Detection of atmospheric aerosols and terrestrial nanoparticles collected in a populous city in southern Brazil
The main objective of this study is to analyze hazardous elements in nanoparticles (NPs) (smaller than 100 nm) and ultrafne particles (smaller than 1 µm) in Porto Alegre City, southern Brazil using a self-made passive sampler and Sentinel-3B SYN satellite images in 32 collection points. The Aerosol...
- Autores:
-
Bortoluzzi, Marluse Guedes
Neckel, Alcindo
William Bodah, Brian
Tibério Cardoso, Grace
Oliveira, Marcos L. S.
Carollo Toscan, Paloma
Stolfo Maculan, Laércio
Lozano, Liliana P.
Bodah, Eliane Thaines
Silva, Luis F. O.
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2023
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/13542
- Acceso en línea:
- https://hdl.handle.net/11323/13542
https://repositorio.cuc.edu.co/
- Palabra clave:
- Nanoparticles
Ultrafne particulates
Atmospheric aerosols
Future projects
Global scale
- Rights
- openAccess
- License
- Atribución 4.0 Internacional (CC BY 4.0)
id |
RCUC2_fa95358f9407962906bcc6ada560cd1b |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/13542 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Detection of atmospheric aerosols and terrestrial nanoparticles collected in a populous city in southern Brazil |
title |
Detection of atmospheric aerosols and terrestrial nanoparticles collected in a populous city in southern Brazil |
spellingShingle |
Detection of atmospheric aerosols and terrestrial nanoparticles collected in a populous city in southern Brazil Nanoparticles Ultrafne particulates Atmospheric aerosols Future projects Global scale |
title_short |
Detection of atmospheric aerosols and terrestrial nanoparticles collected in a populous city in southern Brazil |
title_full |
Detection of atmospheric aerosols and terrestrial nanoparticles collected in a populous city in southern Brazil |
title_fullStr |
Detection of atmospheric aerosols and terrestrial nanoparticles collected in a populous city in southern Brazil |
title_full_unstemmed |
Detection of atmospheric aerosols and terrestrial nanoparticles collected in a populous city in southern Brazil |
title_sort |
Detection of atmospheric aerosols and terrestrial nanoparticles collected in a populous city in southern Brazil |
dc.creator.fl_str_mv |
Bortoluzzi, Marluse Guedes Neckel, Alcindo William Bodah, Brian Tibério Cardoso, Grace Oliveira, Marcos L. S. Carollo Toscan, Paloma Stolfo Maculan, Laércio Lozano, Liliana P. Bodah, Eliane Thaines Silva, Luis F. O. |
dc.contributor.author.none.fl_str_mv |
Bortoluzzi, Marluse Guedes Neckel, Alcindo William Bodah, Brian Tibério Cardoso, Grace Oliveira, Marcos L. S. Carollo Toscan, Paloma Stolfo Maculan, Laércio Lozano, Liliana P. Bodah, Eliane Thaines Silva, Luis F. O. |
dc.subject.proposal.eng.fl_str_mv |
Nanoparticles Ultrafne particulates Atmospheric aerosols Future projects Global scale |
topic |
Nanoparticles Ultrafne particulates Atmospheric aerosols Future projects Global scale |
description |
The main objective of this study is to analyze hazardous elements in nanoparticles (NPs) (smaller than 100 nm) and ultrafne particles (smaller than 1 µm) in Porto Alegre City, southern Brazil using a self-made passive sampler and Sentinel-3B SYN satellite images in 32 collection points. The Aerosol Optical Thickness proportion (T550) identifcation was conducted using images of the Sentinel-3B SYN satellite at 634 points sampled in 2019, 2020, 2021, and 2022. Focused ion beam scanning electron microscopy analyses were performed to identify chemical elements present in NPs and ultrafne particles, followed by single-stage cascade impactor to be processed by high-resolution transmission electron microscopy. This process was coupled with energy-dispersive X-ray spectroscopy and later analysis via secondary ion mass spectrometry. Data was acquired from Sentinel-3B SYN images, normalized to a standard mean of 0.83 µg/mg, at moderate spatial resolution (260 m), and modeled in the Sentinel Application Platform (SNAP) software v.8.0. Statistical matrix data was generated in the JASP software (Jefreys’s Amazing Statistics Program) v.0.14.1.0 followed by a K-means cluster analysis. The results demonstrate the presence of between 1 and 100 nm particles of the following chemical elements: Si, Al, K, Mg, P, and Ti. Many people go through these areas daily and may inhale or absorb these elements that can harm human health. In the Sentinel-3B SYN satellite images, the sum of squares in cluster 6 is 168,265 and in cluster 7 a total of 21,583. The use of images from the Sentinel-3B SYN satellite to obtain T550 levels is of great importance as it reveals that atmospheric pollution can move through air currents contaminating large areas on a global scale. |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023-12-12 |
dc.date.accessioned.none.fl_str_mv |
2024-10-25T22:35:16Z |
dc.date.available.none.fl_str_mv |
2024-10-25T22:35:16Z |
dc.type.none.fl_str_mv |
Artículo de revista |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.none.fl_str_mv |
Text |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Bortoluzzi, M.G., Neckel, A., Bodah, B.W. et al. Detection of atmospheric aerosols and terrestrial nanoparticles collected in a populous city in southern Brazil. Environ Sci Pollut Res 31, 3526–3544 (2024). https://doi-org.ezproxy.cuc.edu.co/10.1007/s11356-023-31414-7 |
dc.identifier.issn.none.fl_str_mv |
0944-1344 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/13542 |
dc.identifier.doi.none.fl_str_mv |
10.1007/s11356-023-31414-7 |
dc.identifier.eissn.none.fl_str_mv |
1614-7499 |
dc.identifier.instname.none.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.none.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.none.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Bortoluzzi, M.G., Neckel, A., Bodah, B.W. et al. Detection of atmospheric aerosols and terrestrial nanoparticles collected in a populous city in southern Brazil. Environ Sci Pollut Res 31, 3526–3544 (2024). https://doi-org.ezproxy.cuc.edu.co/10.1007/s11356-023-31414-7 0944-1344 10.1007/s11356-023-31414-7 1614-7499 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/13542 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.none.fl_str_mv |
Environmental science and pollution research |
dc.relation.references.none.fl_str_mv |
Aarzoo N, Nidhi N, Samim M (2022) Palladium nanoparticles as emerging pollutants from motor vehicles: an in-depth review on distribution, uptake and toxicological efects in occupational and living environment. Sci Total Environ 823:153787. https://doi. org/10.1016/j.scitotenv.2022.153787 Abdillah SF, Wang YF (2023) Ambient ultrafne particle (PM0.1): sources, characteristics, measurements and exposure implications on human health. Environ Res 218:115061. https://doi.org/ 10.1016/j.envres.2022.115061 Akhbarizadeh R, Dobaradaran S, Torkmahalleh MA, Saeedi R, Aibaghi R, Ghasemi F (2021) Suspended fne particulate matter (PM2.5), microplastics (MPs), and polycyclic aromatic hydrocarbons (PAHs) in air: their possible relationships and health implications. Environ Res 192:110339. https://doi.org/10.1016/j.envres. 2020.110339 Alderton D (2021) X-Ray difraction (XRD). Encycl Geol 520–531. https://doi.org/10.1016/b978-0-08-102908-4.00178-8 Alencar W, Da Silva JAP, De Oliveira F, Ghosh A, Vasconcelos DFP, Da Silva JAP, De Freitas CM, De Moura T, Rufno F, Freire P (2022) Vibrational spectroscopy, X-ray diffraction and EDS applied to reveal the fossilization pathways of fossil shells from the Jandaíra Formation, Upper Cretaceous Northeast Brazil. Vib Spectrosc 123:103430. https://doi.org/10.1016/j.vibspec.2022. 103430 ARL (NOAA Air Resources Laboratory) (2023) Real-time Environmental Applications and Display sYstem. https://www.ready.noaa. gov/index.php. (Accessed 27 November 2023) Balch WM, Mitchell C (2023) Remote sensing algorithms for particulate inorganic carbon (PIC) and the global cycle of PIC. Earth-Sci Rev 239:104363. https://doi.org/10.1016/j.earscirev.2023.104363 Ballikaya P, Marshall J, Cherubini P (2022) Can tree-ring chemistry be used to monitor atmospheric nanoparticle contamination over time? Atmos Environ 268:118781. https://doi.org/10.1016/j.atmos env.2021.118781 Bartholdi JJ, Goldsman P (2004) The vertex-adjacency dual of a triangulated irregular network has a Hamiltonian cycle. Oper Res Lett 32(4):304–308. https://doi.org/10.1016/j.orl.2003.11.005 Batool F, Hennig C (2021) Clustering with the average silhouette width. Comput Stat Data Anal 158:107190. https://doi.org/10. 1016/j.csda.2021.107190 Bodah BW, Neckel A, Maculan LS, Milanes CB, Korcelski C, Ramírez O, Mendez-Espinosa JF, Bodah ET, Oliveira ML (2022) Sentinel5P TROPOMI satellite application for NO2 and CO studies aiming at environmental valuation. J Clean Prod 357:131960. https:// doi.org/10.1016/j.jclepro.2022.131960 Borrego C, Monteiro A, Ferreira J, Moraes M, Carvalho A, Ribeiro I, Miranda A, Moreira D (2010) Modelling the photochemical pollution over the metropolitan area of Porto Alegre, Brazil. Atmos Environ 44(3):370–380. https://doi.org/10.1016/j.atmosenv.2009. 10.027 Brunner N, Mayrpeter G, Kühleitner M (2022) Parameter estimation of the Solow-Swan fundamental diferential equation. Heliyon 8(10):e10816. https://doi.org/10.1016/j.heliyon.2022.e10816 Cappelletti D, Petroselli C, Mateos D, Herreras M, Ferrero L, Losi N, Gregorič A, Frangipani C, La Porta G, Lonardi M, Chernov D, Dekhtyareva A (2022) Vertical profles of black carbon and nanoparticles pollutants measured by a tethered balloon in Longyearbyen (Svalbard islands). Atmos Environ 290:119373. https:// doi.org/10.1016/j.atmosenv.2022.119373 Che W, Zhang Y, Lin C, Fung YH, Fung JCH, Lau AK (2022) Impacts of pollution heterogeneity on population exposure in dense urban areas using ultra-fne resolution air quality data. J Environ Sci 125:513–523. https://doi.org/10.1016/j.jes.2022.02.041 Dal Moro L, Maculan LS, Neckel A, De Vargas Mores G, Pivoto D, Bodah ET, Bodah BW, Oliveira ML (2021) Geotechnologies applied to the analysis of buildings involved in the production of poultry and swine to the integrated food safety system and environment. J Environ Chem Eng 9(6):106475. https://doi.org/ 10.1016/j.jece.2021.106475 ESA (European Space Agency) (2023a) SENTINEL-3 OLCI introduction. https://sentinels.copernicus.eu/fr/web/sentinel/user-guides/ sentinel-3-olci. (Accessed 28 January 2023) ESA (European Space Agency) (2023b) SENTINEL-3 OLCI Resolutions. https://sentinels.copernicus.eu/fr/web/sentinel/user-guides/ sentinel-3-olci/resolutions. (Accessed 29 January 2023) ESA (European Space Agency) (2023c) SENTINEL-3 OLCI Level-2 Water Product Type. https://sentinels.copernicus.eu/fr/web/ sentinel/user-guides/sentinel-3-olci/product-types/level-2-water. (Accessed 30 January 2023) Guleria RP, Chand K (2020) Emerging patterns in global and regional aerosol characteristics: a study based on satellite remote sensors. J Atmos Sol-Terr Phys 197:105177. https://doi.org/10.1016/j.jastp. 2019.105177 Hamdan AM, Lubis SS, Nazla CT, Jaswita D, Maulida Z, Munandar A, Hamdi H, Ardiansyah R, Khairuzzaman H (2023) Magnetic susceptibilities of suspended sediment and microplastic abundance in a tropical volcanic estuary. Reg Stud Mar Sci 61:102927. https:// doi.org/10.1016/j.rsma.2023.102927 Herrera LK, Videla HA (2009) Surface analysis and materials characterization for the study of biodeterioration and weathering efects on cultural property. Int Biodeterior 63(7):813–822. https://doi. org/10.1016/j.ibiod.2009.05.002 Huaji Z, Bai J, Wang Y, Ren J, Yang X, Jiao L (2023) Deep radio signal clustering with interpretability analysis based on saliency map. Digit Commun Netw 19:1–16. https://doi.org/10.1016/j. dcan.2023.01.010 IBGE. Brazilian Institute of Geography and Statistics (2023) Cities and states of Brazil. Demographic Data. https://cidades.ibge.gov.br/. (Accessed 1 March 2023) INMET. National Institute of Meteorology (2023) Annual historical data. https://portal.inmet.gov.br/dadoshistoricos. (Accessed 15 March 2023) INPE. Center for Weather Forecasting and Climate Studies (2022) Monthly and seasonal evolution of rain. In: <http://clima1.cptec. inpe.br/evolucao/pt>. (Accessed 26 March 2022) Jia H, Wang G, Tang W, Song D, Wang X, Hong J, Zhang Z (2020) An optimized approach using cryofxation for high-resolution 3D analysis by FIB-SEM. J Struct Biol 212(1):107600. https://doi. org/10.1016/j.jsb.2020.107600 Kariyam N, Abdurakhman N, Efendie AR (2023) A medoid-based deviation ratio index to determine the number of clusters in a dataset. MethodsX 102084. https://doi.org/10.1016/j.mex.2023. 102084 Ketzel M, Frohn LM, Christensen JH, Brandt J, Massling A, Andersen CT, Im U, Jensen SS, Khan J, Nielsen O, Plejdrup MS, Manders A, Van Der Gon HD, Kumar PS, Raaschou-Nielsen O (2021) Modelling ultrafne particle number concentrations at address resolution in Denmark from 1979 to 2018 - Part 2: Local and street scale modelling and evaluation. Atmos Environ 264:118633. https://doi.org/10.1016/j.atmosenv.2021.118633. Kumar P, Skouloudis AN, Bell M, Viana M, Carotta MC, Biskos G, Morawska L (2016) Real-time sensors for indoor air monitoring and challenges ahead in deploying them to urban buildings. Sci Total Environ 560–561:150–159. https://doi.org/10.1016/j.scito tenv.2016.04.032 Kumar P, Zavala-Reyes JC, Kalaiarasan G, Abubakar-Waziri H, Young G, Mudway I, Dilliway C, Lakhdar R, Mumby S, Kłosowski M, Pain C, Adcock IM, Watson JS, Sephton MA, Chung KF, Porter AE (2022) Characteristics of fne and ultrafne aerosols in the London underground. Sci Total Environ 858:159315. https://doi. org/10.1016/j.scitotenv.2022.159315 Leong W, Kelani R, Ahmad Z (2020) Prediction of air pollution index (API) using support vector machine (SVM). J Environ Chem Eng 8(3):103208. https://doi.org/10.1016/j.jece.2019.103208 Li W (2023) The efect of China’s driving restrictions on air pollution: the role of a policy announcement without a stated expiration. Resour Energy Econ 72:101360. https://doi.org/10.1016/j.resen eeco.2023.101360 Li H, Yang Z, Yan W (2022) An improved AIC onset-time picking method based on regression convolutional neural network. Mech Syst Signal Process 171:108867. https://doi.org/10.1016/j.ymssp. 2022.108867 Liang Y, Gui K, Che H, Li L, Zheng Y, Zhang X, Zhang X, Zhang P, Zhang X (2023) Changes in aerosol loading before, during and after the COVID-19 pandemic outbreak in China: efects of anthropogenic and natural aerosol. Sci Total Environ 857:159435. https://doi.org/10.1016/j.scitotenv.2022.159435 Lu S, Hao X, Liu D, Wang Q, Zhang W, Liu P, Zhang R, Yu S, Pan R, Wu M, Yonemochi S, Wang Q (2016) Mineralogical characterization of ambient fne/ultrafne particles emitted from Xuanwei C1 coal combustion. Atmos Res 169:17–23. https://doi.org/10.1016/j. atmosres.2015.09.020 Mandal J, Patel PP (2021) Gauging the efects of the COVID-19 pandemic lockdowns on atmospheric pollution content in select countries. Remote Sens Appl: Soc Environ 23:100551. https://doi.org/ 10.1016/j.rsase.2021.100551 Marcella S, Apicella B, Secondo A, Palestra F, Opromolla G, Ciardi R, Tedeschi V, Ferrara AL, Apicella B, Galdiero MR, Cristinziano L, Modestino L, Spadaro G, Fiorelli A, Lofredo S (2022) Size-based efects of anthropogenic ultrafne particles on activation of human lung macrophages. Environ Int 166:107395. https://doi.org/10. 1016/j.envint.2022.107395 Marmett B, Pires Dorneles G, Böek Carvalho R, Peres A, Roosevelt Torres Romão P, BarcosNunes R, Ramos Rhoden C (2021) Air pollution concentration and period of the day modulates inhalation of PM2.5 during moderate - and high-intensity interval exercise. Environ Res 194:110528. https://doi.org/10.1016/j.envres.2020. 110528 Maroni D, Cardoso GT, Neckel A, Maculan LS, Oliveira MLS, Bodah ET, Bodah BW, Santosh M (2021) Land surface temperature and vegetation index as a proxy to microclimate. J Environ Chem Eng 9(4):105796. https://doi.org/10.1016/j.jece.2021.105796 Martinello KD, Hower JC, Pinto DCGA, Schnorr CE, Dotto GL, Ramos CG (2022) Artisanal ceramic factories using wood combustion: a nanoparticles and human health study. Geosci Front 13(1):101151. https://doi.org/10.1016/j.gsf.2021.101151 Mehrjou A, Hosseini R, Araabi BN (2016) Improved Bayesian information criterion for mixture model selection. Pattern Recognit Lett 69:22–27. https://doi.org/10.1016/j.patrec.2015.10.004. Morillas H, Marcaida I, Maguregui M, Upasen S, Gallego-Cartagena E, Madariaga JM (2019) Identifcation of metals and metalloids as hazardous elements in PM2.5 and PM10 collected in a coastal environment afected by difuse contamination. J Clean Prod 226:369–378. https://doi.org/10.1016/j.jclepro.2019.04.063. Naghizadeh A, Metaxas DN (2020) Condensed silhouette: an optimized fltering process for cluster selection in K-means. Procedia Comput Sci 176:205–214. https://doi.org/10.1016/j.procs.2020. 08.022 Neckel A, Oliveira ML, Maculan LS, Bodah BW, Gonçalves AC, Silva LF (2023) Air pollution in central European capital (Budapest) via self-made passive samplers and Sentinel-3B SYN satellite images. Urban Clim 47:101384. https://doi.org/10.1016/j.uclim. 2022.101384 Novo R, Marocco P, Giorgi G, Lanzini A, Santarelli M, Mattiazzo G (2022) Planning the decarbonisation of energy systems: the importance of applying time series clustering to long-term models. Energy Convers Manag: X 15:100274. https://doi.org/10. 1016/j.ecmx.2022.100274 Oliveira ML, Neckel A, Pinto DCGA, Maculan LS, Zanchett MRD, Silva LF (2021) Air pollutants and their degradation of a historic building in the largest metropolitan area in Latin America. Chemosphere 277:130286. https://doi.org/10.1016/j.chemosphere. 2021.130286 Peng C, Deng C, Lei T, Zheng J, Zhao J, Wang D, Wu Z, Wang L, Chen Y, Liu M, Jiang J, Ye A, Ge M, Wang W (2023) Measurement of atmospheric nanoparticles: bridging the gap between gas-phase molecules and larger particles. J Environ Sci 123:183–202. https:// doi.org/10.1016/j.jes.2022.03.006 Perrotti TC, De Freitas NC, Alzamora M, Sanchez DR, Carvalho NM (2019) Green iron nanoparticles supported on amino-functionalized silica for removal of the dye methyl orange. J Environ Chem Eng 7(4):103237. https://doi.org/10.1016/j.jece.2019.103237 Pryshchepa O, Buszewski B (2020) Silver nanoparticles: synthesis, investigation techniques, and properties. Adv Colloid Interface Sci 284:102246. https://doi.org/10.1016/j.cis.2020.102246 Putra YC, Wijayanto AW, Chulafak GA (2022) Oil palm trees detection and counting on Microsoft Bing Maps Very High Resolution (VHR) satellite imagery and Unmanned Aerial Vehicles (UAV) data using image processing thresholding approach. Ecol Inform 72:101878. https://doi.org/10.1016/j.ecoinf.2022.101878 Quevedo CP, Jiménez-Millán J, Cifuentes GR, Jiménez-Espinosa R (2020) Clay mineral transformations in anthropic organic matterrich sediments under saline water environment. Efect on the detrital mineral assemblages in the Upper Chicamocha River Basin. Colombia. Appl Clay Sci 196:105776. https://doi.org/10.1016/j. clay.2020.105776 Qv H, Ma T, Tong X, Huang X, Ma Z, Feng J (2022) Clustering by centroid drift and boundary shrinkage. Pattern Recognit 129:108745. https://doi.org/10.1016/j.patcog.2022.108745 Racoviteanu A, Manley WF, Arnaud Y, Williams M (2007) Evaluating digital elevation models for glaciologic applications: an example from Nevado Coropuna, Peruvian Andes. Glob Planet Chang 59(1–4):110–125. https://doi.org/10.1016/j.gloplacha.2006.11. 036 Rohra H, Pipal AS, Satsangi P, Taneja A (2022) Revisiting the atmospheric particles: connecting lines and changing paradigms. Sci Total Environ 841:156676. https://doi.org/10.1016/j.scitotenv. 2022.156676 Romanovski V, Zhang L, Su X, Smorokov A, Kamarou M (2022) Gypsum and high quality binders derived from water treatment sediments and spent sulfuric acid: chemical engineering and environmental aspects. Chem Eng Res Des 184:224–232. https://doi. org/10.1016/j.cherd.2022.06.008 Saikia BK, Saikia J, Rabha S, Finkelman RB (2017) Ambient nanoparticles/nanominerals and hazardous elements from coal combustion activity: implications on energy challenges and health hazards. Geosci Front 9(3):863–875. https://doi.org/10.1016/j.gsf.2017. 11.013 Sánchez-Zapero J, Camacho F, Martinez-Sanchez E, Gorroño J, LeónTavares J, Benhadj I, Tote C, Swinnen E, Muñoz-Sabater J (2023) Global estimates of surface albedo from Sentinel-3 OLCI and SLSTR data for Copernicus Climate Change Service: algorithm and preliminary validation. Remote Sens EnviroN 287:113460. https://doi.org/10.1016/j.rse.2023.113460 SDE (Department of Economic Development) (2023) Numbers of opening and extinction of companies in RS, Brazil. https://jucis rs.rs.gov.br/numeros-de-abertura-e-extincao-de-empresas-no-rs. (Accessed 15 January 2023) Silva LF, Oliveira ML, Neckel A, Maculan LS, Batista CM, Bodah BW, Cambrussi LP, Dotto GL (2022) Efects of atmospheric pollutants on human health and deterioration of medieval historical architecture (North Africa, Tunisia). Urban Clim 41:101046. https://doi. org/10.1016/j.uclim.2021.101046 Sjövall P, Bake KD, Pomerantz AE, Lu X, Mitra-Kirtley S, Mullins OC (2021) Analysis of kerogens and model compounds by timeof-fight secondary ion mass spectrometry (TOF-SIMS). Fuel 286:119373. https://doi.org/10.1016/j.fuel.2020.119373 Tang Y, Hu S, Wang H (2020) Using P-Cl inorganic ultrafne aerosol particles to prevent spontaneous combustion of low-rank coal in an underground coal mine. Fire Saf J 115:103140. https://doi.org/ 10.1016/j.fresaf.2020.103140 Teixeira C, Fernandes CR, Ahern J (2022) Adaptive planting design and management framework for urban climate change adaptation and mitigation. Urban for Urban Green 70:127548. https://doi.org/ 10.1016/j.ufug.2022.127548 Tian X, Zhang H, Hu C, Yan Y (2023) Preparation of microfber composite nitrogen doped carbon nanotube membranes and their degradation properties of phenol in the structured fxed bed. J Environ Chem Eng 11(1):109255. https://doi.org/10.1016/j.jece. 2022.109255 Trejos EM, Silva LF, Hower JC, Flores EM, González C, Pachon JE, Aristizábal BH (2021) Volcanic emissions and atmospheric pollution: a study of nanoparticles. Geosci Front 12(2):746–755. https://doi.org/ 10.1016/j.gsf.2020.08.013 Vithanage M, Bandara P, Novo LAB, Kumar A, Ambade B, Naveendrakumar G, Ranagalage M, Magana-Arachchi D (2022) Deposition of trace metals associated with atmospheric particulate matter: environmental fate and health risk assessment. Chemosphere 303:135051. https://doi.org/10.1016/j.chemosphere.2022.135051 Vouitsis I, Portugal J, Kontses A, Karlsson HL, Faria M, Elihn K, Juárez-Facio AT, Amato F, Piña B, Samaras Z (2023) Transportrelated airborne nanoparticles: sources, diferent aerosol modes, and their toxicity. Atmos Environ 301:119698. https://doi.org/10. 1016/j.atmosenv.2023.119698 Wölk F, Yuan T, Kis-Katos K, Fu X (2023) A temporal–spatial analysis on the socioeconomic development of rural villages in Thailand and Vietnam based on satellite image data. Comput Commun 203:146–162. https://doi.org/10.1016/j.comcom.2023.02.017 Xu XP, Ni S, Fu M, Xin Z, Luo N, Weng W (2017) Numerical investigation of airfow, heat transfer and particle deposition for oral breathing in a realistic human upper airway model. J Therm Biol 70:53–63. https://doi.org/10.1016/j.jtherbio.2017.05.003 Xu Q, Ning L, Yuan T, Wu H (2023) Application of data mining combined with power data in assessment and prevention of regional atmospheric pollution. Energy Rep 9:3397–3405. https://doi.org/ 10.1016/j.egyr.2023.02.016 Yuan H, Van De Moortèle B, Epicier T (2021) Accurate post-mortem alignment for Focused Ion Beam and Scanning Electron Microscopy (FIB-SEM) tomography. Ultramicroscopy 228:113265. https://doi.org/10.1016/j.ultramic.2021.113265 Zequan C, Li G, He J, Yang Z, Wang J (2022) A new parallel adaptive structural reliability analysis method based on importance sampling and K-medoids clustering. Reliab Eng Syst Safety 218:108124. https://doi.org/10.1016/j.ress.2021.108124 Zhang X, Wang H, Wang S, Liu Y, Yu W, Wang J, Xu Q, Li X (2022) Oceanic internal wave amplitude retrieval from satellite images based on a data-driven transfer learning model. Remote Sens Environ 272:112940. https://doi.org/10.1016/j.rse.2022.112940 Zhao L, Wang J, Gao HO, Xie Y, Jiang R, Hu Q, Sun Y (2017) Evaluation of particulate matter concentration in Shanghai’s metro system and strategy for improvement. Transp Res d: Transp Environ 53:115–127. https://doi.org/10.1016/j.trd.2017.04.010 Zheng X, Xiong H, Gong J, Yue L (2017) A morphologically preserved multi-resolution TIN surface modeling and visualization method for virtual globes. ISPRS J Photogramm Remote Sens 129:41–54. https://doi.org/10.1016/j.isprsjprs.2017.04.013 Zhou C, Peng X, Li X, Qi K, Gao L (2023) Stable CuFeO/Kaolinbased catalytic particle electrode in 3D heterogeneous electroFenton system for orange G removal: synthesis, performance and mechanism. J Environ Chem Eng 11(2):109562. https://doi.org/ 10.1016/j.jece.2023.109562 Zhu H, Cheng T, Li X, Ye X (2022) Comparison and evaluation of multiple satellite aerosol products over China in diferent scenarios under a unifed criterion: preparation for consistent and high-quality dataset construction. Atmos Res 279:106374. https:// doi.org/10.1016/j.atmosres.2022.106374 Zhu L, Xie C, Chen L, Dai X, Zhou Y, Pan H, Tian K (2023) Transport of microplastics in the body and interaction with biological barriers, and controlling of microplastics pollution. Ecotoxicol Environ Saf 255:114818. https://doi.org/10.1016/j.ecoenv.2023.114818 Zoheir B, Emam A, El-Wahed MAA, Soliman N (2019) Gold endowment in the evolution of the Allaqi-Heiani suture, Egypt: a synthesis of geological, structural, and space-borne imagery data. Ore Geol Rev 110:102938. https://doi.org/10.1016/j.oregeorev. 2019.102938 Zorzi CGC, Neckel A, Maculan LS, Cardoso GT, Moro LD, Savio AAD, Carrasco LD, Oliveira ML, Bodah ET, Bodah BW (2022) Geo-environmental parametric 3D models of SARS-CoV-2 virus circulation in hospital ventilation systems. Geosci Front 13(6):101279. https://doi.org/10.1016/j.gsf.2021.101279 Zou Z, Yang X (2022) Volatile organic compound emissions from the human body: decoupling and comparison between whole-body skin and breath emissions. Build Environ 226:109713. https://doi. org/10.1016/j.buildenv.2022.109713 |
dc.relation.citationendpage.none.fl_str_mv |
3544 |
dc.relation.citationstartpage.none.fl_str_mv |
3526 |
dc.relation.citationvolume.none.fl_str_mv |
31 |
dc.rights.license.none.fl_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
19 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.coverage.country.none.fl_str_mv |
Brazil |
dc.publisher.none.fl_str_mv |
Springer nature |
dc.publisher.place.none.fl_str_mv |
Germany |
publisher.none.fl_str_mv |
Springer nature |
dc.source.none.fl_str_mv |
https://link-springer-com.ezproxy.cuc.edu.co/article/10.1007/s11356-023-31414-7#Sec1 |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/26f49d13-9dc8-48b8-8e0d-06bd14b709f2/download https://repositorio.cuc.edu.co/bitstreams/3c41d14b-053e-414a-8258-c63e33b3a521/download https://repositorio.cuc.edu.co/bitstreams/57e9738b-05b1-4908-9701-aeec90d7cd5e/download https://repositorio.cuc.edu.co/bitstreams/45ce94ef-7dd6-4002-89d2-cfb6ed1c0265/download |
bitstream.checksum.fl_str_mv |
73a5432e0b76442b22b026844140d683 51af48917744dd630bd5509dce9700f6 477fe0f2da0b5572814d34c6f924e42f 2e8c2ab6ea9777faa0f2497e21478c82 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166786174943232 |
spelling |
Atribución 4.0 Internacional (CC BY 4.0)© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Bortoluzzi, Marluse GuedesNeckel, AlcindoWilliam Bodah, BrianTibério Cardoso, GraceOliveira, Marcos L. S.Carollo Toscan, PalomaStolfo Maculan, LaércioLozano, Liliana P.Bodah, Eliane ThainesSilva, Luis F. O.2024-10-25T22:35:16Z2024-10-25T22:35:16Z2023-12-12Bortoluzzi, M.G., Neckel, A., Bodah, B.W. et al. Detection of atmospheric aerosols and terrestrial nanoparticles collected in a populous city in southern Brazil. Environ Sci Pollut Res 31, 3526–3544 (2024). https://doi-org.ezproxy.cuc.edu.co/10.1007/s11356-023-31414-70944-1344https://hdl.handle.net/11323/1354210.1007/s11356-023-31414-71614-7499Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The main objective of this study is to analyze hazardous elements in nanoparticles (NPs) (smaller than 100 nm) and ultrafne particles (smaller than 1 µm) in Porto Alegre City, southern Brazil using a self-made passive sampler and Sentinel-3B SYN satellite images in 32 collection points. The Aerosol Optical Thickness proportion (T550) identifcation was conducted using images of the Sentinel-3B SYN satellite at 634 points sampled in 2019, 2020, 2021, and 2022. Focused ion beam scanning electron microscopy analyses were performed to identify chemical elements present in NPs and ultrafne particles, followed by single-stage cascade impactor to be processed by high-resolution transmission electron microscopy. This process was coupled with energy-dispersive X-ray spectroscopy and later analysis via secondary ion mass spectrometry. Data was acquired from Sentinel-3B SYN images, normalized to a standard mean of 0.83 µg/mg, at moderate spatial resolution (260 m), and modeled in the Sentinel Application Platform (SNAP) software v.8.0. Statistical matrix data was generated in the JASP software (Jefreys’s Amazing Statistics Program) v.0.14.1.0 followed by a K-means cluster analysis. The results demonstrate the presence of between 1 and 100 nm particles of the following chemical elements: Si, Al, K, Mg, P, and Ti. Many people go through these areas daily and may inhale or absorb these elements that can harm human health. In the Sentinel-3B SYN satellite images, the sum of squares in cluster 6 is 168,265 and in cluster 7 a total of 21,583. The use of images from the Sentinel-3B SYN satellite to obtain T550 levels is of great importance as it reveals that atmospheric pollution can move through air currents contaminating large areas on a global scale.19 páginasapplication/pdfengSpringer natureGermanyhttps://link-springer-com.ezproxy.cuc.edu.co/article/10.1007/s11356-023-31414-7#Sec1Detection of atmospheric aerosols and terrestrial nanoparticles collected in a populous city in southern BrazilArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85BrazilEnvironmental science and pollution researchAarzoo N, Nidhi N, Samim M (2022) Palladium nanoparticles as emerging pollutants from motor vehicles: an in-depth review on distribution, uptake and toxicological efects in occupational and living environment. Sci Total Environ 823:153787. https://doi. org/10.1016/j.scitotenv.2022.153787Abdillah SF, Wang YF (2023) Ambient ultrafne particle (PM0.1): sources, characteristics, measurements and exposure implications on human health. Environ Res 218:115061. https://doi.org/ 10.1016/j.envres.2022.115061Akhbarizadeh R, Dobaradaran S, Torkmahalleh MA, Saeedi R, Aibaghi R, Ghasemi F (2021) Suspended fne particulate matter (PM2.5), microplastics (MPs), and polycyclic aromatic hydrocarbons (PAHs) in air: their possible relationships and health implications. Environ Res 192:110339. https://doi.org/10.1016/j.envres. 2020.110339Alderton D (2021) X-Ray difraction (XRD). Encycl Geol 520–531. https://doi.org/10.1016/b978-0-08-102908-4.00178-8Alencar W, Da Silva JAP, De Oliveira F, Ghosh A, Vasconcelos DFP, Da Silva JAP, De Freitas CM, De Moura T, Rufno F, Freire P (2022) Vibrational spectroscopy, X-ray diffraction and EDS applied to reveal the fossilization pathways of fossil shells from the Jandaíra Formation, Upper Cretaceous Northeast Brazil. Vib Spectrosc 123:103430. https://doi.org/10.1016/j.vibspec.2022. 103430ARL (NOAA Air Resources Laboratory) (2023) Real-time Environmental Applications and Display sYstem. https://www.ready.noaa. gov/index.php. (Accessed 27 November 2023)Balch WM, Mitchell C (2023) Remote sensing algorithms for particulate inorganic carbon (PIC) and the global cycle of PIC. Earth-Sci Rev 239:104363. https://doi.org/10.1016/j.earscirev.2023.104363Ballikaya P, Marshall J, Cherubini P (2022) Can tree-ring chemistry be used to monitor atmospheric nanoparticle contamination over time? Atmos Environ 268:118781. https://doi.org/10.1016/j.atmos env.2021.118781Bartholdi JJ, Goldsman P (2004) The vertex-adjacency dual of a triangulated irregular network has a Hamiltonian cycle. Oper Res Lett 32(4):304–308. https://doi.org/10.1016/j.orl.2003.11.005Batool F, Hennig C (2021) Clustering with the average silhouette width. Comput Stat Data Anal 158:107190. https://doi.org/10. 1016/j.csda.2021.107190Bodah BW, Neckel A, Maculan LS, Milanes CB, Korcelski C, Ramírez O, Mendez-Espinosa JF, Bodah ET, Oliveira ML (2022) Sentinel5P TROPOMI satellite application for NO2 and CO studies aiming at environmental valuation. J Clean Prod 357:131960. https:// doi.org/10.1016/j.jclepro.2022.131960Borrego C, Monteiro A, Ferreira J, Moraes M, Carvalho A, Ribeiro I, Miranda A, Moreira D (2010) Modelling the photochemical pollution over the metropolitan area of Porto Alegre, Brazil. Atmos Environ 44(3):370–380. https://doi.org/10.1016/j.atmosenv.2009. 10.027Brunner N, Mayrpeter G, Kühleitner M (2022) Parameter estimation of the Solow-Swan fundamental diferential equation. Heliyon 8(10):e10816. https://doi.org/10.1016/j.heliyon.2022.e10816Cappelletti D, Petroselli C, Mateos D, Herreras M, Ferrero L, Losi N, Gregorič A, Frangipani C, La Porta G, Lonardi M, Chernov D, Dekhtyareva A (2022) Vertical profles of black carbon and nanoparticles pollutants measured by a tethered balloon in Longyearbyen (Svalbard islands). Atmos Environ 290:119373. https:// doi.org/10.1016/j.atmosenv.2022.119373Che W, Zhang Y, Lin C, Fung YH, Fung JCH, Lau AK (2022) Impacts of pollution heterogeneity on population exposure in dense urban areas using ultra-fne resolution air quality data. J Environ Sci 125:513–523. https://doi.org/10.1016/j.jes.2022.02.041Dal Moro L, Maculan LS, Neckel A, De Vargas Mores G, Pivoto D, Bodah ET, Bodah BW, Oliveira ML (2021) Geotechnologies applied to the analysis of buildings involved in the production of poultry and swine to the integrated food safety system and environment. J Environ Chem Eng 9(6):106475. https://doi.org/ 10.1016/j.jece.2021.106475ESA (European Space Agency) (2023a) SENTINEL-3 OLCI introduction. https://sentinels.copernicus.eu/fr/web/sentinel/user-guides/ sentinel-3-olci. (Accessed 28 January 2023)ESA (European Space Agency) (2023b) SENTINEL-3 OLCI Resolutions. https://sentinels.copernicus.eu/fr/web/sentinel/user-guides/ sentinel-3-olci/resolutions. (Accessed 29 January 2023)ESA (European Space Agency) (2023c) SENTINEL-3 OLCI Level-2 Water Product Type. https://sentinels.copernicus.eu/fr/web/ sentinel/user-guides/sentinel-3-olci/product-types/level-2-water. (Accessed 30 January 2023)Guleria RP, Chand K (2020) Emerging patterns in global and regional aerosol characteristics: a study based on satellite remote sensors. J Atmos Sol-Terr Phys 197:105177. https://doi.org/10.1016/j.jastp. 2019.105177Hamdan AM, Lubis SS, Nazla CT, Jaswita D, Maulida Z, Munandar A, Hamdi H, Ardiansyah R, Khairuzzaman H (2023) Magnetic susceptibilities of suspended sediment and microplastic abundance in a tropical volcanic estuary. Reg Stud Mar Sci 61:102927. https:// doi.org/10.1016/j.rsma.2023.102927Herrera LK, Videla HA (2009) Surface analysis and materials characterization for the study of biodeterioration and weathering efects on cultural property. Int Biodeterior 63(7):813–822. https://doi. org/10.1016/j.ibiod.2009.05.002Huaji Z, Bai J, Wang Y, Ren J, Yang X, Jiao L (2023) Deep radio signal clustering with interpretability analysis based on saliency map. Digit Commun Netw 19:1–16. https://doi.org/10.1016/j. dcan.2023.01.010IBGE. Brazilian Institute of Geography and Statistics (2023) Cities and states of Brazil. Demographic Data. https://cidades.ibge.gov.br/. (Accessed 1 March 2023)INMET. National Institute of Meteorology (2023) Annual historical data. https://portal.inmet.gov.br/dadoshistoricos. (Accessed 15 March 2023)INPE. Center for Weather Forecasting and Climate Studies (2022) Monthly and seasonal evolution of rain. In: <http://clima1.cptec. inpe.br/evolucao/pt>. (Accessed 26 March 2022)Jia H, Wang G, Tang W, Song D, Wang X, Hong J, Zhang Z (2020) An optimized approach using cryofxation for high-resolution 3D analysis by FIB-SEM. J Struct Biol 212(1):107600. https://doi. org/10.1016/j.jsb.2020.107600Kariyam N, Abdurakhman N, Efendie AR (2023) A medoid-based deviation ratio index to determine the number of clusters in a dataset. MethodsX 102084. https://doi.org/10.1016/j.mex.2023. 102084Ketzel M, Frohn LM, Christensen JH, Brandt J, Massling A, Andersen CT, Im U, Jensen SS, Khan J, Nielsen O, Plejdrup MS, Manders A, Van Der Gon HD, Kumar PS, Raaschou-Nielsen O (2021) Modelling ultrafne particle number concentrations at address resolution in Denmark from 1979 to 2018 - Part 2: Local and street scale modelling and evaluation. Atmos Environ 264:118633. https://doi.org/10.1016/j.atmosenv.2021.118633.Kumar P, Skouloudis AN, Bell M, Viana M, Carotta MC, Biskos G, Morawska L (2016) Real-time sensors for indoor air monitoring and challenges ahead in deploying them to urban buildings. Sci Total Environ 560–561:150–159. https://doi.org/10.1016/j.scito tenv.2016.04.032Kumar P, Zavala-Reyes JC, Kalaiarasan G, Abubakar-Waziri H, Young G, Mudway I, Dilliway C, Lakhdar R, Mumby S, Kłosowski M, Pain C, Adcock IM, Watson JS, Sephton MA, Chung KF, Porter AE (2022) Characteristics of fne and ultrafne aerosols in the London underground. Sci Total Environ 858:159315. https://doi. org/10.1016/j.scitotenv.2022.159315Leong W, Kelani R, Ahmad Z (2020) Prediction of air pollution index (API) using support vector machine (SVM). J Environ Chem Eng 8(3):103208. https://doi.org/10.1016/j.jece.2019.103208Li W (2023) The efect of China’s driving restrictions on air pollution: the role of a policy announcement without a stated expiration. Resour Energy Econ 72:101360. https://doi.org/10.1016/j.resen eeco.2023.101360Li H, Yang Z, Yan W (2022) An improved AIC onset-time picking method based on regression convolutional neural network. Mech Syst Signal Process 171:108867. https://doi.org/10.1016/j.ymssp. 2022.108867Liang Y, Gui K, Che H, Li L, Zheng Y, Zhang X, Zhang X, Zhang P, Zhang X (2023) Changes in aerosol loading before, during and after the COVID-19 pandemic outbreak in China: efects of anthropogenic and natural aerosol. Sci Total Environ 857:159435. https://doi.org/10.1016/j.scitotenv.2022.159435Lu S, Hao X, Liu D, Wang Q, Zhang W, Liu P, Zhang R, Yu S, Pan R, Wu M, Yonemochi S, Wang Q (2016) Mineralogical characterization of ambient fne/ultrafne particles emitted from Xuanwei C1 coal combustion. Atmos Res 169:17–23. https://doi.org/10.1016/j. atmosres.2015.09.020Mandal J, Patel PP (2021) Gauging the efects of the COVID-19 pandemic lockdowns on atmospheric pollution content in select countries. Remote Sens Appl: Soc Environ 23:100551. https://doi.org/ 10.1016/j.rsase.2021.100551Marcella S, Apicella B, Secondo A, Palestra F, Opromolla G, Ciardi R, Tedeschi V, Ferrara AL, Apicella B, Galdiero MR, Cristinziano L, Modestino L, Spadaro G, Fiorelli A, Lofredo S (2022) Size-based efects of anthropogenic ultrafne particles on activation of human lung macrophages. Environ Int 166:107395. https://doi.org/10. 1016/j.envint.2022.107395Marmett B, Pires Dorneles G, Böek Carvalho R, Peres A, Roosevelt Torres Romão P, BarcosNunes R, Ramos Rhoden C (2021) Air pollution concentration and period of the day modulates inhalation of PM2.5 during moderate - and high-intensity interval exercise. Environ Res 194:110528. https://doi.org/10.1016/j.envres.2020. 110528Maroni D, Cardoso GT, Neckel A, Maculan LS, Oliveira MLS, Bodah ET, Bodah BW, Santosh M (2021) Land surface temperature and vegetation index as a proxy to microclimate. J Environ Chem Eng 9(4):105796. https://doi.org/10.1016/j.jece.2021.105796Martinello KD, Hower JC, Pinto DCGA, Schnorr CE, Dotto GL, Ramos CG (2022) Artisanal ceramic factories using wood combustion: a nanoparticles and human health study. Geosci Front 13(1):101151. https://doi.org/10.1016/j.gsf.2021.101151Mehrjou A, Hosseini R, Araabi BN (2016) Improved Bayesian information criterion for mixture model selection. Pattern Recognit Lett 69:22–27. https://doi.org/10.1016/j.patrec.2015.10.004.Morillas H, Marcaida I, Maguregui M, Upasen S, Gallego-Cartagena E, Madariaga JM (2019) Identifcation of metals and metalloids as hazardous elements in PM2.5 and PM10 collected in a coastal environment afected by difuse contamination. J Clean Prod 226:369–378. https://doi.org/10.1016/j.jclepro.2019.04.063.Naghizadeh A, Metaxas DN (2020) Condensed silhouette: an optimized fltering process for cluster selection in K-means. Procedia Comput Sci 176:205–214. https://doi.org/10.1016/j.procs.2020. 08.022Neckel A, Oliveira ML, Maculan LS, Bodah BW, Gonçalves AC, Silva LF (2023) Air pollution in central European capital (Budapest) via self-made passive samplers and Sentinel-3B SYN satellite images. Urban Clim 47:101384. https://doi.org/10.1016/j.uclim. 2022.101384Novo R, Marocco P, Giorgi G, Lanzini A, Santarelli M, Mattiazzo G (2022) Planning the decarbonisation of energy systems: the importance of applying time series clustering to long-term models. Energy Convers Manag: X 15:100274. https://doi.org/10. 1016/j.ecmx.2022.100274Oliveira ML, Neckel A, Pinto DCGA, Maculan LS, Zanchett MRD, Silva LF (2021) Air pollutants and their degradation of a historic building in the largest metropolitan area in Latin America. Chemosphere 277:130286. https://doi.org/10.1016/j.chemosphere. 2021.130286Peng C, Deng C, Lei T, Zheng J, Zhao J, Wang D, Wu Z, Wang L, Chen Y, Liu M, Jiang J, Ye A, Ge M, Wang W (2023) Measurement of atmospheric nanoparticles: bridging the gap between gas-phase molecules and larger particles. J Environ Sci 123:183–202. https:// doi.org/10.1016/j.jes.2022.03.006Perrotti TC, De Freitas NC, Alzamora M, Sanchez DR, Carvalho NM (2019) Green iron nanoparticles supported on amino-functionalized silica for removal of the dye methyl orange. J Environ Chem Eng 7(4):103237. https://doi.org/10.1016/j.jece.2019.103237Pryshchepa O, Buszewski B (2020) Silver nanoparticles: synthesis, investigation techniques, and properties. Adv Colloid Interface Sci 284:102246. https://doi.org/10.1016/j.cis.2020.102246Putra YC, Wijayanto AW, Chulafak GA (2022) Oil palm trees detection and counting on Microsoft Bing Maps Very High Resolution (VHR) satellite imagery and Unmanned Aerial Vehicles (UAV) data using image processing thresholding approach. Ecol Inform 72:101878. https://doi.org/10.1016/j.ecoinf.2022.101878Quevedo CP, Jiménez-Millán J, Cifuentes GR, Jiménez-Espinosa R (2020) Clay mineral transformations in anthropic organic matterrich sediments under saline water environment. Efect on the detrital mineral assemblages in the Upper Chicamocha River Basin. Colombia. Appl Clay Sci 196:105776. https://doi.org/10.1016/j. clay.2020.105776Qv H, Ma T, Tong X, Huang X, Ma Z, Feng J (2022) Clustering by centroid drift and boundary shrinkage. Pattern Recognit 129:108745. https://doi.org/10.1016/j.patcog.2022.108745Racoviteanu A, Manley WF, Arnaud Y, Williams M (2007) Evaluating digital elevation models for glaciologic applications: an example from Nevado Coropuna, Peruvian Andes. Glob Planet Chang 59(1–4):110–125. https://doi.org/10.1016/j.gloplacha.2006.11. 036Rohra H, Pipal AS, Satsangi P, Taneja A (2022) Revisiting the atmospheric particles: connecting lines and changing paradigms. Sci Total Environ 841:156676. https://doi.org/10.1016/j.scitotenv. 2022.156676Romanovski V, Zhang L, Su X, Smorokov A, Kamarou M (2022) Gypsum and high quality binders derived from water treatment sediments and spent sulfuric acid: chemical engineering and environmental aspects. Chem Eng Res Des 184:224–232. https://doi. org/10.1016/j.cherd.2022.06.008Saikia BK, Saikia J, Rabha S, Finkelman RB (2017) Ambient nanoparticles/nanominerals and hazardous elements from coal combustion activity: implications on energy challenges and health hazards. Geosci Front 9(3):863–875. https://doi.org/10.1016/j.gsf.2017. 11.013Sánchez-Zapero J, Camacho F, Martinez-Sanchez E, Gorroño J, LeónTavares J, Benhadj I, Tote C, Swinnen E, Muñoz-Sabater J (2023) Global estimates of surface albedo from Sentinel-3 OLCI and SLSTR data for Copernicus Climate Change Service: algorithm and preliminary validation. Remote Sens EnviroN 287:113460. https://doi.org/10.1016/j.rse.2023.113460SDE (Department of Economic Development) (2023) Numbers of opening and extinction of companies in RS, Brazil. https://jucis rs.rs.gov.br/numeros-de-abertura-e-extincao-de-empresas-no-rs. (Accessed 15 January 2023)Silva LF, Oliveira ML, Neckel A, Maculan LS, Batista CM, Bodah BW, Cambrussi LP, Dotto GL (2022) Efects of atmospheric pollutants on human health and deterioration of medieval historical architecture (North Africa, Tunisia). Urban Clim 41:101046. https://doi. org/10.1016/j.uclim.2021.101046Sjövall P, Bake KD, Pomerantz AE, Lu X, Mitra-Kirtley S, Mullins OC (2021) Analysis of kerogens and model compounds by timeof-fight secondary ion mass spectrometry (TOF-SIMS). Fuel 286:119373. https://doi.org/10.1016/j.fuel.2020.119373Tang Y, Hu S, Wang H (2020) Using P-Cl inorganic ultrafne aerosol particles to prevent spontaneous combustion of low-rank coal in an underground coal mine. Fire Saf J 115:103140. https://doi.org/ 10.1016/j.fresaf.2020.103140Teixeira C, Fernandes CR, Ahern J (2022) Adaptive planting design and management framework for urban climate change adaptation and mitigation. Urban for Urban Green 70:127548. https://doi.org/ 10.1016/j.ufug.2022.127548Tian X, Zhang H, Hu C, Yan Y (2023) Preparation of microfber composite nitrogen doped carbon nanotube membranes and their degradation properties of phenol in the structured fxed bed. J Environ Chem Eng 11(1):109255. https://doi.org/10.1016/j.jece. 2022.109255Trejos EM, Silva LF, Hower JC, Flores EM, González C, Pachon JE, Aristizábal BH (2021) Volcanic emissions and atmospheric pollution: a study of nanoparticles. Geosci Front 12(2):746–755. https://doi.org/ 10.1016/j.gsf.2020.08.013Vithanage M, Bandara P, Novo LAB, Kumar A, Ambade B, Naveendrakumar G, Ranagalage M, Magana-Arachchi D (2022) Deposition of trace metals associated with atmospheric particulate matter: environmental fate and health risk assessment. Chemosphere 303:135051. https://doi.org/10.1016/j.chemosphere.2022.135051Vouitsis I, Portugal J, Kontses A, Karlsson HL, Faria M, Elihn K, Juárez-Facio AT, Amato F, Piña B, Samaras Z (2023) Transportrelated airborne nanoparticles: sources, diferent aerosol modes, and their toxicity. Atmos Environ 301:119698. https://doi.org/10. 1016/j.atmosenv.2023.119698Wölk F, Yuan T, Kis-Katos K, Fu X (2023) A temporal–spatial analysis on the socioeconomic development of rural villages in Thailand and Vietnam based on satellite image data. Comput Commun 203:146–162. https://doi.org/10.1016/j.comcom.2023.02.017Xu XP, Ni S, Fu M, Xin Z, Luo N, Weng W (2017) Numerical investigation of airfow, heat transfer and particle deposition for oral breathing in a realistic human upper airway model. J Therm Biol 70:53–63. https://doi.org/10.1016/j.jtherbio.2017.05.003Xu Q, Ning L, Yuan T, Wu H (2023) Application of data mining combined with power data in assessment and prevention of regional atmospheric pollution. Energy Rep 9:3397–3405. https://doi.org/ 10.1016/j.egyr.2023.02.016Yuan H, Van De Moortèle B, Epicier T (2021) Accurate post-mortem alignment for Focused Ion Beam and Scanning Electron Microscopy (FIB-SEM) tomography. Ultramicroscopy 228:113265. https://doi.org/10.1016/j.ultramic.2021.113265Zequan C, Li G, He J, Yang Z, Wang J (2022) A new parallel adaptive structural reliability analysis method based on importance sampling and K-medoids clustering. Reliab Eng Syst Safety 218:108124. https://doi.org/10.1016/j.ress.2021.108124Zhang X, Wang H, Wang S, Liu Y, Yu W, Wang J, Xu Q, Li X (2022) Oceanic internal wave amplitude retrieval from satellite images based on a data-driven transfer learning model. Remote Sens Environ 272:112940. https://doi.org/10.1016/j.rse.2022.112940Zhao L, Wang J, Gao HO, Xie Y, Jiang R, Hu Q, Sun Y (2017) Evaluation of particulate matter concentration in Shanghai’s metro system and strategy for improvement. Transp Res d: Transp Environ 53:115–127. https://doi.org/10.1016/j.trd.2017.04.010Zheng X, Xiong H, Gong J, Yue L (2017) A morphologically preserved multi-resolution TIN surface modeling and visualization method for virtual globes. ISPRS J Photogramm Remote Sens 129:41–54. https://doi.org/10.1016/j.isprsjprs.2017.04.013Zhou C, Peng X, Li X, Qi K, Gao L (2023) Stable CuFeO/Kaolinbased catalytic particle electrode in 3D heterogeneous electroFenton system for orange G removal: synthesis, performance and mechanism. J Environ Chem Eng 11(2):109562. https://doi.org/ 10.1016/j.jece.2023.109562Zhu H, Cheng T, Li X, Ye X (2022) Comparison and evaluation of multiple satellite aerosol products over China in diferent scenarios under a unifed criterion: preparation for consistent and high-quality dataset construction. Atmos Res 279:106374. https:// doi.org/10.1016/j.atmosres.2022.106374Zhu L, Xie C, Chen L, Dai X, Zhou Y, Pan H, Tian K (2023) Transport of microplastics in the body and interaction with biological barriers, and controlling of microplastics pollution. Ecotoxicol Environ Saf 255:114818. https://doi.org/10.1016/j.ecoenv.2023.114818Zoheir B, Emam A, El-Wahed MAA, Soliman N (2019) Gold endowment in the evolution of the Allaqi-Heiani suture, Egypt: a synthesis of geological, structural, and space-borne imagery data. Ore Geol Rev 110:102938. https://doi.org/10.1016/j.oregeorev. 2019.102938Zorzi CGC, Neckel A, Maculan LS, Cardoso GT, Moro LD, Savio AAD, Carrasco LD, Oliveira ML, Bodah ET, Bodah BW (2022) Geo-environmental parametric 3D models of SARS-CoV-2 virus circulation in hospital ventilation systems. Geosci Front 13(6):101279. https://doi.org/10.1016/j.gsf.2021.101279Zou Z, Yang X (2022) Volatile organic compound emissions from the human body: decoupling and comparison between whole-body skin and breath emissions. Build Environ 226:109713. https://doi. org/10.1016/j.buildenv.2022.1097133544352631NanoparticlesUltrafne particulatesAtmospheric aerosolsFuture projectsGlobal scalePublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.cuc.edu.co/bitstreams/26f49d13-9dc8-48b8-8e0d-06bd14b709f2/download73a5432e0b76442b22b026844140d683MD51ORIGINALDetection of atmospheric aerosols and terrestrial nanoparticles.pdfDetection of atmospheric aerosols and terrestrial nanoparticles.pdfapplication/pdf3368343https://repositorio.cuc.edu.co/bitstreams/3c41d14b-053e-414a-8258-c63e33b3a521/download51af48917744dd630bd5509dce9700f6MD52TEXTDetection of atmospheric aerosols and terrestrial nanoparticles.pdf.txtDetection of atmospheric aerosols and terrestrial nanoparticles.pdf.txtExtracted texttext/plain83381https://repositorio.cuc.edu.co/bitstreams/57e9738b-05b1-4908-9701-aeec90d7cd5e/download477fe0f2da0b5572814d34c6f924e42fMD53THUMBNAILDetection of atmospheric aerosols and terrestrial nanoparticles.pdf.jpgDetection of atmospheric aerosols and terrestrial nanoparticles.pdf.jpgGenerated Thumbnailimage/jpeg13778https://repositorio.cuc.edu.co/bitstreams/45ce94ef-7dd6-4002-89d2-cfb6ed1c0265/download2e8c2ab6ea9777faa0f2497e21478c82MD5411323/13542oai:repositorio.cuc.edu.co:11323/135422024-10-26 03:01:41.852https://creativecommons.org/licenses/by/4.0/© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K |