Learning style preferences of college students using big data

Learning styles is one of the most studied topics in the field of education and the research results have generated relevant changes in the teaching-learning process. Currently, there are several theoretical models that explain the characterization and development of learning styles from different p...

Full description

Autores:
amelec, viloria
Petro González, Ingrid Regina
Pineda Lezama, Omar Bonerge
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/5986
Acceso en línea:
https://hdl.handle.net/11323/5986
https://repositorio.cuc.edu.co/
Palabra clave:
Learning styles
College students
Different college careers
Estilos de aprendizaje
Estudiantes universitarios
Diferentes carreras universitarias
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_fc00f2fffa726b12d3acd005e3292d05
oai_identifier_str oai:repositorio.cuc.edu.co:11323/5986
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Learning style preferences of college students using big data
dc.title.translated.spa.fl_str_mv Preferencias de estilo de aprendizaje de estudiantes universitarios que usan big data
title Learning style preferences of college students using big data
spellingShingle Learning style preferences of college students using big data
Learning styles
College students
Different college careers
Estilos de aprendizaje
Estudiantes universitarios
Diferentes carreras universitarias
title_short Learning style preferences of college students using big data
title_full Learning style preferences of college students using big data
title_fullStr Learning style preferences of college students using big data
title_full_unstemmed Learning style preferences of college students using big data
title_sort Learning style preferences of college students using big data
dc.creator.fl_str_mv amelec, viloria
Petro González, Ingrid Regina
Pineda Lezama, Omar Bonerge
dc.contributor.author.spa.fl_str_mv amelec, viloria
Petro González, Ingrid Regina
Pineda Lezama, Omar Bonerge
dc.subject.spa.fl_str_mv Learning styles
College students
Different college careers
Estilos de aprendizaje
Estudiantes universitarios
Diferentes carreras universitarias
topic Learning styles
College students
Different college careers
Estilos de aprendizaje
Estudiantes universitarios
Diferentes carreras universitarias
description Learning styles is one of the most studied topics in the field of education and the research results have generated relevant changes in the teaching-learning process. Currently, there are several theoretical models that explain the characterization and development of learning styles from different points of view, some of them share concepts, while others completely differ. The research focuses on the learning styles of higher education students for improving the quality of the educational process at the university. The results allow the recognize the learning style preferences of college students from different careers, and enable teachers to properly guide the learning activities by selecting the best teaching strategies, thus contributing to raise the quality of education. The results are expected to be relevant for further researches.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-02-05T13:27:58Z
dc.date.available.none.fl_str_mv 2020-02-05T13:27:58Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 00002010
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/5986
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 00002010
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/5986
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Ebrahimzadeh, I., Shahraki, A., Shahnaz, A. y Myandoab, A. (2016) Progressing urban development and life quality simultaneously. City, Culture and Society 7, (3), 186-193. 9.
Węziak-Białowolska, D. (2016) Quality of life in cities – Empirical evidence in comparative European perspective. Cities, 58, 87-96. 10.Putra, K. y Sitanggang, J. (2016). The Effect of Public Transport Services on Quality of Life in Medan City. Procedia - Social and Behavioral Sciences, 234, 383-389. oinformatics, 2018.
Pineda Lezama, O., Gómez Dorta, R.: Techniques of multivariate statistical analysis: An application for the Honduran banking sector. Innovate: Journal of Science and Technology, 5 (2), 61-75 (2017).
Viloria A., Lis-Gutierrez JP., Gaitán-Angulo M., Godoy A.R.M., Moreno G.C., Kamatkar S.J.: Methodology for the Design of a Student Pattern Recognition Tool to Facilitate the Teaching - Learning Process Through Knowledge Data Discovery (Big Data). In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham (2018).
A Lee, P Taylor, J Kalpathy-Cramer, A Tufail Machine learning has arrived!. Ophthalmology, 124 (2017), pp. 1726-1728
Yao L (2006). The present situation and development tendency of higher education quality evaluation in Western Countries. Priv. Educ. Beef. (2006).
Gregorutti B, Michel B, Saint-Pierre P (2015) Grouped variable importance with random forests and application to multiple functional data analysis. Comput Stat Data Anal 90:15–35.
Torres-Samuel, M., Vásquez, C., Viloria, A., Lis-Gutiérrez, J.P., Borrero, T.C., Varela, N.: Web Visibility Profiles of Top100 Latin American Universities. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, Springer, Cham, vol 10943, 1-12 (2018).
Jain, A. K., Mao, J., Mohiuddin, K. M.: Artificial neural networks: a tutorial. IEEE Computer 29 (3), 1- 32 (1996)
Lee, S.-Y. (2007). Structural equation modeling: A Bayesian approach. West Sussex, England: John Wiley & Sons, Ltd.
Haykin, S.: Neural Networks a Comprehensive Foundation. Second Edition. Macmillan College Publishing, Inc. USA. ISBN 9780023527616 (1999).
R. Melero y F. Abad, «Revistas Open Access: Características, modelos económicos y tendencias,» Lámpsakos, pp. 12-23, 2001.
M. Pinto, J. C. J. Alonso, V. Fernández, C. García, J. Garía, C. Gómez, F. Zazo y A.-V. Doucet, «Análisis cualitativo de la visibilidad de la investigación en las Universidaes españolas a través de su página Web,» Rev. Esp. Doc., pp. 345-370, 2004.
M. Torres-Samuel, C. Vásquez, A. Viloria, L. Hernández-Fernandez y R. Portillo-Medina, «Analysis of patterns in the university Word Rankings Webometrics, Shangai, QS and SIR-Scimago: case Latin American» de Lectur Notes in Computer Science (Including subseries Lectur Notes in Artificial Intelligent and Lectur Notes in Bi
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Procedia Computer Science
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/b5e532cb-7fa5-49d3-b859-5e668c4ea77c/download
https://repositorio.cuc.edu.co/bitstreams/80f58cb1-d03e-4414-8c03-947675a3533a/download
https://repositorio.cuc.edu.co/bitstreams/25709b80-12fc-4030-9441-7169041afc1e/download
https://repositorio.cuc.edu.co/bitstreams/458195ae-b936-46d0-87dc-33038c094bb7/download
https://repositorio.cuc.edu.co/bitstreams/cf36f96b-b467-4ec8-bde8-98876c634b98/download
bitstream.checksum.fl_str_mv 6cabaceb409810b8e32bd98b8246a289
42fd4ad1e89814f5e4a476b409eb708c
8a4605be74aa9ea9d79846c1fba20a33
8ef159fde6103426fc68803bd876e00b
dded0bdae584f1d0d800fb90eabf18d6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166850253422592
spelling amelec, viloriaPetro González, Ingrid ReginaPineda Lezama, Omar Bonerge2020-02-05T13:27:58Z2020-02-05T13:27:58Z201900002010https://hdl.handle.net/11323/5986Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Learning styles is one of the most studied topics in the field of education and the research results have generated relevant changes in the teaching-learning process. Currently, there are several theoretical models that explain the characterization and development of learning styles from different points of view, some of them share concepts, while others completely differ. The research focuses on the learning styles of higher education students for improving the quality of the educational process at the university. The results allow the recognize the learning style preferences of college students from different careers, and enable teachers to properly guide the learning activities by selecting the best teaching strategies, thus contributing to raise the quality of education. The results are expected to be relevant for further researches.Los estilos de aprendizaje son uno de los temas más estudiados en el campo de la educación y los resultados de la investigación han generado cambios relevantes en el proceso de enseñanza-aprendizaje. Actualmente, existen varios modelos teóricos que explican la caracterización y el desarrollo de estilos de aprendizaje desde diferentes puntos de vista, algunos de ellos comparten conceptos, mientras que otros son completamente diferentes. La investigación se centra en los estilos de aprendizaje de los estudiantes de educación superior para mejorar la calidad del proceso educativo en la universidad. Los resultados permiten reconocer las preferencias de estilo de aprendizaje de los estudiantes universitarios de diferentes carreras y permiten a los maestros guiar adecuadamente las actividades de aprendizaje seleccionando las mejores estrategias de enseñanza, contribuyendo así a mejorar la calidad de la educación. Se espera que los resultados sean relevantes para futuras investigaciones.Amelec, Viloria-will be generated-orcid-0000-0003-2673-6350-600Petro González, Ingrid Regina-will be generated-orcid-0000-0003-1540-6081-600Pineda Lezama, Omar BonergeengProcedia Computer ScienceCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Learning stylesCollege studentsDifferent college careersEstilos de aprendizajeEstudiantes universitariosDiferentes carreras universitariasLearning style preferences of college students using big dataPreferencias de estilo de aprendizaje de estudiantes universitarios que usan big dataArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionEbrahimzadeh, I., Shahraki, A., Shahnaz, A. y Myandoab, A. (2016) Progressing urban development and life quality simultaneously. City, Culture and Society 7, (3), 186-193. 9.Węziak-Białowolska, D. (2016) Quality of life in cities – Empirical evidence in comparative European perspective. Cities, 58, 87-96. 10.Putra, K. y Sitanggang, J. (2016). The Effect of Public Transport Services on Quality of Life in Medan City. Procedia - Social and Behavioral Sciences, 234, 383-389. oinformatics, 2018.Pineda Lezama, O., Gómez Dorta, R.: Techniques of multivariate statistical analysis: An application for the Honduran banking sector. Innovate: Journal of Science and Technology, 5 (2), 61-75 (2017).Viloria A., Lis-Gutierrez JP., Gaitán-Angulo M., Godoy A.R.M., Moreno G.C., Kamatkar S.J.: Methodology for the Design of a Student Pattern Recognition Tool to Facilitate the Teaching - Learning Process Through Knowledge Data Discovery (Big Data). In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham (2018).A Lee, P Taylor, J Kalpathy-Cramer, A Tufail Machine learning has arrived!. Ophthalmology, 124 (2017), pp. 1726-1728Yao L (2006). The present situation and development tendency of higher education quality evaluation in Western Countries. Priv. Educ. Beef. (2006).Gregorutti B, Michel B, Saint-Pierre P (2015) Grouped variable importance with random forests and application to multiple functional data analysis. Comput Stat Data Anal 90:15–35.Torres-Samuel, M., Vásquez, C., Viloria, A., Lis-Gutiérrez, J.P., Borrero, T.C., Varela, N.: Web Visibility Profiles of Top100 Latin American Universities. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, Springer, Cham, vol 10943, 1-12 (2018).Jain, A. K., Mao, J., Mohiuddin, K. M.: Artificial neural networks: a tutorial. IEEE Computer 29 (3), 1- 32 (1996)Lee, S.-Y. (2007). Structural equation modeling: A Bayesian approach. West Sussex, England: John Wiley & Sons, Ltd.Haykin, S.: Neural Networks a Comprehensive Foundation. Second Edition. Macmillan College Publishing, Inc. USA. ISBN 9780023527616 (1999).R. Melero y F. Abad, «Revistas Open Access: Características, modelos económicos y tendencias,» Lámpsakos, pp. 12-23, 2001.M. Pinto, J. C. J. Alonso, V. Fernández, C. García, J. Garía, C. Gómez, F. Zazo y A.-V. Doucet, «Análisis cualitativo de la visibilidad de la investigación en las Universidaes españolas a través de su página Web,» Rev. Esp. Doc., pp. 345-370, 2004.M. Torres-Samuel, C. Vásquez, A. Viloria, L. Hernández-Fernandez y R. Portillo-Medina, «Analysis of patterns in the university Word Rankings Webometrics, Shangai, QS and SIR-Scimago: case Latin American» de Lectur Notes in Computer Science (Including subseries Lectur Notes in Artificial Intelligent and Lectur Notes in BiPublicationORIGINALLearning Style Preferences of College Students Using Big Data.pdfLearning Style Preferences of College Students Using Big Data.pdfapplication/pdf397098https://repositorio.cuc.edu.co/bitstreams/b5e532cb-7fa5-49d3-b859-5e668c4ea77c/download6cabaceb409810b8e32bd98b8246a289MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/80f58cb1-d03e-4414-8c03-947675a3533a/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/25709b80-12fc-4030-9441-7169041afc1e/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILLearning Style Preferences of College Students Using Big Data.pdf.jpgLearning Style Preferences of College Students Using Big Data.pdf.jpgimage/jpeg46146https://repositorio.cuc.edu.co/bitstreams/458195ae-b936-46d0-87dc-33038c094bb7/download8ef159fde6103426fc68803bd876e00bMD55TEXTLearning Style Preferences of College Students Using Big Data.pdf.txtLearning Style Preferences of College Students Using Big Data.pdf.txttext/plain19363https://repositorio.cuc.edu.co/bitstreams/cf36f96b-b467-4ec8-bde8-98876c634b98/downloaddded0bdae584f1d0d800fb90eabf18d6MD5611323/5986oai:repositorio.cuc.edu.co:11323/59862024-09-17 14:17:55.52http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=