Epigenetic mechanisms and posttranslational Modifications in systemic lupus erythematosus
The complex physiology of eukaryotic cells is regulated through numerous mechanisms, including epigenetic changes and posttranslational modifications. The wide-ranging diversity of these mechanisms constitutes a way of dynamic regulation of the functionality of proteins, their activity, and their su...
- Autores:
-
Navarro Quiroz, Elkin
Chavez-Estrada, Valeria
Macias-Ochoa, Karime
Ayala-Navarro, María Fernanda
Flores-Aguilar, Aniyensy Sarai
Morales Navarrete, Francisco
de la Cruz Lopez, Fernando
GOMEZ ESCORCIA, LORENA
Musso, Carlos
Aroca Martínez, Gustavo
Gonzales Torres, Henry
Díaz Pérez, Anderson
Cadena Bonfanti, Andres Angélo
Sarmiento Gutiérrez, Joany
Meza, Jainy
Diaz Arroyo, Esperanza
Bello-Lemus, Yesit
Ahmad, Mostapha
Navarro Quiroz, Roberto
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/6084
- Acceso en línea:
- https://hdl.handle.net/11323/6084
https://repositorio.cuc.edu.co/
- Palabra clave:
- Posttranslational modifications
Epigenetic mechanisms
Systemic lupus erythematosus
Ubiquitination
SUMOylation
Glycosylation
Hydroxylation
Phosphorylation
Sulfation
Acetylation
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_fc075bb8c934a4e35ceaf628850cdf8b |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/6084 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Epigenetic mechanisms and posttranslational Modifications in systemic lupus erythematosus |
title |
Epigenetic mechanisms and posttranslational Modifications in systemic lupus erythematosus |
spellingShingle |
Epigenetic mechanisms and posttranslational Modifications in systemic lupus erythematosus Posttranslational modifications Epigenetic mechanisms Systemic lupus erythematosus Ubiquitination SUMOylation Glycosylation Hydroxylation Phosphorylation Sulfation Acetylation |
title_short |
Epigenetic mechanisms and posttranslational Modifications in systemic lupus erythematosus |
title_full |
Epigenetic mechanisms and posttranslational Modifications in systemic lupus erythematosus |
title_fullStr |
Epigenetic mechanisms and posttranslational Modifications in systemic lupus erythematosus |
title_full_unstemmed |
Epigenetic mechanisms and posttranslational Modifications in systemic lupus erythematosus |
title_sort |
Epigenetic mechanisms and posttranslational Modifications in systemic lupus erythematosus |
dc.creator.fl_str_mv |
Navarro Quiroz, Elkin Chavez-Estrada, Valeria Macias-Ochoa, Karime Ayala-Navarro, María Fernanda Flores-Aguilar, Aniyensy Sarai Morales Navarrete, Francisco de la Cruz Lopez, Fernando GOMEZ ESCORCIA, LORENA Musso, Carlos Aroca Martínez, Gustavo Gonzales Torres, Henry Díaz Pérez, Anderson Cadena Bonfanti, Andres Angélo Sarmiento Gutiérrez, Joany Meza, Jainy Diaz Arroyo, Esperanza Bello-Lemus, Yesit Ahmad, Mostapha Navarro Quiroz, Roberto |
dc.contributor.author.spa.fl_str_mv |
Navarro Quiroz, Elkin Chavez-Estrada, Valeria Macias-Ochoa, Karime Ayala-Navarro, María Fernanda Flores-Aguilar, Aniyensy Sarai Morales Navarrete, Francisco de la Cruz Lopez, Fernando GOMEZ ESCORCIA, LORENA Musso, Carlos Aroca Martínez, Gustavo Gonzales Torres, Henry Díaz Pérez, Anderson Cadena Bonfanti, Andres Angélo Sarmiento Gutiérrez, Joany Meza, Jainy Diaz Arroyo, Esperanza Bello-Lemus, Yesit Ahmad, Mostapha Navarro Quiroz, Roberto |
dc.subject.spa.fl_str_mv |
Posttranslational modifications Epigenetic mechanisms Systemic lupus erythematosus Ubiquitination SUMOylation Glycosylation Hydroxylation Phosphorylation Sulfation Acetylation |
topic |
Posttranslational modifications Epigenetic mechanisms Systemic lupus erythematosus Ubiquitination SUMOylation Glycosylation Hydroxylation Phosphorylation Sulfation Acetylation |
description |
The complex physiology of eukaryotic cells is regulated through numerous mechanisms, including epigenetic changes and posttranslational modifications. The wide-ranging diversity of these mechanisms constitutes a way of dynamic regulation of the functionality of proteins, their activity, and their subcellular localization as well as modulation of the di erential expression of genes in response to external and internal stimuli that allow an organism to respond or adapt to accordingly. However, alterations in these mechanisms have been evidenced in several autoimmune diseases, including systemic lupus erythematosus (SLE). The present review aims to provide an approach to the current knowledge of the implications of these mechanisms in SLE pathophysiology. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019-11-13 |
dc.date.accessioned.none.fl_str_mv |
2020-03-06T19:37:56Z |
dc.date.available.none.fl_str_mv |
2020-03-06T19:37:56Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
1422-0067 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/6084 |
dc.identifier.doi.spa.fl_str_mv |
doi:10.3390/ijms20225679 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
1422-0067 doi:10.3390/ijms20225679 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/6084 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
1. Wu, H.; Zhao, M.; Tan, L.; Lu, Q. The key culprit in the pathogenesis of systemic lupus erythematosus: Aberrant DNA methylation. Autoimmun. Rev. 2016, 15, 684–689. [CrossRef] 2. Rhodes, B.; Vyse, T.J. The genetics of SLE: An update in the light of genome-wide association studies. Rheumatology (Oxford) 2008, 47, 1603–1611. [CrossRef] 3. Quddus, J.; Johnson, K.J.; Gavalchin, J.; Amento, E.P.; Chrisp, C.E.; Yung, R.L.; Richardson, B.C. Treating activated CD4+ T cells with either of two distinct DNA methyltransferase inhibitors, 5-azacytidine or procainamide, is sufficient to cause a lupus-like disease in syngeneic mice. J. Clin. Invest. 1993, 92, 38–53. [CrossRef] [PubMed] 4. Coit, P.; Yalavarthi, S.; Ognenovski, M.; Zhao, W.; Hasni, S.; Wren, J.D.; Kaplan, M.J.; Sawalha, A.H. EpigenomeprofilingrevealssignificantDNAdemethylationofinterferonsignaturegenesinlupusneutrophils. J. Autoimmun. 2015, 58, 59–66. [CrossRef] 5. Javierre, B.M.; Richardson, B. A New Epigenetic Challenge: Systemic Lupus Erythematosus. In Epigenetic Contributions in Autoimmune Disease. Advances in Experimental Medicine and Biology; Ballestar, E., Ed.; Springer: Boston, MA, USA, 2011; Volume 711, pp. 117–136. 6. Zhao, M.; Zhou, Y.; Zhu, B.; Wan, M.; Jiang, T.; Tan, Q.; Liu, Y.; Jiang, J.; Luo, S.; Tan, Y.; et al. IFI44L promoter methylation as a blood biomarker for systemic lupus erythematosus. Ann. Rheum. Dis. 2016, 75, 1998–2006. [CrossRef] [PubMed] 7. Cai, L.; Sutter, B.M.; Li, B.; Tu, B.P. Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Mol. Cell 2011, 42, 426–437. [CrossRef] 8. Brooks, W.H.; Le Dantec, C.; Pers, J.O.; Youinou, P.; Renaudineau, Y. Epigenetics and autoimmunity. J. Autoimmun. 2010, 34, J207–J219. [CrossRef] [PubMed] 9. Patel, D.R.; Richardson, B.C. Epigenetic mechanisms in lupus. Curr. Opin. Rheumatol. 2010, 22, 478–482. [CrossRef] 10. Zouali, M. Epigenetics in lupus. Ann. N. Y. Acad. Sci. 2011, 1217, 154–165. [CrossRef] 11. Coit, P.; Jeffries, M.; Altorok, N.; Dozmorov, M.G.; Koelsch, K.A.; Wren, J.D.; Merrill, J.T.; McCune, W.J.; Sawalha, A.H. Genome-wide DNA methylation study suggests epigenetic accessibility and transcriptional poising of interferon-regulated genes in naive CD4+ T cells from lupus patients. J. Autoimmun. 2013, 43, 78–84. [CrossRef] 12. Pieterse, E.; Hofstra, J.; Berden, J.; Herrmann, M.; Dieker, J.; van der Vlag, J. Acetylated histones contribute to the immunostimulatory potential of neutrophil extracellular traps in systemic lupus erythematosus. Clin. Exp. Immunol. 2015, 179, 68–74. [CrossRef] [PubMed] 13. Sujashvili, R. Advantages of Extracellular Ubiquitin in Modulation of Immune Responses. Mediators Inflamm. 2016, 2016, 1–6. [CrossRef] [PubMed] 14. Téllez Castillo, N.; Siachoque Jara, J.J.; Siachoque Jara, J.S.; Siachoque Jara, M.A.; Siachoque Montañez, H.O. Activación de la célula T, alteraciones en el lupus eritematoso sistémico, una revisión narrativa. Rev. Colomb. Reumatol. 2018, 25, 38–54. [CrossRef] 15. Barrera-Vargas, A.; Gómez-Martín, D.; Carmona-Rivera, C.; Merayo-Chalico, J.; Torres-Ruiz, J.; Manna, Z.; Hasni, S.; Alcocer-Varela, J.; Kaplan, M.J. Differential ubiquitination in NETs regulates macrophage responses in systemic lupus erythematosus. Ann. Rheum. Dis. 2018, 77, 944–950. [CrossRef] [PubMed] 16. Nakasone, M.A.; Livnat-Levanon, N.; Glickman, M.H.; Cohen, R.E.; Fushman, D. Mixed-linkage ubiquitin chains send mixed messages. Structure 2013, 21, 727–740. [CrossRef] 17. Erpapazoglou, Z.; Walker, O.; Haguenauer-Tsapis, R. Versatile roles of k63-linked ubiquitin chains in trafficking. Cells 2014, 3, 1027–1088. [CrossRef] 18. Saavedra Hernández, D. La molécula CD28 y su función en la activación de células T. Rev. Cuba. Hematol. Inmunol. Hemoter. 2013, 29, 359–367. 19. Ding, X.; Wang, A.; Ma, X.; Demarque, M.; Jin, W.; Xin, H.; Dejean, A.; Dong, C. Protein SUMOylation Is Required for Regulatory T Cell Expansion and Function. Cell Rep. 2016, 16, 1055–1066. [CrossRef] 20. Rider, V.; Abdou, N.I.; Kimler, B.F.; Lu, N.; Brown, S.; Fridley, B.L. Gender bias in human systemic lupus erythematosus: A problem of steroid receptor action? Front. Immunol. 2018, 9, 1–10. [CrossRef] 21. Barry, R.; John, S.W.; Liccardi, G.; Tenev, T.; Jaco, I.; Chen, C.H.; Choi, J.; Kasperkiewicz, P.; Fernandes-Alnemri, T.; Alnemri, E.; et al. SUMO-mediated regulation of NLRP3 modulates inflammasome activity. Nat. Commun. 2018, 9, 3001. [CrossRef] 22. Guzmán-Flores, J.M.; Portales-Pérez, D.P. Mecanismos de supresión de las células T reguladoras (Treg). Gac. Med. Mex. 2013, 149, 630–638. 23. Hernández, A.S. Células colaboradoras (TH1, TH2, TH17) y reguladoras (Treg, TH3, NKT) en la artritis reumatoide. Reumatol. Clin. Supl. 2009, 5 (Suppl. 1), 1–5. [CrossRef] 24. Crabtree, G.R.; Schreiber, S.L. Snapshot: Calcium-calcineurin-NFAT signaling. Cell 2010, 138, 1–4. 25. Biermann, M.H.; Griffante, G.; Podolska, M.J.; Boeltz, S.; Stürmer, J.; Muñoz, L.E.; Bilyy, R.; Herrmann, M. Sweet but dangerous–The role of immunoglobulin G glycosylation in autoimmunity and inflammation. Lupus 2016, 25, 934–942. [CrossRef] [PubMed] 26. Magnelli, P.E.; Bielik, A.M.; Guthrie, E.P. Identification and characterization of protein glycosylation using specific endo- and exoglycosidases. J. Vis. Exp. 2011, e3749. [CrossRef] 27. Valliere-Douglass, J.F.; Kodama, P.; Mujacic, M.; Brady, L.J.; Wang, W.; Wallace, A.; Yan, B.; Reddy, P.; Treuheit, M.J.; Balland, A. Asparagine-linked oligosaccharides present on a non-consensus amino acid sequence in the CH1 domain of human antibodies. J. Biol. Chem. 2009, 284, 32493–32506. [CrossRef] 28. Hashii, N.; Kawasaki, N.; Itoh, S.; Nakajima, Y.; Kawanishi, T.; Yamaguchi, T. Alteration of N-glycosylation in the kidney in a mouse model of systemic lupus erythematosus: Relative quantification of N-glycans using an isotope-tagging method. Immunology 2009, 126, 336–345. [CrossRef] 29. Vidarsson, G.; Dekkers, G.; Rispens, T. IgG subclasses and allotypes: From structure to effector functions. Front. Immunol. 2014, 5, 520. [CrossRef] 30. Abès, R.; Teillaud, J.-L. Impact of Glycosylation on Effector Functions of Therapeutic IgG. Pharmaceuticals 2010, 3, 146–157. [CrossRef] 31. Jennewein, M.F.; Alter, G. The Immunoregulatory Roles of Antibody Glycosylation. Trends Immunol. 2017, 38, 358–372. [CrossRef] 32. Reily, C.; Stewart, T.J.; Renfrow, M.B.; Novak, J. Glycosylation in health and disease. Nat. Rev. Nephrol. 2019, 15, 346–366. [CrossRef] [PubMed] 33. Anthony, R.M.; Ravetch, J.V. A Novel Role for the IgG Fc Glycan: The Anti-inflammatory Activity of Sialylated IgG Fcs. J. Clin. Immunol. 2010, 30, 9–14. [CrossRef] [PubMed] 34. Saxena, A.; Wu, D. Advances in Therapeutic Fc Engineering - Modulation of IgG-Associated Effector Functions and Serum Half-life. Front. Immunol. 2016, 7, 580. [CrossRef] [PubMed] 35. Leong, K.W.; Ding, J.L. The unexplored roles of human serum IgA. DNA Cell Biol. 2014, 33, 823–829. [CrossRef] 36. Papista, C.; Berthelot, L.; Monteiro, R.C. Dysfunctions of the Iga system: A common link between intestinal and renal diseases. Cell. Mol. Immunol. 2011, 8, 126–134. [CrossRef] 37. Kawa,I.A.; Masood,A.; Amin,S.; Mustafa,M.F.; Rashid,F.Chapter2—ClinicalPerspectiveofPosttranslational Modifications. In Protein Modificomics; Dar, T.A., Singh, L.R., Eds.; Academic Press: London, UK, 2019; pp. 37–68. 38. Zurlo, G.; Guo, J.; Takada, M.; Wei, W.; Zhang, Q. New Insights into Protein Hydroxylation and Its Important Role in Human Diseases. Biochim. Biophys. Acta 2016, 1866, 208–220. [CrossRef] 39. Mansoor, F.; Ali, A.; Ali, R. Binding of circulating SLE autoantibodies to oxygen free radical damage chromatin. Autoimmunity 2005, 38, 431–438. [CrossRef] 40. Lahita, R.G.; Bradlow, L.; Fishman, J.; Kunkel, H.G. Estrogen metabolism in systemic lupus erythematosus. Patients and family members. Arthritis Rheum. 1982, 25, 843–846. [CrossRef] 41. Garg, D.K.; Ali, R. Reactive oxygen species modified polyguanylic acid: Immunogenicity and implications for systemic autoimmunity. J. Autoimmun. 1998, 11, 371–378. [CrossRef] 42. Ardito, F.; Giuliani, M.; Perrone, D.; Troiano, G.; Lo Muzio, L. The crucial role of protein phosphorylation in cell signalingand its use as targeted therapy (Review). Int. J. Mol. Med. 2017, 40, 271–280. [CrossRef] 43. Skourti-Stathaki, K.; Proudfoot, N. Histone 3 S10 Phosphorylation: ‘Caught in the R Loop!’. Mol. Cell 2013, 52, 470–472. [CrossRef] 44. Eichten, S.R.; Schmit, R.J.; Springer, N.M. Epigenetics: Beyond chromatin modifications and complex genetic regulation. Plant Physiol. 2014, 165, 933–947. [CrossRef] 45. Rossetto, D.; Avvakumov, N.; Côté, J. Histone phosphorylation. Epigenetics 2012, 7, 1098–1108. [CrossRef] 46. Rossy, J.; Williamson, D.J.; Gaus, K. How does the kinase Lck phosphorylate the T cell receptor? Spatial organization as a regulatory mechanism. Front. Immunol. 2012, 3, 1–6. [CrossRef] 47. Wu, T.; Xie, C.; Han, J.; Ye, Y.; Weiel, J.; Li, Q.; Blanco, I.; Ahn, C.; Olsen, N.; Putterman, C.; et al. Metabolic disturbances associated with systemic lupus erythematosus. PLoS ONE 2012, 7, e37210. [CrossRef] 48. Hsu, W.; Rosenquist, G.L.; Ansari, A.A.; Gershwin, M.E. Autoimmunity and tyrosine sulfation. Autoimmun. Rev. 2005, 4, 429–435. [CrossRef] 49. Tonks, N.K. Protein tyrosine phosphatases: From genes, to function, to disease. Nat. Rev. Mol. Cell Biol. 2006, 7, 833–834. [CrossRef] 50. Kehoe, J.W.; Bertozzi, C.R. Tyrosine sulfation: A modulator of extracellular protein-protein interactions. Chem. Biol. 2000, 7, 57–61. [CrossRef] 51. Seibert, C.; Sakmar, T.P. Toward a framework for sulfoproteomics: Synthesis and characterization of sulfotyrosine-containing peptides. Biopolym. 2008, 90, 459–477. [CrossRef] 52. Farzan, M.; Mirzabekov, T.; Kolchinsky, P.; Wyatt, R.; Cayabyab, M.; Gerard, N.P.; Gerard, C.; Sodroski, J.; Choe, H. Tyrosine sulfation of the amino terminus of CCR5 facilitates HIV-1 entry. Cell 1999, 96, 667–676. [CrossRef] 53. Carvalho, C.; Calvisi, S.L.; Leal, B.; Bettencourt, A.; Marinho, A.; Almeida, I.; Farinha, F.; Costa, P.P.; Silva, B.M.; Vasconcelos, C. CCR5-Delta32: Implications in SLE development. Int. J. Immunogenet. 2014, 41, 236–241. [CrossRef] [PubMed] 54. Ren, J.; Panther, E.; Liao, X.; Grammer, A.C.; Lipsky, P.E.; Reilly, C.M. The Impact of Protein Acetylation/Deacetylation on Systemic Lupus Erythematosus. Int. J. Mol. Sci. 2018, 19, 4007. [CrossRef] [PubMed] 55. Shahbazian, M.D.; Grunstein, M. Functions of site-specific histone acetylation and deacetylation. Annu. Rev. Biochem. 2007, 76, 75–100. [CrossRef] [PubMed] 56. Cheung, W.L.; Briggs, S.D.; Allis, C.D. Acetylation and chromosomal functions. Curr. Opin. Cell Biol. 2000, 12, 326–333. [CrossRef] 57. Wang, Z.; Chang, C.; Peng, M.; Lu, Q. Translating epigenetics into clinic: Focus on lupus. Clin. Epigenetics 2017, 9, 1–15. [CrossRef] 58. Bannister, A.J.; Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 2011, 21, 381–395. [CrossRef] 59. Drazic, A.; Myklebust, L.M.; Ree, R.; Arnesen, T. The world of protein acetylation. Biochim. Biophys. Acta 2016, 1864, 1372–1401. [CrossRef] 60. Parthun, M.R. Hat1: The emerging cellular roles of a type B histone acetyltransferase. Oncogene 2007, 26, 5319–5328. [CrossRef] 61. Leung, Y.T.; Shi, L.; Maurer, K.; Song, L.; Zhang, Z.; Petri, M.; Sullivan, K.E. Interferon regulatory factor 1 and histone H4 acetylation in systemic lupus erythematosus. Epigenetics 2015, 10, 191–199. [CrossRef] 62. Tsai, K.L.; Liao, C.C.; Chang, Y.S.; Huang, C.W.; Huang, Y.C.; Chen, J.H.; Lin, S.H.; Tai, C.C.; Lin, Y.F.; Lin, C.Y. Low Levels of IgM and IgA Recognizing Acetylated C1-Inhibitor Peptides Are Associated with Systemic Lupus Erythematosus in Taiwanese Women. Molecules 2019, 24, 1645. [CrossRef] 63. Nettis, E.; Colanardi, M.C.; Loria, M.P.; Vacca, A. Acquired C1-inhibitor deficiency in a patient with systemic lupus erythematosus: A case report and review of the literature. Eur. J. Clin. Invest. 2005, 35, 781–784. [CrossRef] [PubMed] 64. Dunn, J.; Simmons, R.; Thabet, S.; Jo, H. The role of epigenetics in the endothelial cell shear stress response and atherosclerosis. Int. J. Biochem. Cell Biol. 2015, 67, 167–176. [CrossRef] [PubMed] 65. Rodríguez-Dorantes, M.; Téllez-Ascencio, N.; Cerbón, M.A.; Lez, M.; Cervantes, A. Metilación del ADN: Un fenómeno epigenético de importancia Médica. Rev. Invest. Clin. 2004, 56, 56–71. [PubMed] 66. Pedroza Díaz, N.J.; Ortiz Reyes, B.L.; Vásquez Duque, G.M. Protein Biomarkers in Neuropsychiatric Lupus. Rev. Colomb. Reumatol. 2012, 19, 158–171. 67. Godsell, J.; Rudloff, I.; Kandane-Rathnayake, R.; Hoi, A.; Nold, M.F.; Morand, M.F.; Harris, J. Clinical associations of IL-10 and IL-37 in systemic lupus erythematosus. Sci. Rep. 2016, 6, 1–10. [CrossRef] 68. Lu, Q.; Wu, A.; Richardson, B.C. Demethylation of the same promoter sequence increases CD70 expression in lupus T cells and T cells treated with lupus-inducing drugs. J. Immunol. 2005, 174, 6212–6219. [CrossRef] 69. Pretel, M.; Marquès, l.; España, A. Lupus eritematoso inducido por fármacos. Actas Dermosifiliogr. 2012, 105, 18–30. [CrossRef] 70. Richardson, B. Epigenetically Altered T Cells Contribute to Lupus Flares. Cells 2019, 8, 127. [CrossRef] 71. Teruel, M.; Sawalha, A.H. Epigenetic Variability in Systemic Lupus Erythematosus: What We Learned from Genome-Wide DNA Methylation Studies. Curr. Rheumatol. Rep. 2017, 19, 32. [CrossRef] 72. Díaz, J.P.; Muñoz Vahos, C.H.; Luján Chavarría, T.P.; Vásquez Duque, G.M.; Ortiz Reyes, B.L. Análisis proteómico del líquido cefalorraquídeo de pacientes con lupus neuropsiquiátrico, un abordaje inicial para la búsqueda de biomarcadores. Rev. Colomb. Reumatol. 2014, 21, 115–124. [CrossRef] 73. Cheung, P.; Lau, P. Epigenetic Regulation by Histone Methylation and Histone Variants. Mol. Endocrinol. 2005, 19, 563–573. [CrossRef] [PubMed] 74. Mondal, S.; Gong, X.; Zhang, X.; Salinger, A.J.; Zheng, L.; Sen, S.; Weerapana, E.; Zhang, X.; Thompson, P.R. Halogen Bonding Increases the Potency and Isozyme-selectivity of Protein Arginine Deiminase 1 Inhibitors. Angew. Chemie 2019, 58, 12476–12480. [CrossRef] [PubMed] 75. Knuckley, B.; Causey, C.P.; Jones, J.E.; Bhatia, M.; Dreyton, C.J.; Osborne, T.C.; Takahara, H.; Thompson, P.R. Substrate specificity and kinetic studies of PADs 1, 3, and 4 identify potent and selective inhibitors of protein arginine deiminase 3. Biochemistry 2010, 49, 4852–4863. [CrossRef] [PubMed] 76. Nakashima, K.; Hagiwara, T.; Yamada, M. Nuclear localization of peptidylarginine deiminase V and histone deimination in granulocytes. J. Biol. Chem. 2002, 277, 49562–49568. [CrossRef] 77. Kakumanu, P.; Sobel, E.S.; Narain, S.; Li, Y.; Akaogi, J.; Yamasaki, Y.; Segal, M.S.; Hahn, P.C.; Chan, E.K.; Reeves, W.H.; et al. Citrulline dependence of anti-cyclic citrullinated peptide antibodies in systemic lupus erythematosus as a marker of deforming/erosive arthritis. J. Rheumatol. 2009, 36, 2682–2690. [CrossRef] 78. Muller, S.; Radic, M. Citrullinated Autoantigens: From Diagnostic Markers to Pathogenetic Mechanisms. Clin. Rev. Allergy Immunol. 2015, 49, 232–239. [CrossRef] 79. Navarro Quiroz, E.; Navarro Quiroz, R.; Pacheco Lugo, L.; Aroca Martínez, G.; Gómez Escorcia, L.; Gonzalez Torres, H.; Cadena Bonfanti, A.; Marmolejo, M.D.C.; Sanchez, E.; Villarreal Camacho, J.L.; et al. Integrated analysis of microRNA regulation and its interaction with mechanisms of epigenetic regulation in the etiology of systemic lupus erythematosus. PLoS ONE 2019, 14, e0218116. [CrossRef] 80. Kronimus, Y.; Dodel, R.; Galuska, S.P.; Neumann, S. IgG Fc N-glycosylation: Alterations in neurologic diseases and potential therapeutic target? J. Autoimmun. 2019, 96, 14–23. [CrossRef] 81. Gruszewska, E.; Chludzinska, A.; Chrostek, L.; Cylwik, B.; Gindzienska-Sieskiewicz, E.; Szmitkowski, M.; Sierakowski, S. Carbohydrate-deficient transferrin depends on disease activity in rheumatoid arthritis and systemic sclerosis. Scand. J. Rheumatol. 2013, 42, 203–206. [CrossRef] 82. Pozo, M.C. Inestabilidad Genética y Cambios en la Cromatina en Mutantes del Complejo THO en Mitosis y Meiosis de Eucariotas Modelo. Ph.D. Thesis, Universidad de Sevilla, Seville, Spain, December 2013. |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
International Journal of Molecular Sciences |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/dcca22bc-d419-4fb4-805e-c8ffc65cc5df/download https://repositorio.cuc.edu.co/bitstreams/7a6a8246-0f6c-4c1c-8d00-65ccc9252f8c/download https://repositorio.cuc.edu.co/bitstreams/af5a1fa8-67d2-485b-993c-a034ab081f34/download https://repositorio.cuc.edu.co/bitstreams/ed5ef2cb-f282-43bd-9da0-a6995fb86167/download https://repositorio.cuc.edu.co/bitstreams/0c9d75db-e4cd-48e6-b138-e8647370da82/download https://repositorio.cuc.edu.co/bitstreams/3e938258-7976-4506-b56d-da75e7600ad6/download |
bitstream.checksum.fl_str_mv |
1a103a0ec73a85d29437d5246f592764 42fd4ad1e89814f5e4a476b409eb708c 8a4605be74aa9ea9d79846c1fba20a33 6852964c5f9ee238bef9e9fa209aa81a 6852964c5f9ee238bef9e9fa209aa81a a9c4cfbf65154cb84f653719b3f77019 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760812848578560 |
spelling |
Navarro Quiroz, ElkinChavez-Estrada, ValeriaMacias-Ochoa, KarimeAyala-Navarro, María FernandaFlores-Aguilar, Aniyensy SaraiMorales Navarrete, Franciscode la Cruz Lopez, FernandoGOMEZ ESCORCIA, LORENAMusso, CarlosAroca Martínez, GustavoGonzales Torres, HenryDíaz Pérez, AndersonCadena Bonfanti, Andres AngéloSarmiento Gutiérrez, JoanyMeza, JainyDiaz Arroyo, EsperanzaBello-Lemus, YesitAhmad, MostaphaNavarro Quiroz, Roberto2020-03-06T19:37:56Z2020-03-06T19:37:56Z2019-11-131422-0067https://hdl.handle.net/11323/6084doi:10.3390/ijms20225679Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The complex physiology of eukaryotic cells is regulated through numerous mechanisms, including epigenetic changes and posttranslational modifications. The wide-ranging diversity of these mechanisms constitutes a way of dynamic regulation of the functionality of proteins, their activity, and their subcellular localization as well as modulation of the di erential expression of genes in response to external and internal stimuli that allow an organism to respond or adapt to accordingly. However, alterations in these mechanisms have been evidenced in several autoimmune diseases, including systemic lupus erythematosus (SLE). The present review aims to provide an approach to the current knowledge of the implications of these mechanisms in SLE pathophysiology.Navarro Quiroz, Elkin-will be generated-orcid-0000-0001-7567-6409-600Chavez-Estrada, ValeriaMacias-Ochoa, KarimeAyala-Navarro, María FernandaFlores-Aguilar, Aniyensy SaraiMorales Navarrete, Francisco-will be generated-orcid-0000-0002-3461-7186-600de la Cruz Lopez, FernandoGOMEZ ESCORCIA, LORENA-will be generated-orcid-0000-0002-9736-6417-600Musso, Carlos-will be generated-orcid-0000-0003-4928-1280-600Aroca Martínez, GustavoGonzales Torres, HenryDíaz Pérez, AndersonCadena Bonfanti, Andres Angélo-will be generated-orcid-0000-0003-3903-1915-600Sarmiento Gutiérrez, JoanyMeza, JainyDiaz Arroyo, Esperanza-will be generated-orcid-0000-0002-3286-022X-600Bello-Lemus, Yesit-will be generated-orcid-0000-0003-1006-0042-600Ahmad, Mostapha-will be generated-orcid-0000-0002-3825-9478-600Navarro Quiroz, RobertoengInternational Journal of Molecular SciencesCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Posttranslational modificationsEpigenetic mechanismsSystemic lupus erythematosusUbiquitinationSUMOylationGlycosylationHydroxylationPhosphorylationSulfationAcetylationEpigenetic mechanisms and posttranslational Modifications in systemic lupus erythematosusArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion1. Wu, H.; Zhao, M.; Tan, L.; Lu, Q. The key culprit in the pathogenesis of systemic lupus erythematosus: Aberrant DNA methylation. Autoimmun. Rev. 2016, 15, 684–689. [CrossRef]2. Rhodes, B.; Vyse, T.J. The genetics of SLE: An update in the light of genome-wide association studies. Rheumatology (Oxford) 2008, 47, 1603–1611. [CrossRef]3. Quddus, J.; Johnson, K.J.; Gavalchin, J.; Amento, E.P.; Chrisp, C.E.; Yung, R.L.; Richardson, B.C. Treating activated CD4+ T cells with either of two distinct DNA methyltransferase inhibitors, 5-azacytidine or procainamide, is sufficient to cause a lupus-like disease in syngeneic mice. J. Clin. Invest. 1993, 92, 38–53. [CrossRef] [PubMed]4. Coit, P.; Yalavarthi, S.; Ognenovski, M.; Zhao, W.; Hasni, S.; Wren, J.D.; Kaplan, M.J.; Sawalha, A.H. EpigenomeprofilingrevealssignificantDNAdemethylationofinterferonsignaturegenesinlupusneutrophils. J. Autoimmun. 2015, 58, 59–66. [CrossRef]5. Javierre, B.M.; Richardson, B. A New Epigenetic Challenge: Systemic Lupus Erythematosus. In Epigenetic Contributions in Autoimmune Disease. Advances in Experimental Medicine and Biology; Ballestar, E., Ed.; Springer: Boston, MA, USA, 2011; Volume 711, pp. 117–136.6. Zhao, M.; Zhou, Y.; Zhu, B.; Wan, M.; Jiang, T.; Tan, Q.; Liu, Y.; Jiang, J.; Luo, S.; Tan, Y.; et al. IFI44L promoter methylation as a blood biomarker for systemic lupus erythematosus. Ann. Rheum. Dis. 2016, 75, 1998–2006. [CrossRef] [PubMed]7. Cai, L.; Sutter, B.M.; Li, B.; Tu, B.P. Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Mol. Cell 2011, 42, 426–437. [CrossRef]8. Brooks, W.H.; Le Dantec, C.; Pers, J.O.; Youinou, P.; Renaudineau, Y. Epigenetics and autoimmunity. J. Autoimmun. 2010, 34, J207–J219. [CrossRef] [PubMed]9. Patel, D.R.; Richardson, B.C. Epigenetic mechanisms in lupus. Curr. Opin. Rheumatol. 2010, 22, 478–482. [CrossRef]10. Zouali, M. Epigenetics in lupus. Ann. N. Y. Acad. Sci. 2011, 1217, 154–165. [CrossRef]11. Coit, P.; Jeffries, M.; Altorok, N.; Dozmorov, M.G.; Koelsch, K.A.; Wren, J.D.; Merrill, J.T.; McCune, W.J.; Sawalha, A.H. Genome-wide DNA methylation study suggests epigenetic accessibility and transcriptional poising of interferon-regulated genes in naive CD4+ T cells from lupus patients. J. Autoimmun. 2013, 43, 78–84. [CrossRef]12. Pieterse, E.; Hofstra, J.; Berden, J.; Herrmann, M.; Dieker, J.; van der Vlag, J. Acetylated histones contribute to the immunostimulatory potential of neutrophil extracellular traps in systemic lupus erythematosus. Clin. Exp. Immunol. 2015, 179, 68–74. [CrossRef] [PubMed]13. Sujashvili, R. Advantages of Extracellular Ubiquitin in Modulation of Immune Responses. Mediators Inflamm. 2016, 2016, 1–6. [CrossRef] [PubMed]14. Téllez Castillo, N.; Siachoque Jara, J.J.; Siachoque Jara, J.S.; Siachoque Jara, M.A.; Siachoque Montañez, H.O. Activación de la célula T, alteraciones en el lupus eritematoso sistémico, una revisión narrativa. Rev. Colomb. Reumatol. 2018, 25, 38–54. [CrossRef]15. Barrera-Vargas, A.; Gómez-Martín, D.; Carmona-Rivera, C.; Merayo-Chalico, J.; Torres-Ruiz, J.; Manna, Z.; Hasni, S.; Alcocer-Varela, J.; Kaplan, M.J. Differential ubiquitination in NETs regulates macrophage responses in systemic lupus erythematosus. Ann. Rheum. Dis. 2018, 77, 944–950. [CrossRef] [PubMed]16. Nakasone, M.A.; Livnat-Levanon, N.; Glickman, M.H.; Cohen, R.E.; Fushman, D. Mixed-linkage ubiquitin chains send mixed messages. Structure 2013, 21, 727–740. [CrossRef]17. Erpapazoglou, Z.; Walker, O.; Haguenauer-Tsapis, R. Versatile roles of k63-linked ubiquitin chains in trafficking. Cells 2014, 3, 1027–1088. [CrossRef]18. Saavedra Hernández, D. La molécula CD28 y su función en la activación de células T. Rev. Cuba. Hematol. Inmunol. Hemoter. 2013, 29, 359–367.19. Ding, X.; Wang, A.; Ma, X.; Demarque, M.; Jin, W.; Xin, H.; Dejean, A.; Dong, C. Protein SUMOylation Is Required for Regulatory T Cell Expansion and Function. Cell Rep. 2016, 16, 1055–1066. [CrossRef]20. Rider, V.; Abdou, N.I.; Kimler, B.F.; Lu, N.; Brown, S.; Fridley, B.L. Gender bias in human systemic lupus erythematosus: A problem of steroid receptor action? Front. Immunol. 2018, 9, 1–10. [CrossRef]21. Barry, R.; John, S.W.; Liccardi, G.; Tenev, T.; Jaco, I.; Chen, C.H.; Choi, J.; Kasperkiewicz, P.; Fernandes-Alnemri, T.; Alnemri, E.; et al. SUMO-mediated regulation of NLRP3 modulates inflammasome activity. Nat. Commun. 2018, 9, 3001. [CrossRef]22. Guzmán-Flores, J.M.; Portales-Pérez, D.P. Mecanismos de supresión de las células T reguladoras (Treg). Gac. Med. Mex. 2013, 149, 630–638.23. Hernández, A.S. Células colaboradoras (TH1, TH2, TH17) y reguladoras (Treg, TH3, NKT) en la artritis reumatoide. Reumatol. Clin. Supl. 2009, 5 (Suppl. 1), 1–5. [CrossRef]24. Crabtree, G.R.; Schreiber, S.L. Snapshot: Calcium-calcineurin-NFAT signaling. Cell 2010, 138, 1–4.25. Biermann, M.H.; Griffante, G.; Podolska, M.J.; Boeltz, S.; Stürmer, J.; Muñoz, L.E.; Bilyy, R.; Herrmann, M. Sweet but dangerous–The role of immunoglobulin G glycosylation in autoimmunity and inflammation. Lupus 2016, 25, 934–942. [CrossRef] [PubMed]26. Magnelli, P.E.; Bielik, A.M.; Guthrie, E.P. Identification and characterization of protein glycosylation using specific endo- and exoglycosidases. J. Vis. Exp. 2011, e3749. [CrossRef]27. Valliere-Douglass, J.F.; Kodama, P.; Mujacic, M.; Brady, L.J.; Wang, W.; Wallace, A.; Yan, B.; Reddy, P.; Treuheit, M.J.; Balland, A. Asparagine-linked oligosaccharides present on a non-consensus amino acid sequence in the CH1 domain of human antibodies. J. Biol. Chem. 2009, 284, 32493–32506. [CrossRef]28. Hashii, N.; Kawasaki, N.; Itoh, S.; Nakajima, Y.; Kawanishi, T.; Yamaguchi, T. Alteration of N-glycosylation in the kidney in a mouse model of systemic lupus erythematosus: Relative quantification of N-glycans using an isotope-tagging method. Immunology 2009, 126, 336–345. [CrossRef]29. Vidarsson, G.; Dekkers, G.; Rispens, T. IgG subclasses and allotypes: From structure to effector functions. Front. Immunol. 2014, 5, 520. [CrossRef]30. Abès, R.; Teillaud, J.-L. Impact of Glycosylation on Effector Functions of Therapeutic IgG. Pharmaceuticals 2010, 3, 146–157. [CrossRef]31. Jennewein, M.F.; Alter, G. The Immunoregulatory Roles of Antibody Glycosylation. Trends Immunol. 2017, 38, 358–372. [CrossRef]32. Reily, C.; Stewart, T.J.; Renfrow, M.B.; Novak, J. Glycosylation in health and disease. Nat. Rev. Nephrol. 2019, 15, 346–366. [CrossRef] [PubMed]33. Anthony, R.M.; Ravetch, J.V. A Novel Role for the IgG Fc Glycan: The Anti-inflammatory Activity of Sialylated IgG Fcs. J. Clin. Immunol. 2010, 30, 9–14. [CrossRef] [PubMed]34. Saxena, A.; Wu, D. Advances in Therapeutic Fc Engineering - Modulation of IgG-Associated Effector Functions and Serum Half-life. Front. Immunol. 2016, 7, 580. [CrossRef] [PubMed]35. Leong, K.W.; Ding, J.L. The unexplored roles of human serum IgA. DNA Cell Biol. 2014, 33, 823–829. [CrossRef]36. Papista, C.; Berthelot, L.; Monteiro, R.C. Dysfunctions of the Iga system: A common link between intestinal and renal diseases. Cell. Mol. Immunol. 2011, 8, 126–134. [CrossRef]37. Kawa,I.A.; Masood,A.; Amin,S.; Mustafa,M.F.; Rashid,F.Chapter2—ClinicalPerspectiveofPosttranslational Modifications. In Protein Modificomics; Dar, T.A., Singh, L.R., Eds.; Academic Press: London, UK, 2019; pp. 37–68.38. Zurlo, G.; Guo, J.; Takada, M.; Wei, W.; Zhang, Q. New Insights into Protein Hydroxylation and Its Important Role in Human Diseases. Biochim. Biophys. Acta 2016, 1866, 208–220. [CrossRef]39. Mansoor, F.; Ali, A.; Ali, R. Binding of circulating SLE autoantibodies to oxygen free radical damage chromatin. Autoimmunity 2005, 38, 431–438. [CrossRef]40. Lahita, R.G.; Bradlow, L.; Fishman, J.; Kunkel, H.G. Estrogen metabolism in systemic lupus erythematosus. Patients and family members. Arthritis Rheum. 1982, 25, 843–846. [CrossRef]41. Garg, D.K.; Ali, R. Reactive oxygen species modified polyguanylic acid: Immunogenicity and implications for systemic autoimmunity. J. Autoimmun. 1998, 11, 371–378. [CrossRef]42. Ardito, F.; Giuliani, M.; Perrone, D.; Troiano, G.; Lo Muzio, L. The crucial role of protein phosphorylation in cell signalingand its use as targeted therapy (Review). Int. J. Mol. Med. 2017, 40, 271–280. [CrossRef]43. Skourti-Stathaki, K.; Proudfoot, N. Histone 3 S10 Phosphorylation: ‘Caught in the R Loop!’. Mol. Cell 2013, 52, 470–472. [CrossRef]44. Eichten, S.R.; Schmit, R.J.; Springer, N.M. Epigenetics: Beyond chromatin modifications and complex genetic regulation. Plant Physiol. 2014, 165, 933–947. [CrossRef]45. Rossetto, D.; Avvakumov, N.; Côté, J. Histone phosphorylation. Epigenetics 2012, 7, 1098–1108. [CrossRef]46. Rossy, J.; Williamson, D.J.; Gaus, K. How does the kinase Lck phosphorylate the T cell receptor? Spatial organization as a regulatory mechanism. Front. Immunol. 2012, 3, 1–6. [CrossRef]47. Wu, T.; Xie, C.; Han, J.; Ye, Y.; Weiel, J.; Li, Q.; Blanco, I.; Ahn, C.; Olsen, N.; Putterman, C.; et al. Metabolic disturbances associated with systemic lupus erythematosus. PLoS ONE 2012, 7, e37210. [CrossRef]48. Hsu, W.; Rosenquist, G.L.; Ansari, A.A.; Gershwin, M.E. Autoimmunity and tyrosine sulfation. Autoimmun. Rev. 2005, 4, 429–435. [CrossRef]49. Tonks, N.K. Protein tyrosine phosphatases: From genes, to function, to disease. Nat. Rev. Mol. Cell Biol. 2006, 7, 833–834. [CrossRef]50. Kehoe, J.W.; Bertozzi, C.R. Tyrosine sulfation: A modulator of extracellular protein-protein interactions. Chem. Biol. 2000, 7, 57–61. [CrossRef]51. Seibert, C.; Sakmar, T.P. Toward a framework for sulfoproteomics: Synthesis and characterization of sulfotyrosine-containing peptides. Biopolym. 2008, 90, 459–477. [CrossRef]52. Farzan, M.; Mirzabekov, T.; Kolchinsky, P.; Wyatt, R.; Cayabyab, M.; Gerard, N.P.; Gerard, C.; Sodroski, J.; Choe, H. Tyrosine sulfation of the amino terminus of CCR5 facilitates HIV-1 entry. Cell 1999, 96, 667–676. [CrossRef]53. Carvalho, C.; Calvisi, S.L.; Leal, B.; Bettencourt, A.; Marinho, A.; Almeida, I.; Farinha, F.; Costa, P.P.; Silva, B.M.; Vasconcelos, C. CCR5-Delta32: Implications in SLE development. Int. J. Immunogenet. 2014, 41, 236–241. [CrossRef] [PubMed]54. Ren, J.; Panther, E.; Liao, X.; Grammer, A.C.; Lipsky, P.E.; Reilly, C.M. The Impact of Protein Acetylation/Deacetylation on Systemic Lupus Erythematosus. Int. J. Mol. Sci. 2018, 19, 4007. [CrossRef] [PubMed]55. Shahbazian, M.D.; Grunstein, M. Functions of site-specific histone acetylation and deacetylation. Annu. Rev. Biochem. 2007, 76, 75–100. [CrossRef] [PubMed]56. Cheung, W.L.; Briggs, S.D.; Allis, C.D. Acetylation and chromosomal functions. Curr. Opin. Cell Biol. 2000, 12, 326–333. [CrossRef]57. Wang, Z.; Chang, C.; Peng, M.; Lu, Q. Translating epigenetics into clinic: Focus on lupus. Clin. Epigenetics 2017, 9, 1–15. [CrossRef]58. Bannister, A.J.; Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 2011, 21, 381–395. [CrossRef]59. Drazic, A.; Myklebust, L.M.; Ree, R.; Arnesen, T. The world of protein acetylation. Biochim. Biophys. Acta 2016, 1864, 1372–1401. [CrossRef]60. Parthun, M.R. Hat1: The emerging cellular roles of a type B histone acetyltransferase. Oncogene 2007, 26, 5319–5328. [CrossRef]61. Leung, Y.T.; Shi, L.; Maurer, K.; Song, L.; Zhang, Z.; Petri, M.; Sullivan, K.E. Interferon regulatory factor 1 and histone H4 acetylation in systemic lupus erythematosus. Epigenetics 2015, 10, 191–199. [CrossRef]62. Tsai, K.L.; Liao, C.C.; Chang, Y.S.; Huang, C.W.; Huang, Y.C.; Chen, J.H.; Lin, S.H.; Tai, C.C.; Lin, Y.F.; Lin, C.Y. Low Levels of IgM and IgA Recognizing Acetylated C1-Inhibitor Peptides Are Associated with Systemic Lupus Erythematosus in Taiwanese Women. Molecules 2019, 24, 1645. [CrossRef]63. Nettis, E.; Colanardi, M.C.; Loria, M.P.; Vacca, A. Acquired C1-inhibitor deficiency in a patient with systemic lupus erythematosus: A case report and review of the literature. Eur. J. Clin. Invest. 2005, 35, 781–784. [CrossRef] [PubMed]64. Dunn, J.; Simmons, R.; Thabet, S.; Jo, H. The role of epigenetics in the endothelial cell shear stress response and atherosclerosis. Int. J. Biochem. Cell Biol. 2015, 67, 167–176. [CrossRef] [PubMed]65. Rodríguez-Dorantes, M.; Téllez-Ascencio, N.; Cerbón, M.A.; Lez, M.; Cervantes, A. Metilación del ADN: Un fenómeno epigenético de importancia Médica. Rev. Invest. Clin. 2004, 56, 56–71. [PubMed]66. Pedroza Díaz, N.J.; Ortiz Reyes, B.L.; Vásquez Duque, G.M. Protein Biomarkers in Neuropsychiatric Lupus. Rev. Colomb. Reumatol. 2012, 19, 158–171.67. Godsell, J.; Rudloff, I.; Kandane-Rathnayake, R.; Hoi, A.; Nold, M.F.; Morand, M.F.; Harris, J. Clinical associations of IL-10 and IL-37 in systemic lupus erythematosus. Sci. Rep. 2016, 6, 1–10. [CrossRef]68. Lu, Q.; Wu, A.; Richardson, B.C. Demethylation of the same promoter sequence increases CD70 expression in lupus T cells and T cells treated with lupus-inducing drugs. J. Immunol. 2005, 174, 6212–6219. [CrossRef]69. Pretel, M.; Marquès, l.; España, A. Lupus eritematoso inducido por fármacos. Actas Dermosifiliogr. 2012, 105, 18–30. [CrossRef]70. Richardson, B. Epigenetically Altered T Cells Contribute to Lupus Flares. Cells 2019, 8, 127. [CrossRef]71. Teruel, M.; Sawalha, A.H. Epigenetic Variability in Systemic Lupus Erythematosus: What We Learned from Genome-Wide DNA Methylation Studies. Curr. Rheumatol. Rep. 2017, 19, 32. [CrossRef]72. Díaz, J.P.; Muñoz Vahos, C.H.; Luján Chavarría, T.P.; Vásquez Duque, G.M.; Ortiz Reyes, B.L. Análisis proteómico del líquido cefalorraquídeo de pacientes con lupus neuropsiquiátrico, un abordaje inicial para la búsqueda de biomarcadores. Rev. Colomb. Reumatol. 2014, 21, 115–124. [CrossRef]73. Cheung, P.; Lau, P. Epigenetic Regulation by Histone Methylation and Histone Variants. Mol. Endocrinol. 2005, 19, 563–573. [CrossRef] [PubMed]74. Mondal, S.; Gong, X.; Zhang, X.; Salinger, A.J.; Zheng, L.; Sen, S.; Weerapana, E.; Zhang, X.; Thompson, P.R. Halogen Bonding Increases the Potency and Isozyme-selectivity of Protein Arginine Deiminase 1 Inhibitors. Angew. Chemie 2019, 58, 12476–12480. [CrossRef] [PubMed]75. Knuckley, B.; Causey, C.P.; Jones, J.E.; Bhatia, M.; Dreyton, C.J.; Osborne, T.C.; Takahara, H.; Thompson, P.R. Substrate specificity and kinetic studies of PADs 1, 3, and 4 identify potent and selective inhibitors of protein arginine deiminase 3. Biochemistry 2010, 49, 4852–4863. [CrossRef] [PubMed]76. Nakashima, K.; Hagiwara, T.; Yamada, M. Nuclear localization of peptidylarginine deiminase V and histone deimination in granulocytes. J. Biol. Chem. 2002, 277, 49562–49568. [CrossRef]77. Kakumanu, P.; Sobel, E.S.; Narain, S.; Li, Y.; Akaogi, J.; Yamasaki, Y.; Segal, M.S.; Hahn, P.C.; Chan, E.K.; Reeves, W.H.; et al. Citrulline dependence of anti-cyclic citrullinated peptide antibodies in systemic lupus erythematosus as a marker of deforming/erosive arthritis. J. Rheumatol. 2009, 36, 2682–2690. [CrossRef]78. Muller, S.; Radic, M. Citrullinated Autoantigens: From Diagnostic Markers to Pathogenetic Mechanisms. Clin. Rev. Allergy Immunol. 2015, 49, 232–239. [CrossRef]79. Navarro Quiroz, E.; Navarro Quiroz, R.; Pacheco Lugo, L.; Aroca Martínez, G.; Gómez Escorcia, L.; Gonzalez Torres, H.; Cadena Bonfanti, A.; Marmolejo, M.D.C.; Sanchez, E.; Villarreal Camacho, J.L.; et al. Integrated analysis of microRNA regulation and its interaction with mechanisms of epigenetic regulation in the etiology of systemic lupus erythematosus. PLoS ONE 2019, 14, e0218116. [CrossRef]80. Kronimus, Y.; Dodel, R.; Galuska, S.P.; Neumann, S. IgG Fc N-glycosylation: Alterations in neurologic diseases and potential therapeutic target? J. Autoimmun. 2019, 96, 14–23. [CrossRef]81. Gruszewska, E.; Chludzinska, A.; Chrostek, L.; Cylwik, B.; Gindzienska-Sieskiewicz, E.; Szmitkowski, M.; Sierakowski, S. Carbohydrate-deficient transferrin depends on disease activity in rheumatoid arthritis and systemic sclerosis. Scand. J. Rheumatol. 2013, 42, 203–206. [CrossRef]82. Pozo, M.C. Inestabilidad Genética y Cambios en la Cromatina en Mutantes del Complejo THO en Mitosis y Meiosis de Eucariotas Modelo. Ph.D. Thesis, Universidad de Sevilla, Seville, Spain, December 2013.PublicationORIGINALEpigenetic Mechanisms and Posttranslational.pdfEpigenetic Mechanisms and Posttranslational.pdfapplication/pdf642809https://repositorio.cuc.edu.co/bitstreams/dcca22bc-d419-4fb4-805e-c8ffc65cc5df/download1a103a0ec73a85d29437d5246f592764MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/7a6a8246-0f6c-4c1c-8d00-65ccc9252f8c/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/af5a1fa8-67d2-485b-993c-a034ab081f34/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILEpigenetic Mechanisms and Posttranslational.pdf.jpgEpigenetic Mechanisms and Posttranslational.pdf.jpgimage/jpeg63295https://repositorio.cuc.edu.co/bitstreams/ed5ef2cb-f282-43bd-9da0-a6995fb86167/download6852964c5f9ee238bef9e9fa209aa81aMD54THUMBNAILEpigenetic Mechanisms and Posttranslational.pdf.jpgEpigenetic Mechanisms and Posttranslational.pdf.jpgimage/jpeg63295https://repositorio.cuc.edu.co/bitstreams/0c9d75db-e4cd-48e6-b138-e8647370da82/download6852964c5f9ee238bef9e9fa209aa81aMD54TEXTEpigenetic Mechanisms and Posttranslational.pdf.txtEpigenetic Mechanisms and Posttranslational.pdf.txttext/plain83296https://repositorio.cuc.edu.co/bitstreams/3e938258-7976-4506-b56d-da75e7600ad6/downloada9c4cfbf65154cb84f653719b3f77019MD5511323/6084oai:repositorio.cuc.edu.co:11323/60842024-09-17 12:48:33.519http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |