A mixed-integer linear programming model for the cutting stock problem in the steel industry
A mixed-integer linear programming (MILP) model is proposed for solving a one dimension cutting stock problem (1D-CSP) in the steel industry. A case study of a metallurgical company is presented and the objective is to minimize waste in the cutting process of steel bars, considering inventory constr...
- Autores:
-
Morillo-Torres, Daniel
Torres Baena, Mauricio
Escobar, John Wilmer
Romero-Conrado, Alfonso R.
Romero-Conrado, Alfonso R.
Gustavo, Gatica
- Tipo de recurso:
- Part of book
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/9356
- Acceso en línea:
- https://hdl.handle.net/11323/9356
https://doi.org/10.1007/978-3-030-86702-7_27
https://repositorio.cuc.edu.co/
- Palabra clave:
- Cutting stock problem
Mixed-integer linear programming
Steel bars
Industrial application
- Rights
- openAccess
- License
- Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
id |
RCUC2_fbd950db8d9a4f28abadf1737203508b |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/9356 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
A mixed-integer linear programming model for the cutting stock problem in the steel industry |
title |
A mixed-integer linear programming model for the cutting stock problem in the steel industry |
spellingShingle |
A mixed-integer linear programming model for the cutting stock problem in the steel industry Cutting stock problem Mixed-integer linear programming Steel bars Industrial application |
title_short |
A mixed-integer linear programming model for the cutting stock problem in the steel industry |
title_full |
A mixed-integer linear programming model for the cutting stock problem in the steel industry |
title_fullStr |
A mixed-integer linear programming model for the cutting stock problem in the steel industry |
title_full_unstemmed |
A mixed-integer linear programming model for the cutting stock problem in the steel industry |
title_sort |
A mixed-integer linear programming model for the cutting stock problem in the steel industry |
dc.creator.fl_str_mv |
Morillo-Torres, Daniel Torres Baena, Mauricio Escobar, John Wilmer Romero-Conrado, Alfonso R. Romero-Conrado, Alfonso R. Gustavo, Gatica |
dc.contributor.author.spa.fl_str_mv |
Morillo-Torres, Daniel Torres Baena, Mauricio Escobar, John Wilmer Romero-Conrado, Alfonso R. Romero-Conrado, Alfonso R. Gustavo, Gatica |
dc.subject.proposal.eng.fl_str_mv |
Cutting stock problem Mixed-integer linear programming Steel bars Industrial application |
topic |
Cutting stock problem Mixed-integer linear programming Steel bars Industrial application |
description |
A mixed-integer linear programming (MILP) model is proposed for solving a one dimension cutting stock problem (1D-CSP) in the steel industry. A case study of a metallurgical company is presented and the objective is to minimize waste in the cutting process of steel bars, considering inventory constraints and the potential use of the resulting leftovers. The computational results showed that an optimal solution was always found with an average improvement in waste reduction of 80%. There was no significant difference when comparing results between the complete model and the model without inventory constraints. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021 |
dc.date.accessioned.none.fl_str_mv |
2022-07-11T13:31:01Z |
dc.date.available.none.fl_str_mv |
2022-07-11T13:31:01Z |
dc.type.spa.fl_str_mv |
Capítulo - Parte de Libro |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_3248 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bookPart |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/CAP_LIB |
format |
http://purl.org/coar/resource_type/c_3248 |
dc.identifier.citation.spa.fl_str_mv |
Morillo-Torres, D., Baena, M.T., Escobar, J.W., Romero-Conrado, A.R., Coronado-Hernández, J.R., Gatica, G. (2021). A Mixed-Integer Linear Programming Model for the Cutting Stock Problem in the Steel Industry. In: Figueroa-García, J.C., Díaz-Gutierrez, Y., Gaona-García, E.E., Orjuela-Cañón, A.D. (eds) Applied Computer Sciences in Engineering. WEA 2021. Communications in Computer and Information Science, vol 1431. Springer, Cham. https://doi.org/10.1007/978-3-030-86702-7_27 |
dc.identifier.isbn.spa.fl_str_mv |
978-3-030-86701-0 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/9356 |
dc.identifier.url.spa.fl_str_mv |
https://doi.org/10.1007/978-3-030-86702-7_27 |
dc.identifier.doi.spa.fl_str_mv |
10.1007/978-3-030-86702-7_27 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
dc.identifier.eisbn.spa.fl_str_mv |
978-3-030-86702-7 |
identifier_str_mv |
Morillo-Torres, D., Baena, M.T., Escobar, J.W., Romero-Conrado, A.R., Coronado-Hernández, J.R., Gatica, G. (2021). A Mixed-Integer Linear Programming Model for the Cutting Stock Problem in the Steel Industry. In: Figueroa-García, J.C., Díaz-Gutierrez, Y., Gaona-García, E.E., Orjuela-Cañón, A.D. (eds) Applied Computer Sciences in Engineering. WEA 2021. Communications in Computer and Information Science, vol 1431. Springer, Cham. https://doi.org/10.1007/978-3-030-86702-7_27 978-3-030-86701-0 10.1007/978-3-030-86702-7_27 Corporación Universidad de la Costa REDICUC - Repositorio CUC 978-3-030-86702-7 |
url |
https://hdl.handle.net/11323/9356 https://doi.org/10.1007/978-3-030-86702-7_27 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.spa.fl_str_mv |
Communications in Computer and Information Science; |
dc.relation.ispartofbook.spa.fl_str_mv |
Applied Computer Sciences in Engineering |
dc.relation.references.spa.fl_str_mv |
Benjaoran, V., Bhokha, S.: Three-step solutions for cutting stock problem of construction steel bars. KSCE J. Civ. Eng. 18(5), 1239–1247 (2014). https://doi.org/10.1007/s12205-014-0238-3 Benjaoran, V., Sooksil, N., Metham, M.: Effect of demand variations on steel bars cutting loss. Int. J. Constr. Manag. 19(2), 137–148 (2019). https://doi.org/10.1080/15623599.2017.1401258 Cheng, C.H., Feiring, B.R., Cheng, T.C.: The cutting stock problem - a survey. Int. J. Prod. Econ. 36(3), 291–305 (1994). https://doi.org/10.1016/0925-5273(94)00045-X Cherri, A.C., Arenales, M.N., Yanasse, H.H., Poldi, K.C., Gonçalves Vianna, A.C.: The one-dimensional cutting stock problem with usable leftovers - a survey. Eur. J. Oper. Res. 236(2), 395–402 (2014). https://doi.org/10.1016/j.ejor.2013.11.026 Cui, Y., Yang, Y.: A heuristic for the one-dimensional cutting stock problem with usable leftover. Eur. J. Oper. Res. 204(2), 245–250 (2010). https://doi.org/10.1016/j.ejor.2009.10.028 Dell’Amico, M., Furini, F., Iori, M.: A branch-and-price algorithm for the temporal bin packing problem. Comput. Oper. Res. 114, 104825 (2020). https://doi.org/10.1016/j.cor.2019.104825 Delorme, M., Iori, M.: Enhanced pseudo-polynomial formulations for bin packing and cutting stock problems. INFORMS J. Comput. 32(1), 101–119 (2020). https://doi.org/10.1287/IJOC.2018.0880 Dyckhoff, H.: New linear programming approach to the cutting stock problem. Oper. Res. 29(6), 1092–1104 (1981). https://doi.org/10.1287/opre.29.6.1092 Dyckhoff, H.: A typology of cutting and packing problems. Eur. J. Oper. Res. 44(2), 145–159 (1990). https://doi.org/10.1016/0377-2217(90)90350-K Filho, A.A., Moretti, A.C., Pato, M.V.: A comparative study of exact methods for the bi-objective integer one-dimensional cutting stock problem. J. Oper. Res. Soc. 69(1), 91–107 (2018). https://doi.org/10.1057/s41274-017-0214-7 Gilmore, P.C., Gomory, R.E.: A linear programming approach to the cutting stock problem-Part II. Oper. Res. 11(6), 863–888 (1963). https://doi.org/10.1287/opre.11.6.863 Golden, B.L.: Approaches to the cutting stock problem. AIIE Trans. 8(2), 265–274 (1976). https://doi.org/10.1080/05695557608975076 Jahromi, M.H., Tavakkoli-Moghaddam, R., Makui, A., Shamsi, A.: Solving an one-dimensional cutting stock problem by simulated annealing and tabu search. J. Ind. Eng. Int. 8(1), 24 (2012). https://doi.org/10.1186/2251-712X-8-24 Kantorovich, L.V.: Mathematical methods of organizing and planning production. Manag. Sci. 6(4), 366–422 (1960). https://doi.org/10.1287/mnsc.6.4.366 Lackes, R., Siepermann, M., Noll, T.: The problem of one-dimensionally cutting bars with alternative cutting lengths in the tubes rolling process. In: IEEE International Conference on Industrial Engineering and Engineering Management, pp. 1627–1631. IEEE Computer Society, Department of Business Information Management, Technische Universität Dortmund, Dortmund, Germany (2012). https://doi.org/10.1109/IEEM.2012.6838022 Lemos, F.K., Cherri, A.C., de Araujo, S.A.: The cutting stock problem with multiple manufacturing modes applied to a construction industry. Int. J. Prod. Res. 59(4), 1–19 (2020). https://doi.org/10.1080/00207543.2020.1720923 Maher, R.A., Melhem, N.N., Almutlaq, M.: Developing a control and management system for reinforcement steel-leftover in industrial factories. IFAC-PapersOnLine 52(13), 625–629 (2019). https://doi.org/10.1016/j.ifacol.2019.11.091 Moussavi Nadoushani, Z.S., Hammad, A.W., Xiao, J., Akbarnezhad, A.: Minimizing cutting wastes of reinforcing steel bars through optimizing lap splicing within reinforced concrete elements. Constr. Build. Mater. 185, 600–608 (2018). https://doi.org/10.1016/j.conbuildmat.2018.07.023 Pitombeira-Neto, A.R., Prata, B.d.A.: A matheuristic algorithm for the one-dimensional cutting stock and scheduling problem with heterogeneous orders. Top 28(1), 178–192 (2020). https://doi.org/10.1007/s11750-019-00531-3 Romero-Conrado, A.R., Coronado-Hernandez, J.R., Rius-Sorolla, G., García-Sabater, J.P.: A Tabu list-based algorithm for capacitated multilevel lot-sizing with alternate bills of materials and co-production environments. Appl. Sci. (Switzerland) 9(7), 1464 (2019). https://doi.org/10.3390/app9071464 Rothe, M., Reyer, M., Mathar, R.: Process optimization for cutting steel-plates. In: Liberatore, F., Parlier, G.H., Demange, M. (eds.) ICORES 2017 - Proceedings of the 6th International Conference on Operations Research and Enterprise Systems, vol. 2017-Janua, pp. 27–37. SCITEPRESS - Science and Technology Publications, Institute for Theoretical Information Technology, RWTH Aachen University, Kopernikusstraße 16, Aachen, 52074, Germany (2017). https://doi.org/10.5220/0006108400270037 Valério De Carvalho, J.M.: Exact solution of bin-packing problems using column generation and branch-and-bound. Ann. Oper. Res. 86(0), 629–659 (1999). https://doi.org/10.1023/a:1018952112615 Vance, P.H., Barnhart, C., Johnson, E.L., Nemhauser, G.L.: Solving binary cutting stock problems by column generation and branch-and-bound. Comput. Optim. Appl. 3(2), 111–130 (1994). https://doi.org/10.1007/BF01300970 Vanderbeck, F.: Computational study of a column generation algorithm for bin packing and cutting stock problems. Math. Program. Ser. B 86(3), 565–594 (1999). https://doi.org/10.1007/s101070050105 Varela, R., Vela, C.R., Puente, J., Sierra, M., González-Rodríguez, I.: An effective solution for a real cutting stock problem in manufacturing plastic rolls. Ann. Oper. Res. 166(1), 125–146 (2009). https://doi.org/10.1007/s10479-008-0407-1 Wäscher, G., Haußner, H., Schumann, H.: An improved typology of cutting and packing problems. Eur. J. Oper. Res. 183(3), 1109–1130 (2007). https://doi.org/10.1016/j.ejor.2005.12.047 Yang, C.T., Sung, T.C., Weng, W.C.: An improved tabu search approach with mixed objective function for one-dimensional cutting stock problems. Adv. Eng. Softw. 37(8), 502–513 (2006). https://doi.org/10.1016/j.advengsoft.2006.01.005 |
dc.relation.citationendpage.spa.fl_str_mv |
326 |
dc.relation.citationstartpage.spa.fl_str_mv |
315 |
dc.rights.spa.fl_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) © 2021 Springer Nature Switzerland AG |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) © 2021 Springer Nature Switzerland AG https://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
1 página |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Springer, Cham |
dc.publisher.place.spa.fl_str_mv |
Switzerland |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://link.springer.com/chapter/10.1007/978-3-030-86702-7_27 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/8434e9d0-726c-4960-afdb-67365c7ff48e/download https://repositorio.cuc.edu.co/bitstreams/3aebd9fc-a6a4-4814-afce-2656c820da99/download https://repositorio.cuc.edu.co/bitstreams/3db84944-e632-4a1f-82d0-42e924b9a292/download https://repositorio.cuc.edu.co/bitstreams/a86a95ad-7b68-4be3-b2ad-9cb78799cc3d/download |
bitstream.checksum.fl_str_mv |
6e51da334e64e8b95ccf91c079b8eaf7 e30e9215131d99561d40d6b0abbe9bad e4fe3a21f35c21bcc0a4bfa79da8934e 3461071ffa4e0f068961e04f5f32cb84 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760711064354816 |
spelling |
Morillo-Torres, DanielTorres Baena, MauricioEscobar, John WilmerRomero-Conrado, Alfonso R.Romero-Conrado, Alfonso R.Gustavo, Gatica2022-07-11T13:31:01Z2022-07-11T13:31:01Z2021Morillo-Torres, D., Baena, M.T., Escobar, J.W., Romero-Conrado, A.R., Coronado-Hernández, J.R., Gatica, G. (2021). A Mixed-Integer Linear Programming Model for the Cutting Stock Problem in the Steel Industry. In: Figueroa-García, J.C., Díaz-Gutierrez, Y., Gaona-García, E.E., Orjuela-Cañón, A.D. (eds) Applied Computer Sciences in Engineering. WEA 2021. Communications in Computer and Information Science, vol 1431. Springer, Cham. https://doi.org/10.1007/978-3-030-86702-7_27978-3-030-86701-0https://hdl.handle.net/11323/9356https://doi.org/10.1007/978-3-030-86702-7_2710.1007/978-3-030-86702-7_27Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/978-3-030-86702-7A mixed-integer linear programming (MILP) model is proposed for solving a one dimension cutting stock problem (1D-CSP) in the steel industry. A case study of a metallurgical company is presented and the objective is to minimize waste in the cutting process of steel bars, considering inventory constraints and the potential use of the resulting leftovers. The computational results showed that an optimal solution was always found with an average improvement in waste reduction of 80%. There was no significant difference when comparing results between the complete model and the model without inventory constraints.1 páginaapplication/pdfengSpringer, ChamSwitzerlandCommunications in Computer and Information Science;Applied Computer Sciences in EngineeringBenjaoran, V., Bhokha, S.: Three-step solutions for cutting stock problem of construction steel bars. KSCE J. Civ. Eng. 18(5), 1239–1247 (2014). https://doi.org/10.1007/s12205-014-0238-3Benjaoran, V., Sooksil, N., Metham, M.: Effect of demand variations on steel bars cutting loss. Int. J. Constr. Manag. 19(2), 137–148 (2019). https://doi.org/10.1080/15623599.2017.1401258Cheng, C.H., Feiring, B.R., Cheng, T.C.: The cutting stock problem - a survey. Int. J. Prod. Econ. 36(3), 291–305 (1994). https://doi.org/10.1016/0925-5273(94)00045-XCherri, A.C., Arenales, M.N., Yanasse, H.H., Poldi, K.C., Gonçalves Vianna, A.C.: The one-dimensional cutting stock problem with usable leftovers - a survey. Eur. J. Oper. Res. 236(2), 395–402 (2014). https://doi.org/10.1016/j.ejor.2013.11.026Cui, Y., Yang, Y.: A heuristic for the one-dimensional cutting stock problem with usable leftover. Eur. J. Oper. Res. 204(2), 245–250 (2010). https://doi.org/10.1016/j.ejor.2009.10.028Dell’Amico, M., Furini, F., Iori, M.: A branch-and-price algorithm for the temporal bin packing problem. Comput. Oper. Res. 114, 104825 (2020). https://doi.org/10.1016/j.cor.2019.104825Delorme, M., Iori, M.: Enhanced pseudo-polynomial formulations for bin packing and cutting stock problems. INFORMS J. Comput. 32(1), 101–119 (2020). https://doi.org/10.1287/IJOC.2018.0880Dyckhoff, H.: New linear programming approach to the cutting stock problem. Oper. Res. 29(6), 1092–1104 (1981). https://doi.org/10.1287/opre.29.6.1092Dyckhoff, H.: A typology of cutting and packing problems. Eur. J. Oper. Res. 44(2), 145–159 (1990). https://doi.org/10.1016/0377-2217(90)90350-KFilho, A.A., Moretti, A.C., Pato, M.V.: A comparative study of exact methods for the bi-objective integer one-dimensional cutting stock problem. J. Oper. Res. Soc. 69(1), 91–107 (2018). https://doi.org/10.1057/s41274-017-0214-7Gilmore, P.C., Gomory, R.E.: A linear programming approach to the cutting stock problem-Part II. Oper. Res. 11(6), 863–888 (1963). https://doi.org/10.1287/opre.11.6.863Golden, B.L.: Approaches to the cutting stock problem. AIIE Trans. 8(2), 265–274 (1976). https://doi.org/10.1080/05695557608975076Jahromi, M.H., Tavakkoli-Moghaddam, R., Makui, A., Shamsi, A.: Solving an one-dimensional cutting stock problem by simulated annealing and tabu search. J. Ind. Eng. Int. 8(1), 24 (2012). https://doi.org/10.1186/2251-712X-8-24Kantorovich, L.V.: Mathematical methods of organizing and planning production. Manag. Sci. 6(4), 366–422 (1960). https://doi.org/10.1287/mnsc.6.4.366Lackes, R., Siepermann, M., Noll, T.: The problem of one-dimensionally cutting bars with alternative cutting lengths in the tubes rolling process. In: IEEE International Conference on Industrial Engineering and Engineering Management, pp. 1627–1631. IEEE Computer Society, Department of Business Information Management, Technische Universität Dortmund, Dortmund, Germany (2012). https://doi.org/10.1109/IEEM.2012.6838022Lemos, F.K., Cherri, A.C., de Araujo, S.A.: The cutting stock problem with multiple manufacturing modes applied to a construction industry. Int. J. Prod. Res. 59(4), 1–19 (2020). https://doi.org/10.1080/00207543.2020.1720923Maher, R.A., Melhem, N.N., Almutlaq, M.: Developing a control and management system for reinforcement steel-leftover in industrial factories. IFAC-PapersOnLine 52(13), 625–629 (2019). https://doi.org/10.1016/j.ifacol.2019.11.091Moussavi Nadoushani, Z.S., Hammad, A.W., Xiao, J., Akbarnezhad, A.: Minimizing cutting wastes of reinforcing steel bars through optimizing lap splicing within reinforced concrete elements. Constr. Build. Mater. 185, 600–608 (2018). https://doi.org/10.1016/j.conbuildmat.2018.07.023Pitombeira-Neto, A.R., Prata, B.d.A.: A matheuristic algorithm for the one-dimensional cutting stock and scheduling problem with heterogeneous orders. Top 28(1), 178–192 (2020). https://doi.org/10.1007/s11750-019-00531-3Romero-Conrado, A.R., Coronado-Hernandez, J.R., Rius-Sorolla, G., García-Sabater, J.P.: A Tabu list-based algorithm for capacitated multilevel lot-sizing with alternate bills of materials and co-production environments. Appl. Sci. (Switzerland) 9(7), 1464 (2019). https://doi.org/10.3390/app9071464Rothe, M., Reyer, M., Mathar, R.: Process optimization for cutting steel-plates. In: Liberatore, F., Parlier, G.H., Demange, M. (eds.) ICORES 2017 - Proceedings of the 6th International Conference on Operations Research and Enterprise Systems, vol. 2017-Janua, pp. 27–37. SCITEPRESS - Science and Technology Publications, Institute for Theoretical Information Technology, RWTH Aachen University, Kopernikusstraße 16, Aachen, 52074, Germany (2017). https://doi.org/10.5220/0006108400270037Valério De Carvalho, J.M.: Exact solution of bin-packing problems using column generation and branch-and-bound. Ann. Oper. Res. 86(0), 629–659 (1999). https://doi.org/10.1023/a:1018952112615Vance, P.H., Barnhart, C., Johnson, E.L., Nemhauser, G.L.: Solving binary cutting stock problems by column generation and branch-and-bound. Comput. Optim. Appl. 3(2), 111–130 (1994). https://doi.org/10.1007/BF01300970Vanderbeck, F.: Computational study of a column generation algorithm for bin packing and cutting stock problems. Math. Program. Ser. B 86(3), 565–594 (1999). https://doi.org/10.1007/s101070050105Varela, R., Vela, C.R., Puente, J., Sierra, M., González-Rodríguez, I.: An effective solution for a real cutting stock problem in manufacturing plastic rolls. Ann. Oper. Res. 166(1), 125–146 (2009). https://doi.org/10.1007/s10479-008-0407-1Wäscher, G., Haußner, H., Schumann, H.: An improved typology of cutting and packing problems. Eur. J. Oper. Res. 183(3), 1109–1130 (2007). https://doi.org/10.1016/j.ejor.2005.12.047Yang, C.T., Sung, T.C., Weng, W.C.: An improved tabu search approach with mixed objective function for one-dimensional cutting stock problems. Adv. Eng. Softw. 37(8), 502–513 (2006). https://doi.org/10.1016/j.advengsoft.2006.01.005326315Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)© 2021 Springer Nature Switzerland AGhttps://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2A mixed-integer linear programming model for the cutting stock problem in the steel industryCapítulo - Parte de Librohttp://purl.org/coar/resource_type/c_3248Textinfo:eu-repo/semantics/bookParthttp://purl.org/redcol/resource_type/CAP_LIBhttp://purl.org/coar/version/c_b1a7d7d4d402bccehttps://link.springer.com/chapter/10.1007/978-3-030-86702-7_27Cutting stock problemMixed-integer linear programmingSteel barsIndustrial applicationPublicationORIGINALA Mixed-Integer Linear Programming Model for the Cutting Stock Problem in the Steel Industry.pdfA Mixed-Integer Linear Programming Model for the Cutting Stock Problem in the Steel Industry.pdfapplication/pdf55312https://repositorio.cuc.edu.co/bitstreams/8434e9d0-726c-4960-afdb-67365c7ff48e/download6e51da334e64e8b95ccf91c079b8eaf7MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/3aebd9fc-a6a4-4814-afce-2656c820da99/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTA Mixed-Integer Linear Programming Model for the Cutting Stock Problem in the Steel Industry.pdf.txtA Mixed-Integer Linear Programming Model for the Cutting Stock Problem in the Steel Industry.pdf.txttext/plain988https://repositorio.cuc.edu.co/bitstreams/3db84944-e632-4a1f-82d0-42e924b9a292/downloade4fe3a21f35c21bcc0a4bfa79da8934eMD53THUMBNAILA Mixed-Integer Linear Programming Model for the Cutting Stock Problem in the Steel Industry.pdf.jpgA Mixed-Integer Linear Programming Model for the Cutting Stock Problem in the Steel Industry.pdf.jpgimage/jpeg10532https://repositorio.cuc.edu.co/bitstreams/a86a95ad-7b68-4be3-b2ad-9cb78799cc3d/download3461071ffa4e0f068961e04f5f32cb84MD5411323/9356oai:repositorio.cuc.edu.co:11323/93562024-09-17 10:45:17.289https://creativecommons.org/licenses/by-nc-sa/4.0/Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |