5c8c71b8a769c90056c9 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/7281 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Design and implementation of a system to determine property tax through the processing and analysis of satellite images |
title |
Design and implementation of a system to determine property tax through the processing and analysis of satellite images |
spellingShingle |
Design and implementation of a system to determine property tax through the processing and analysis of satellite images Gaussian function Processing and analysis of satellite images Property tax |
title_short |
Design and implementation of a system to determine property tax through the processing and analysis of satellite images |
title_full |
Design and implementation of a system to determine property tax through the processing and analysis of satellite images |
title_fullStr |
Design and implementation of a system to determine property tax through the processing and analysis of satellite images |
title_full_unstemmed |
Design and implementation of a system to determine property tax through the processing and analysis of satellite images |
title_sort |
Design and implementation of a system to determine property tax through the processing and analysis of satellite images |
dc.creator.fl_str_mv |
Silva, Jesús solano, darwin Jimenez, Roberto Pineda, Omar |
dc.contributor.author.spa.fl_str_mv |
Silva, Jesús solano, darwin Jimenez, Roberto Pineda, Omar |
dc.subject.spa.fl_str_mv |
Gaussian function Processing and analysis of satellite images Property tax |
topic |
Gaussian function Processing and analysis of satellite images Property tax |
description |
One of the main objectives when implementing metaheuristics in engineering problems, is to solve complex situations and look for feasible solutions within a defined interval by the design dimensions. With the support of heuristic techniques such as neural networks, it was possible to find the sections that allow to obtain the characteristics of interest to carry out the study of the important regions of an image. The analysis and digital processing of images allows to smooth the file and to section the area of analysis in regions defined as rows and columns, results in a matrix of pixels, this way carrying out the measurement of the coordinates of the beginning and end of the region under analysis, taking it as a starting point for the creation of a frame of references to be examined. Once this requirement is completed, it is possible to return to the smoothed image with which the high edges of the image will be determined by means of the Gaussian function, thus finding the edges generated for the structures of interest. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-11-12T17:37:35Z |
dc.date.available.none.fl_str_mv |
2020-11-12T17:37:35Z |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.embargoEnd.none.fl_str_mv |
2021-06-19 |
dc.type.spa.fl_str_mv |
Pre-Publicación |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_816b |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/preprint |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ARTOTR |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_816b |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
2194-5357 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/7281 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
2194-5357 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/7281 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
Dorai, C., Jerome, W.F., Stern, E.H., Winegust, F.S.: U.S. Patent No. 7,809,587. U.S. Patent and Trademark Office, Washington, DC (2010) Vargas, R., Torres-Samuel, M., Luna, M., Viloria, A., Fernández, O.S.: Formulation of strategies for efficient cadastral management. In: International Conference on Data Mining and Big Data, pp. 523–532. Springer, Cham (2018) Ali, D.A., Deininger, K., Wild, M.: Using satellite imagery to revolutionize creation of tax maps and local revenue collection. The World Bank (2018) Ali, D.A., Deininger, K., Wild, M.: Using satellite imagery to create tax maps and enhance local revenue collection. Appl. Econ. 52(4), 415–429 (2020) Vishnoi, D.A., Padaliya, S., Garg, P.K.: Various segmentation techniques for extraction of buildings using high resolution satellite images. In: On a Sustainable Future of the Earth’s Natural Resources, pp. 251–261. Springer, Heidelberg (2013) Brimble, P., McSharry, P., Bachofer, F., Bower, J., Braun, A.: Using machine learning and remote sensing to value property in Kigali (2020) Llulluna, L., Fredy, R.: Image processing using free software python for metallographic analysis in low-carbon steels Quito, pp. 60–79 (2014) Yildirim, V., Ural, H.: A geographic information system for prevention of property tax evasion. In: Proceedings of the Institution of Civil Engineers-Municipal Engineer, vol. 173, no. 1, pp. 25–35. Thomas Telford Ltd., March 2020 Awasthi, R., Nagarajan, M., Deininger, K.W.: Property taxation in India: Issues impacting revenue performance and suggestions for reform. Land Use Policy, 104539 (2020) McCluskey, W., Huang, C.Y.: The role of ICT in property tax administration: lessons from Tanzania. CMI Brief 2019(06) (2019) Duncan, M., Horner, M. W., Chapin, T., Crute, J., Finch, K., Sharmin, N., Stansbury, C.: Assessing the property value and tax revenue impacts of SunRail stations in Orlando, Florida. Case Stud. Transp. Policy (2020) Canaz, S., Aliefendioğlu, Y., Tanrıvermiş, H.: Change detection using Landsat images and an analysis of the linkages between the change and property tax values in the Istanbul Province of Turkey. J. Environ. Manage. 200, 446–455 (2017) Collier, P., Glaeser, E., Venables, T., Manwaring, P., Blake, M: Land and property taxes: exploiting untapped municipal revenues. Policy brief (2017) Gaitán-Angulo, M., Viloria, A., Lis-Gutiérrez, J.P., Neira, D., López, E., Sanabria, E.J.S., Castro, C.P.F.: Influence of the management of the innovation in the business performance of the family business: application to the printing sector in Colombia. In: International Conference on Data Mining and Big Data, pp. 349–359. Springer, Cham (2018) |
dc.rights.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/closedAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_14cb |
eu_rights_str_mv |
closedAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
Advances in Intelligent Systems and Computing |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089715072&doi=10.1007%2f978-3-030-53036-5_19&partnerID=40&md5=b9a1c37c5676be34efbbc6a9a47576fa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/cccf202a-baf5-49cd-a7e2-d188145661bd/download https://repositorio.cuc.edu.co/bitstreams/670c1d07-cfe5-4678-819d-78ae275c16a4/download https://repositorio.cuc.edu.co/bitstreams/67caad42-70a3-475b-a0e9-b51136e0123e/download https://repositorio.cuc.edu.co/bitstreams/354f2616-4077-4e1d-9507-3a271000ed6a/download https://repositorio.cuc.edu.co/bitstreams/50875813-0bc5-4266-a4e0-a0808c3644a2/download |
bitstream.checksum.fl_str_mv |
d12b1d5068ff9fe58ac83fc4659c2e6d 4460e5956bc1d1639be9ae6146a50347 e30e9215131d99561d40d6b0abbe9bad 3b74a853efdd0779747110bbe3905728 9f5f51366b22f2c1abb245567c67114f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760780023955456 |
spelling |
Silva, Jesússolano, darwinJimenez, RobertoPineda, Omar2020-11-12T17:37:35Z2020-11-12T17:37:35Z20202021-06-192194-5357https://hdl.handle.net/11323/7281Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/One of the main objectives when implementing metaheuristics in engineering problems, is to solve complex situations and look for feasible solutions within a defined interval by the design dimensions. With the support of heuristic techniques such as neural networks, it was possible to find the sections that allow to obtain the characteristics of interest to carry out the study of the important regions of an image. The analysis and digital processing of images allows to smooth the file and to section the area of analysis in regions defined as rows and columns, results in a matrix of pixels, this way carrying out the measurement of the coordinates of the beginning and end of the region under analysis, taking it as a starting point for the creation of a frame of references to be examined. Once this requirement is completed, it is possible to return to the smoothed image with which the high edges of the image will be determined by means of the Gaussian function, thus finding the edges generated for the structures of interest.Silva, Jesússolano, darwin-will be generated-orcid-0000-0001-8996-0953-600Jimenez, RobertoPineda, Omar-will be generated-orcid-0000-0002-8239-3906-600application/pdfengCorporación Universidad de la CostaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbAdvances in Intelligent Systems and Computinghttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85089715072&doi=10.1007%2f978-3-030-53036-5_19&partnerID=40&md5=b9a1c37c5676be34efbbc6a9a47576faGaussian functionProcessing and analysis of satellite imagesProperty taxDesign and implementation of a system to determine property tax through the processing and analysis of satellite imagesPre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersionDorai, C., Jerome, W.F., Stern, E.H., Winegust, F.S.: U.S. Patent No. 7,809,587. U.S. Patent and Trademark Office, Washington, DC (2010)Vargas, R., Torres-Samuel, M., Luna, M., Viloria, A., Fernández, O.S.: Formulation of strategies for efficient cadastral management. In: International Conference on Data Mining and Big Data, pp. 523–532. Springer, Cham (2018)Ali, D.A., Deininger, K., Wild, M.: Using satellite imagery to revolutionize creation of tax maps and local revenue collection. The World Bank (2018)Ali, D.A., Deininger, K., Wild, M.: Using satellite imagery to create tax maps and enhance local revenue collection. Appl. Econ. 52(4), 415–429 (2020)Vishnoi, D.A., Padaliya, S., Garg, P.K.: Various segmentation techniques for extraction of buildings using high resolution satellite images. In: On a Sustainable Future of the Earth’s Natural Resources, pp. 251–261. Springer, Heidelberg (2013)Brimble, P., McSharry, P., Bachofer, F., Bower, J., Braun, A.: Using machine learning and remote sensing to value property in Kigali (2020)Llulluna, L., Fredy, R.: Image processing using free software python for metallographic analysis in low-carbon steels Quito, pp. 60–79 (2014)Yildirim, V., Ural, H.: A geographic information system for prevention of property tax evasion. In: Proceedings of the Institution of Civil Engineers-Municipal Engineer, vol. 173, no. 1, pp. 25–35. Thomas Telford Ltd., March 2020Awasthi, R., Nagarajan, M., Deininger, K.W.: Property taxation in India: Issues impacting revenue performance and suggestions for reform. Land Use Policy, 104539 (2020)McCluskey, W., Huang, C.Y.: The role of ICT in property tax administration: lessons from Tanzania. CMI Brief 2019(06) (2019)Duncan, M., Horner, M. W., Chapin, T., Crute, J., Finch, K., Sharmin, N., Stansbury, C.: Assessing the property value and tax revenue impacts of SunRail stations in Orlando, Florida. Case Stud. Transp. Policy (2020)Canaz, S., Aliefendioğlu, Y., Tanrıvermiş, H.: Change detection using Landsat images and an analysis of the linkages between the change and property tax values in the Istanbul Province of Turkey. J. Environ. Manage. 200, 446–455 (2017)Collier, P., Glaeser, E., Venables, T., Manwaring, P., Blake, M: Land and property taxes: exploiting untapped municipal revenues. Policy brief (2017)Gaitán-Angulo, M., Viloria, A., Lis-Gutiérrez, J.P., Neira, D., López, E., Sanabria, E.J.S., Castro, C.P.F.: Influence of the management of the innovation in the business performance of the family business: application to the printing sector in Colombia. In: International Conference on Data Mining and Big Data, pp. 349–359. Springer, Cham (2018)PublicationORIGINALDESIGN AND IMPLEMENTATION OF A SYSTEM TO DETERMINE PROPERTY TAX THROUGH THE PROCESSING AND ANALYSIS OF SATELLITE IMAGES.pdfDESIGN AND IMPLEMENTATION OF A SYSTEM TO DETERMINE PROPERTY TAX THROUGH THE PROCESSING AND ANALYSIS OF SATELLITE IMAGES.pdfapplication/pdf179747https://repositorio.cuc.edu.co/bitstreams/cccf202a-baf5-49cd-a7e2-d188145661bd/downloadd12b1d5068ff9fe58ac83fc4659c2e6dMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/670c1d07-cfe5-4678-819d-78ae275c16a4/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/67caad42-70a3-475b-a0e9-b51136e0123e/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILDESIGN AND IMPLEMENTATION OF A SYSTEM TO DETERMINE PROPERTY TAX THROUGH THE PROCESSING AND ANALYSIS OF SATELLITE IMAGES.pdf.jpgDESIGN AND IMPLEMENTATION OF A SYSTEM TO DETERMINE PROPERTY TAX THROUGH THE PROCESSING AND ANALYSIS OF SATELLITE IMAGES.pdf.jpgimage/jpeg48937https://repositorio.cuc.edu.co/bitstreams/354f2616-4077-4e1d-9507-3a271000ed6a/download3b74a853efdd0779747110bbe3905728MD54TEXTDESIGN AND IMPLEMENTATION OF A SYSTEM TO DETERMINE PROPERTY TAX THROUGH THE PROCESSING AND ANALYSIS OF SATELLITE IMAGES.pdf.txtDESIGN AND IMPLEMENTATION OF A SYSTEM TO DETERMINE PROPERTY TAX THROUGH THE PROCESSING AND ANALYSIS OF SATELLITE IMAGES.pdf.txttext/plain1360https://repositorio.cuc.edu.co/bitstreams/50875813-0bc5-4266-a4e0-a0808c3644a2/download9f5f51366b22f2c1abb245567c67114fMD5511323/7281oai:repositorio.cuc.edu.co:11323/72812024-09-17 11:06:55.424http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |