Electrical consumption patterns through machine learning

Electricity distribution companies have been incorporating new technologies that allow them to obtain complete information in real time about their customers´ consumption. Thus, a new concept called "Smart Metering" has been adopted, giving way to new types of meters that interact in an in...

Full description

Autores:
amelec, viloria
Senior Naveda, Alexa
Hernández Palma, Hugo
Niebles Núñez, William
Niebles Nuñez, Leonardo David
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/5948
Acceso en línea:
http://hdl.handle.net/11323/5948
https://repositorio.cuc.edu.co/
Palabra clave:
Electrical consumption
Machine learning
Smart metering
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_f9c9708bfd3e548b1e59de553f10eace
oai_identifier_str oai:repositorio.cuc.edu.co:11323/5948
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Electrical consumption patterns through machine learning
title Electrical consumption patterns through machine learning
spellingShingle Electrical consumption patterns through machine learning
Electrical consumption
Machine learning
Smart metering
title_short Electrical consumption patterns through machine learning
title_full Electrical consumption patterns through machine learning
title_fullStr Electrical consumption patterns through machine learning
title_full_unstemmed Electrical consumption patterns through machine learning
title_sort Electrical consumption patterns through machine learning
dc.creator.fl_str_mv amelec, viloria
Senior Naveda, Alexa
Hernández Palma, Hugo
Niebles Núñez, William
Niebles Nuñez, Leonardo David
dc.contributor.author.spa.fl_str_mv amelec, viloria
Senior Naveda, Alexa
Hernández Palma, Hugo
Niebles Núñez, William
Niebles Nuñez, Leonardo David
dc.subject.spa.fl_str_mv Electrical consumption
Machine learning
Smart metering
topic Electrical consumption
Machine learning
Smart metering
description Electricity distribution companies have been incorporating new technologies that allow them to obtain complete information in real time about their customers´ consumption. Thus, a new concept called "Smart Metering" has been adopted, giving way to new types of meters that interact in an interconnected system. This will allow to make data analysis, accurate forecasts and detecting consumption patterns that will be relevant for the decision-making process. This research focuses on discovering common patterns among customers from data collected by smart meters.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-01-30T13:42:22Z
dc.date.available.none.fl_str_mv 2020-01-30T13:42:22Z
dc.date.issued.none.fl_str_mv 2020
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 1742-6588
1742-6596
dc.identifier.uri.spa.fl_str_mv http://hdl.handle.net/11323/5948
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 1742-6588
1742-6596
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url http://hdl.handle.net/11323/5948
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.spa.fl_str_mv 10.1088/1742-6596/1432/1/012093/pdf
dc.relation.references.spa.fl_str_mv [1] Pretnar, A. The Mystery of Test & Score. Ljubljana: University of Ljubljana. Retrieved from: https://orange.biolab.si/blog/2019/1/28/the-mystery-of-test-and-score/ (2019).
[2] Joana M. Abreu, Francisco Camara Pereira, Paulo Ferrao, using pattern recognition to identify habitual behavior in residential electricity consumption, Energy and Buildings, Vol. 49, June 2012, pp. 479-487, ELSEVIER
[3] Yasser, A. M., Clawson, K., & Bowerman, C.: Saving cultural heritage with digital make-believe: machine learning and digital techniques to the rescue. In Proceedings of the 31st British Computer Society Human Computer Interaction Conference (p. 97). BCS Learning & Development Ltd. (2017).
[4] Khelifi, F. J., J. (2011). K-NN Regression to Improve Statistical Feature Extraction for Texture Retrieval. IEEE Transactions on Image Processing, 20, 293-298.
[5] Abdul Masud, M., Zhexue Huang, J., Wei, C., Wang, J., Khan, I., Zhong, M.: Inice: A New Approach for Identifying the Number of Clusters and Initial Cluster Centres. Inf. Sci. (2018). https://doi.org/10.1016/j.ins.2018.07.034
[6] Martins, L.; Carvalho, R.; Victorino, C.; Holanda, M.: Early Prediction of College Attrition Using Data Mining. 16th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 1075-1078 (2017)
[7] Leo Breiman, Random Forests, Machine Learning, Vol. 45, Issue 1, October 2001, pp. 5- 32, Springer.
[8] A.S.Ahmad, et al., A review on applications of ANN and SVM for building electrical energy consumption forecasting, Renewable and Sustainable Energy Reviews, Vol. 33, May 2014, pp. 102–109
[9] Witten, I.; Frank, E.; Hall, M.; Pal, C.: Data Mining Practical Machine Learning Tools and Techniques. Elsevier 4th Ed, pp. 167-169 (2016).
[10] Clustering – EcuRed. Disponible vía web en http://www.ecured.cu/Clustering. Revisado por última vez el 29 de marzo de 2017.
[11] Sanchez L., Vásquez C., Viloria A., Cmeza-estrada (2018) Conglomerates of Latin American Countries and Public Policies for the Sustainable Development of the Electric Power Generation Sector. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham.
[12] Perez, R., Inga, E., Aguila, A., Vásquez, C., Lima, L., Viloria, A., & Henry, M. A. (2018, June). Fault diagnosis on electrical distribution systems based on fuzzy logic. In International Conference on Sensing and Imaging (pp. 174-185). Springer, Cham.
[13] Perez, Ramón, Carmen Vásquez, and Amelec Viloria. "An intelligent strategy for faults location in distribution networks with distributed generation." Journal of Intelligent & Fuzzy Systems Preprint (2019): 1-11.
[14] Chakraborty, S., Das, S.: Simultaneous variable weighting and determining the number of clusters—A weighted Gaussian algorithm means. Stat. Probab. Lett. 137, 148–156 (2018). https://doi.org/10.1016/j.spl.2018.01.015
[15] Bucci, N., Luna, M., Viloria, A., García, J. H., Parody, A., Varela, N., & López, L. A. B. (2018, June). Factor analysis of the psychosocial risk assessment instrument. In International Conference on Data Mining and Big Data (pp. 149-158). Springer, Cham.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Journal of Physics: Conference Series
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/d12815e3-2a5d-41be-9551-ca940b47eb8a/download
https://repositorio.cuc.edu.co/bitstreams/cc453e36-0d31-405c-b5d6-bc354aa3dd83/download
https://repositorio.cuc.edu.co/bitstreams/4bba21b7-7740-4196-9b63-8e19f22deee3/download
https://repositorio.cuc.edu.co/bitstreams/0aa33c54-0e31-491e-b574-12969a0b6043/download
https://repositorio.cuc.edu.co/bitstreams/ca456f49-9692-45fe-8e8b-b54bc9eaec42/download
bitstream.checksum.fl_str_mv 51bcfaee96b26d0a303104ca7e418c4f
42fd4ad1e89814f5e4a476b409eb708c
8a4605be74aa9ea9d79846c1fba20a33
13cb72f549cadccdd5e302312f074458
32c8f83e81e5f042595a85ccbd65b31d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760667039891456
spelling amelec, viloriaSenior Naveda, AlexaHernández Palma, HugoNiebles Núñez, WilliamNiebles Nuñez, Leonardo David2020-01-30T13:42:22Z2020-01-30T13:42:22Z20201742-65881742-6596http://hdl.handle.net/11323/5948Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Electricity distribution companies have been incorporating new technologies that allow them to obtain complete information in real time about their customers´ consumption. Thus, a new concept called "Smart Metering" has been adopted, giving way to new types of meters that interact in an interconnected system. This will allow to make data analysis, accurate forecasts and detecting consumption patterns that will be relevant for the decision-making process. This research focuses on discovering common patterns among customers from data collected by smart meters.amelec, viloria-will be generated-orcid-0000-0003-2673-6350-600Senior Naveda, AlexaHernández Palma, HugoNiebles Núñez, WilliamNiebles Nuñez, Leonardo David-will be generated-orcid-0000-0003-2970-2498-600engJournal of Physics: Conference Series10.1088/1742-6596/1432/1/012093/pdf[1] Pretnar, A. The Mystery of Test & Score. Ljubljana: University of Ljubljana. Retrieved from: https://orange.biolab.si/blog/2019/1/28/the-mystery-of-test-and-score/ (2019).[2] Joana M. Abreu, Francisco Camara Pereira, Paulo Ferrao, using pattern recognition to identify habitual behavior in residential electricity consumption, Energy and Buildings, Vol. 49, June 2012, pp. 479-487, ELSEVIER[3] Yasser, A. M., Clawson, K., & Bowerman, C.: Saving cultural heritage with digital make-believe: machine learning and digital techniques to the rescue. In Proceedings of the 31st British Computer Society Human Computer Interaction Conference (p. 97). BCS Learning & Development Ltd. (2017).[4] Khelifi, F. J., J. (2011). K-NN Regression to Improve Statistical Feature Extraction for Texture Retrieval. IEEE Transactions on Image Processing, 20, 293-298.[5] Abdul Masud, M., Zhexue Huang, J., Wei, C., Wang, J., Khan, I., Zhong, M.: Inice: A New Approach for Identifying the Number of Clusters and Initial Cluster Centres. Inf. Sci. (2018). https://doi.org/10.1016/j.ins.2018.07.034[6] Martins, L.; Carvalho, R.; Victorino, C.; Holanda, M.: Early Prediction of College Attrition Using Data Mining. 16th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 1075-1078 (2017)[7] Leo Breiman, Random Forests, Machine Learning, Vol. 45, Issue 1, October 2001, pp. 5- 32, Springer.[8] A.S.Ahmad, et al., A review on applications of ANN and SVM for building electrical energy consumption forecasting, Renewable and Sustainable Energy Reviews, Vol. 33, May 2014, pp. 102–109[9] Witten, I.; Frank, E.; Hall, M.; Pal, C.: Data Mining Practical Machine Learning Tools and Techniques. Elsevier 4th Ed, pp. 167-169 (2016).[10] Clustering – EcuRed. Disponible vía web en http://www.ecured.cu/Clustering. Revisado por última vez el 29 de marzo de 2017.[11] Sanchez L., Vásquez C., Viloria A., Cmeza-estrada (2018) Conglomerates of Latin American Countries and Public Policies for the Sustainable Development of the Electric Power Generation Sector. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham.[12] Perez, R., Inga, E., Aguila, A., Vásquez, C., Lima, L., Viloria, A., & Henry, M. A. (2018, June). Fault diagnosis on electrical distribution systems based on fuzzy logic. In International Conference on Sensing and Imaging (pp. 174-185). Springer, Cham.[13] Perez, Ramón, Carmen Vásquez, and Amelec Viloria. "An intelligent strategy for faults location in distribution networks with distributed generation." Journal of Intelligent & Fuzzy Systems Preprint (2019): 1-11.[14] Chakraborty, S., Das, S.: Simultaneous variable weighting and determining the number of clusters—A weighted Gaussian algorithm means. Stat. Probab. Lett. 137, 148–156 (2018). https://doi.org/10.1016/j.spl.2018.01.015[15] Bucci, N., Luna, M., Viloria, A., García, J. H., Parody, A., Varela, N., & López, L. A. B. (2018, June). Factor analysis of the psychosocial risk assessment instrument. In International Conference on Data Mining and Big Data (pp. 149-158). Springer, Cham.CC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Electrical consumptionMachine learningSmart meteringElectrical consumption patterns through machine learningArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALElectrical Consumption patterns through machine learning.pdfElectrical Consumption patterns through machine learning.pdfapplication/pdf761559https://repositorio.cuc.edu.co/bitstreams/d12815e3-2a5d-41be-9551-ca940b47eb8a/download51bcfaee96b26d0a303104ca7e418c4fMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/cc453e36-0d31-405c-b5d6-bc354aa3dd83/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/4bba21b7-7740-4196-9b63-8e19f22deee3/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILElectrical Consumption patterns through machine learning.pdf.jpgElectrical Consumption patterns through machine learning.pdf.jpgimage/jpeg27191https://repositorio.cuc.edu.co/bitstreams/0aa33c54-0e31-491e-b574-12969a0b6043/download13cb72f549cadccdd5e302312f074458MD55TEXTElectrical Consumption patterns through machine learning.pdf.txtElectrical Consumption patterns through machine learning.pdf.txttext/plain18845https://repositorio.cuc.edu.co/bitstreams/ca456f49-9692-45fe-8e8b-b54bc9eaec42/download32c8f83e81e5f042595a85ccbd65b31dMD5611323/5948oai:repositorio.cuc.edu.co:11323/59482024-09-16 16:39:18.811http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=