Modificación de la aleación ASTM B107 AZ31 con partículas de TiO2 utilizando el método de recubrimiento por inmersión

Introducción: Las aleaciones de magnesio son conocidas por sus características biocompatibles y propiedades de restauración de tejidos; por otro lado, se ha encontrado que el TiO2 disminuye las velocidades de corrosión de las aleaciones de magnesio. Objetivo: En este trabajo, la técnica de recubrimi...

Full description

Autores:
López Herrera, Johan Esteban
Hernández Montes, Vanessa
Betancur Henao, Claudia Patricia
Santa Marín, Juan Felipe
Buitrago Sierra, Robison
Tipo de recurso:
Article of journal
Fecha de publicación:
2018
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/12189
Acceso en línea:
https://hdl.handle.net/11323/12189
https://doi.org/10.17981/ingecuc.14.2.2018.04
Palabra clave:
Dip-coating
corrosion
Mg alloys
TiO2 particles
hydrogen evolution
Recubrimientos por inmersión
Corrosion
Partículas de TiO2
aleaciones de Mg
evolución del hidrógeno
Rights
openAccess
License
INGE CUC - 2018
id RCUC2_f9214fad2f0733b5e2f6ca1a68c027e2
oai_identifier_str oai:repositorio.cuc.edu.co:11323/12189
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Modificación de la aleación ASTM B107 AZ31 con partículas de TiO2 utilizando el método de recubrimiento por inmersión
dc.title.translated.eng.fl_str_mv Modification of ASTM B107 AZ31 and polypropylene surfaces with TiO2 particles using the dip-coating method
title Modificación de la aleación ASTM B107 AZ31 con partículas de TiO2 utilizando el método de recubrimiento por inmersión
spellingShingle Modificación de la aleación ASTM B107 AZ31 con partículas de TiO2 utilizando el método de recubrimiento por inmersión
Dip-coating
corrosion
Mg alloys
TiO2 particles
hydrogen evolution
Recubrimientos por inmersión
Corrosion
Partículas de TiO2
aleaciones de Mg
evolución del hidrógeno
title_short Modificación de la aleación ASTM B107 AZ31 con partículas de TiO2 utilizando el método de recubrimiento por inmersión
title_full Modificación de la aleación ASTM B107 AZ31 con partículas de TiO2 utilizando el método de recubrimiento por inmersión
title_fullStr Modificación de la aleación ASTM B107 AZ31 con partículas de TiO2 utilizando el método de recubrimiento por inmersión
title_full_unstemmed Modificación de la aleación ASTM B107 AZ31 con partículas de TiO2 utilizando el método de recubrimiento por inmersión
title_sort Modificación de la aleación ASTM B107 AZ31 con partículas de TiO2 utilizando el método de recubrimiento por inmersión
dc.creator.fl_str_mv López Herrera, Johan Esteban
Hernández Montes, Vanessa
Betancur Henao, Claudia Patricia
Santa Marín, Juan Felipe
Buitrago Sierra, Robison
dc.contributor.author.spa.fl_str_mv López Herrera, Johan Esteban
Hernández Montes, Vanessa
Betancur Henao, Claudia Patricia
Santa Marín, Juan Felipe
Buitrago Sierra, Robison
dc.subject.eng.fl_str_mv Dip-coating
corrosion
Mg alloys
TiO2 particles
hydrogen evolution
topic Dip-coating
corrosion
Mg alloys
TiO2 particles
hydrogen evolution
Recubrimientos por inmersión
Corrosion
Partículas de TiO2
aleaciones de Mg
evolución del hidrógeno
dc.subject.spa.fl_str_mv Recubrimientos por inmersión
Corrosion
Partículas de TiO2
aleaciones de Mg
evolución del hidrógeno
description Introducción: Las aleaciones de magnesio son conocidas por sus características biocompatibles y propiedades de restauración de tejidos; por otro lado, se ha encontrado que el TiO2 disminuye las velocidades de corrosión de las aleaciones de magnesio. Objetivo: En este trabajo, la técnica de recubrimiento por inmersión se usó para recubrir una aleación de magnesio con partículas de TiO2 y evaluar su comportamiento a corrosión. Metodología: Las partículas se analizaron por microscopía electrónica de barrido (SEM) e inspección visual. Además, se realizaron pruebas de evolución de hidrógeno para comprender el efecto de la adición de TiO2 en la velocidad de corrosión de la aleación de Mg. Resultados: Los resultados mostraron el efecto positivo de TiO2 en la mejora de la corrosión de aleaciones de ASTM B107 AZ31B Mg mediante una medición indirecta a través de pruebas de evolución de hidrógeno. La aleación ASTM B107 AZ31B sin recubrimiento muestra una corrosión 29 veces más rápida en comparación con la aleación recubierta. El espesor obtenido mediante el método de recubrimiento por inmersión es inferior a 20 nm. Conclusiones: Las partículas de TiO2 se agregaron en la superficie de la aleación ASTM B107 AZ31B con una velocidad controlada. Las imágenes SEM mostraron la mejora del recubrimiento cuando aumenta la concentración de H2O en el sol. Otro parámetro importante es la velocidad de extracción durante el proceso de recubrimiento por inmersión, que resultó ser mejor a una velocidad de 3 mm/min. La evolución del hidrógeno en la solución mostró que la aleación ASTM B107 AZ31B recubierta reportó menos producción de hidrógeno durante la prueba de corrosión. La técnica de recubrimiento por inmersión puede realizarse en polipropileno y, finalmente, obtener una superficie completamente recubierta.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2018-07-02 00:00:00
2024-04-09T20:14:53Z
dc.date.available.none.fl_str_mv 2018-07-02 00:00:00
2024-04-09T20:14:53Z
dc.date.issued.none.fl_str_mv 2018-07-02
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.local.eng.fl_str_mv Journal article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.eng.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0122-6517
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/12189
dc.identifier.url.none.fl_str_mv https://doi.org/10.17981/ingecuc.14.2.2018.04
dc.identifier.doi.none.fl_str_mv 10.17981/ingecuc.14.2.2018.04
dc.identifier.eissn.none.fl_str_mv 2382-4700
identifier_str_mv 0122-6517
10.17981/ingecuc.14.2.2018.04
2382-4700
url https://hdl.handle.net/11323/12189
https://doi.org/10.17981/ingecuc.14.2.2018.04
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Inge Cuc
dc.relation.references.eng.fl_str_mv S. Agarwal, J. Curtin, B. Duffy, and S. Jaiswal, “Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications,” Mater. Sci. Eng. C, vol. 68, pp. 948–963, Nov. 2016. https://doi.org/10.1016/j.msec.2016.06.020
J. Fei et al., “Biocompatibility and neurotoxicity of magnesium alloys potentially used for neural repairs,” Mater. Sci. Eng. C, vol. 78, pp. 1155–1163, Sep. 2017. https://doi.org/10.1016/j.msec.2017.04.106
Y. Liu, Y. Liu, N. Liao, F. Cui, M. Park, and H.-Y. Kim, “Fabrication and durable antibacterial properties of electrospun chitosan nanofibers with silver nanoparticles,” Int. J. Biol. Macromol., vol. 79, pp. 638–643, 2015. https://doi.org/10.1016/j.ijbiomac.2015.05.058
M. Razavi et al., “In vivo study of nanostructured diopside (CaMgSi2O6) coating on magnesium alloy as biodegradable orthopedic implants,” Appl. Surf. Sci., vol. 313, pp. 60–66, Sep. 2014. https://doi.org/10.1016/j.apsusc.2014.05.130
R. Bertolini, S. Bruschi, A. Ghiotti, L. Pezzato, and M. Dabalà, “The Effect of Cooling Strategies and Machining Feed Rate on the Corrosion Behavior and Wettability of AZ31 Alloy for Biomedical Applications,” Procedia CIRP, vol. 65, pp. 7–12, Jan. 2017. https://doi.org/10.1016/j.procir.2017.03.168
S. Castiglioni, A. Cazzaniga, W. Albisetti, and J. A. M. Maier, “Magnesium and osteoporosis: current state of knowledge and future research directions,” Nutrients, vol. 5, no. 8, pp. 3022–33, Jul. 2013. https://doi.org/10.3390/nu5083022
R. Radha and D. Sreekanth, “Insight of magnesium alloys and composites for orthopedic implant applications – a review,” J. Magnes. Alloy., vol. 5, no. 3, pp. 286–312, 2017. https://doi.org/10.1016/j.jma.2017.08.003
M. Esmaily et al., “Fundamentals and advances in magnesium alloy corrosion,” Prog. Mater. Sci., vol. 89, pp. 92–193, Aug. 2017. https://doi.org/10.1016/j.pmatsci.2017.04.011
I. A. Shahar, T. Hosaka, S. Yoshihara, and B. J. Macdonald, “Mechanical and Corrosion Properties of AZ31 Mg Alloy Processed by Equal-Channel Angular Pressing and Aging,” Procedia Eng., vol. 184, pp. 423–431, 2017. https://doi.org/10.1016/j.proeng.2017.04.113
X. Zhang et al., “Layer-by-layer assembly of silver nanoparticles embedded polyelectrolyte multilayer on magnesium alloy with enhanced antibacterial property,” Surf. Coatings Technol., vol. 286, pp. 103–112, Jan. 2016. https://doi.org/10.1016/j.surfcoat.2015.12.018
R.-G. Hu, S. Zhang, J.-F. Bu, C.-J. Lin, and G.-L. Song, “Recent progress in corrosion protection of magnesium alloys by organic coatings,” Prog. Org. Coatings, vol. 73, no. 2–3, pp. 129–141, Feb. 2012. https://doi.org/10.1016/j.porgcoat.2011.10.011
M. Kulkarni et al., “Titanium nanostructures for biomedical applications,” Nanotechnology, vol. 26, no. 6, p. 062002, Feb. 2015. https://doi.org/10.1088/0957-4484/26/6/062002
A. M. Khorasani, M. Goldberg, E. H. Doeven, and G. Littlefair, “Titanium in Biomedical Applications –Properties and Fabrication: a Review,” Tissue Eng. J. Biomater. Tissue Eng., vol. 5, no. 5, pp. 593–619, 2015. https://doi.org/10.1166/jbt.2015.1361
M. A. Shaheed and F. H. Hussein, “Preparation and Applications of Titanium Dioxide and Zinc Oxide Nanoparticles,” J. Environ. Anal. Chem., vol. 02, no. 01, 2014. https://doi.org/10.4172/2380-2391.1000e109
A. Saffar, P. J. Carreau, M. R. Kamal, and A. Ajji, “Hydrophilic modification of polypropylene microporous membranes by grafting TiO2 nanoparticles with acrylic acid groups on the surface,” Polymer (Guildf)., vol. 55, no. 23, pp. 6069–6075, Nov. 2014. https://doi.org/10.1016/j.polymer.2014.09.069
M. Lu et al., “Photo- and thermo-oxidative aging of polypropylene filled with surface modified fumed nanosilica,” Compos. Commun., vol. 3, pp. 51–58, Mar. 2017. https://doi.org/10.1016/j.coco.2017.02.004
S. C. Tjong, K. Yeung, H. M. Wong, and C. Z. Liao, “The development, fabrication, and material characterization of polypropylene composites reinforced with carbon nanofiber and hydroxyapatite nanorod hybrid fillers,” Int. J. Nanomedicine, vol. 9, p. 1299, Mar. 2014. https://doi.org/10.2147/IJN.S58332
Y. Liu and M. Wang, “Fabrication and characteristics of hydroxyapatite reinforced polypropylene as a bone analogue biomaterial,” J. Appl. Polym. Sci., vol. 106, no. 4, pp. 2780–2790, Nov. 2007. https://doi.org/10.1002/app.26917
K. Seshan, Handbook of thin film deposition: techniques, processes, and technologies. William Andrew, 2012.
P. Saravanan, M. Ganapathy, A. Charles, S. Tamilselvan, and R. Jeyasekaran, “Electrical properties of green synthesized TiO2 nanoparticles,” Adv. Appl. Sci. Res., vol. 7, no. 3, pp. 158–168, 2016.
M. Poté, (2016). Dip Coating vs. Spin Coating. Satisloh Italy S.r.l. [Online]. Available http://www.satisloh.com/fileadmin/contents/Whitepaper/Dip-Coating-vs-Spin-Coating_EN.pdf
S. Thirugnanaselvi, S. Kuttirani, and A. R. Emelda, “Effect of Schiff base as corrosion inhibitor on AZ31 magnesium alloy in hydrochloric acid solution,” Trans. Nonferrous Met. Soc. China, vol. 24, no. 6, pp. 1969–1977, Jul.2014. https://doi.org/10.1016/S1003-6326(14)63278-7
T. Schneller, R. Waser, M. Kosec, and D. Payne Editors, Chemical Solution Deposition of Functional Oxide Thin Films. New york: Springer, 2013.
V. G. Parale, D. B. Mahadik, V. D. Phadtare, A. A. Pisal, H. H. Park, and S. B. Wategaonkar, “Dip Coated Superhydrophobic and Anticorrosive Silica Coatings,” Int. J. Mater. Sciene Eng., vol. 4, no. 1, pp. 60–68, 2016.
X. Wang, F. Shi, X. Gao, C. Fan, W. Huang, and X. Feng, “A sol-gel dip/spin coating method to prepare titanium oxide films,” Thin Solid Films, vol. 548, pp. 34–39, 2013. https://doi.org/10.1016/j.tsf.2013.08.056
Y. Reyes, A. Durán, and Y. Castro, “Glass-like cerium sol-gel coatings on AZ31B magnesium alloy for controlling the biodegradation of temporary implants,” Surf. Coatings Technol., vol. 307, no. Part A, pp. 574–582, 2016.
N. Van Phuong, M. Gupta, and S. Moon, “Enhanced corrosion performance of magnesium phosphate conversion coating on AZ31 magnesium alloy,” Trans. Nonferrous Met. Soc. China, vol. 27, no. 5, pp. 1087–1095, May 2017. https://doi.org/10.1016/S1003-6326(17)60127-4
G. S. Frankel, A. Samaniego, and N. Birbilis, “Evolution of hydrogen at dissolving magnesium surfaces,” Corros. Sci., vol. 70, pp. 104–111, May 2013. https://doi.org/10.1016/j.corsci.2013.01.017
N. T. Kirkland, N. Birbilis, and M. P. Staiger, “Assessing the corrosion of biodegradable magnesium implants: A critical review of current methodologies and their limitations,” Acta Biomater., vol. 8, no. 3, pp. 925–936, Mar. 2012. https://doi.org/10.1016/j.actbio.2011.11.014
H.-S. Chen, C. Su, J.-L. Chen, T.-Y. Yang, N.-M. Hsu, and W.-R. Li, “Preparation and Characterization of Pure Rutile TiO 2 Nanoparticles for Photocatalytic Study and Thin Films for Dye-Sensitized Solar Cells,” J. Nanomater., vol. 2011, pp. 1–8, Nov. 2011. https://doi.org/10.1155/2011/510237
E. Firlar, S. Çınar, S. Kashyap, M. Akinc, and T. Prozorov, “Direct Visualization of the Hydration Layer on Alumina Nanoparticles with the Fluid Cell STEM in situ,” Sci. Rep., vol. 5, no. 1, p. 9830, Sep. 2015. https://doi.org/10.1038/srep09830
O. Cohu and H. Benkreira, “Air entrainment in angled dip coating,” Chem. Eng. Sci., vol. 53, no. 3, pp. 533–540, Feb. 1998. https://doi.org/10.1016/S0009-2509(97)00323-0
C. J. Brinker, G. C. Frye, A. J. Hurd, and C. S. Ashley, “Fundamentals of sol-gel dip coating,” Thin Solid Films, vol. 201, no. 1, pp. 97–108, Jun. 1991. https://doi.org/10.1016/0040-6090(91)90158-T
G. Berteloot, A. Daerr, F. Lequeux, and L. Limat, “Dip coating with colloids and evaporation,” Chem. Eng. Process. Process Intensif., vol. 68, pp. 69–73, Jun. 2013. https://doi.org/10.1016/j.cep.2012.09.001
S. Zhang, Hydroxyapatite coatings for biomedical applications. Boca Ratón: CRC Press, Taylor & Francis Group, 2013. https://doi.org/10.1201/b14803
M. Driver, "Coatings for biomedical applications," Woodhead Publishing Series in Biomaterials, 2012. pp. 353- 366. https://doi.org/10.1533/9780857093677
dc.relation.citationendpage.none.fl_str_mv 54
dc.relation.citationstartpage.none.fl_str_mv 45
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationvolume.spa.fl_str_mv 14
dc.relation.bitstream.none.fl_str_mv https://revistascientificas.cuc.edu.co/ingecuc/article/download/1756/1869
dc.relation.citationedition.spa.fl_str_mv Núm. 2 , Año 2018 : (Julio - Diciembre)
dc.rights.eng.fl_str_mv INGE CUC - 2018
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.eng.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv INGE CUC - 2018
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad de la Costa
dc.source.eng.fl_str_mv https://revistascientificas.cuc.edu.co/ingecuc/article/view/1756
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/311cad85-7a16-4380-a56f-cd812bc69971/download
bitstream.checksum.fl_str_mv 818d39d4d15ce75cb5d19c9a72b91dd0
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760830901911552
spelling López Herrera, Johan EstebanHernández Montes, VanessaBetancur Henao, Claudia PatriciaSanta Marín, Juan FelipeBuitrago Sierra, Robison2018-07-02 00:00:002024-04-09T20:14:53Z2018-07-02 00:00:002024-04-09T20:14:53Z2018-07-020122-6517https://hdl.handle.net/11323/12189https://doi.org/10.17981/ingecuc.14.2.2018.0410.17981/ingecuc.14.2.2018.042382-4700Introducción: Las aleaciones de magnesio son conocidas por sus características biocompatibles y propiedades de restauración de tejidos; por otro lado, se ha encontrado que el TiO2 disminuye las velocidades de corrosión de las aleaciones de magnesio. Objetivo: En este trabajo, la técnica de recubrimiento por inmersión se usó para recubrir una aleación de magnesio con partículas de TiO2 y evaluar su comportamiento a corrosión. Metodología: Las partículas se analizaron por microscopía electrónica de barrido (SEM) e inspección visual. Además, se realizaron pruebas de evolución de hidrógeno para comprender el efecto de la adición de TiO2 en la velocidad de corrosión de la aleación de Mg. Resultados: Los resultados mostraron el efecto positivo de TiO2 en la mejora de la corrosión de aleaciones de ASTM B107 AZ31B Mg mediante una medición indirecta a través de pruebas de evolución de hidrógeno. La aleación ASTM B107 AZ31B sin recubrimiento muestra una corrosión 29 veces más rápida en comparación con la aleación recubierta. El espesor obtenido mediante el método de recubrimiento por inmersión es inferior a 20 nm. Conclusiones: Las partículas de TiO2 se agregaron en la superficie de la aleación ASTM B107 AZ31B con una velocidad controlada. Las imágenes SEM mostraron la mejora del recubrimiento cuando aumenta la concentración de H2O en el sol. Otro parámetro importante es la velocidad de extracción durante el proceso de recubrimiento por inmersión, que resultó ser mejor a una velocidad de 3 mm/min. La evolución del hidrógeno en la solución mostró que la aleación ASTM B107 AZ31B recubierta reportó menos producción de hidrógeno durante la prueba de corrosión. La técnica de recubrimiento por inmersión puede realizarse en polipropileno y, finalmente, obtener una superficie completamente recubierta.Introduction: Magnesium alloys have been known for its biocompatible characteristics and tissue restoration properties. On the other hand, TiO2 has been found to decrease the corrosion rates of the magnesium alloys. Objective: In this work, the dip-coating technique was used to coat the magnesium alloy with TiO2 particles in order to evaluate its corrosion resistance. Methodology: The particles were analyzed by Scanning Electron Microscopy (SEM) and visual inspection. Additionally, hydrogen evolution tests were performed to understand the effect of adding TiO2 in corrosion rates of Mg-alloys. Results: The results showed the positive effect of TiO2 in the improvement of the ASTM B107 AZ31B Mg alloys corrosion by an indirect measurement through hydrogen evolution tests. The bare ASTM B107 AZ31B showed a corrosion 29 times faster compared to the coated alloy. The thickness of the coatings obtained using the dip-coating method is thinner than 20 nm. Conclusions: TiO2 particles were aggregated on the surface of the ASTM B107 AZ31B alloy with a controlled speed. SEM images have shown the improvement of the coating when the H2O concentration in the sol increased. Another important parameter is the withdrawal speed during the dip-coat process which was found to be better at a speed of 3mm/min. Hydrogen evolution in the acid solution showed that coated ASTM B107 AZ31B has less hydrogen production during the corrosion test. The dip-coating technique can also be used to coat polypropylene discs entirely.application/pdfengUniversidad de la CostaINGE CUC - 2018https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://revistascientificas.cuc.edu.co/ingecuc/article/view/1756Dip-coatingcorrosionMg alloysTiO2 particleshydrogen evolutionRecubrimientos por inmersiónCorrosionPartículas de TiO2aleaciones de Mgevolución del hidrógenoModificación de la aleación ASTM B107 AZ31 con partículas de TiO2 utilizando el método de recubrimiento por inmersiónModification of ASTM B107 AZ31 and polypropylene surfaces with TiO2 particles using the dip-coating methodArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articleJournal articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Inge CucS. Agarwal, J. Curtin, B. Duffy, and S. Jaiswal, “Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications,” Mater. Sci. Eng. C, vol. 68, pp. 948–963, Nov. 2016. https://doi.org/10.1016/j.msec.2016.06.020J. Fei et al., “Biocompatibility and neurotoxicity of magnesium alloys potentially used for neural repairs,” Mater. Sci. Eng. C, vol. 78, pp. 1155–1163, Sep. 2017. https://doi.org/10.1016/j.msec.2017.04.106Y. Liu, Y. Liu, N. Liao, F. Cui, M. Park, and H.-Y. Kim, “Fabrication and durable antibacterial properties of electrospun chitosan nanofibers with silver nanoparticles,” Int. J. Biol. Macromol., vol. 79, pp. 638–643, 2015. https://doi.org/10.1016/j.ijbiomac.2015.05.058M. Razavi et al., “In vivo study of nanostructured diopside (CaMgSi2O6) coating on magnesium alloy as biodegradable orthopedic implants,” Appl. Surf. Sci., vol. 313, pp. 60–66, Sep. 2014. https://doi.org/10.1016/j.apsusc.2014.05.130R. Bertolini, S. Bruschi, A. Ghiotti, L. Pezzato, and M. Dabalà, “The Effect of Cooling Strategies and Machining Feed Rate on the Corrosion Behavior and Wettability of AZ31 Alloy for Biomedical Applications,” Procedia CIRP, vol. 65, pp. 7–12, Jan. 2017. https://doi.org/10.1016/j.procir.2017.03.168S. Castiglioni, A. Cazzaniga, W. Albisetti, and J. A. M. Maier, “Magnesium and osteoporosis: current state of knowledge and future research directions,” Nutrients, vol. 5, no. 8, pp. 3022–33, Jul. 2013. https://doi.org/10.3390/nu5083022R. Radha and D. Sreekanth, “Insight of magnesium alloys and composites for orthopedic implant applications – a review,” J. Magnes. Alloy., vol. 5, no. 3, pp. 286–312, 2017. https://doi.org/10.1016/j.jma.2017.08.003M. Esmaily et al., “Fundamentals and advances in magnesium alloy corrosion,” Prog. Mater. Sci., vol. 89, pp. 92–193, Aug. 2017. https://doi.org/10.1016/j.pmatsci.2017.04.011I. A. Shahar, T. Hosaka, S. Yoshihara, and B. J. Macdonald, “Mechanical and Corrosion Properties of AZ31 Mg Alloy Processed by Equal-Channel Angular Pressing and Aging,” Procedia Eng., vol. 184, pp. 423–431, 2017. https://doi.org/10.1016/j.proeng.2017.04.113X. Zhang et al., “Layer-by-layer assembly of silver nanoparticles embedded polyelectrolyte multilayer on magnesium alloy with enhanced antibacterial property,” Surf. Coatings Technol., vol. 286, pp. 103–112, Jan. 2016. https://doi.org/10.1016/j.surfcoat.2015.12.018R.-G. Hu, S. Zhang, J.-F. Bu, C.-J. Lin, and G.-L. Song, “Recent progress in corrosion protection of magnesium alloys by organic coatings,” Prog. Org. Coatings, vol. 73, no. 2–3, pp. 129–141, Feb. 2012. https://doi.org/10.1016/j.porgcoat.2011.10.011M. Kulkarni et al., “Titanium nanostructures for biomedical applications,” Nanotechnology, vol. 26, no. 6, p. 062002, Feb. 2015. https://doi.org/10.1088/0957-4484/26/6/062002A. M. Khorasani, M. Goldberg, E. H. Doeven, and G. Littlefair, “Titanium in Biomedical Applications –Properties and Fabrication: a Review,” Tissue Eng. J. Biomater. Tissue Eng., vol. 5, no. 5, pp. 593–619, 2015. https://doi.org/10.1166/jbt.2015.1361M. A. Shaheed and F. H. Hussein, “Preparation and Applications of Titanium Dioxide and Zinc Oxide Nanoparticles,” J. Environ. Anal. Chem., vol. 02, no. 01, 2014. https://doi.org/10.4172/2380-2391.1000e109A. Saffar, P. J. Carreau, M. R. Kamal, and A. Ajji, “Hydrophilic modification of polypropylene microporous membranes by grafting TiO2 nanoparticles with acrylic acid groups on the surface,” Polymer (Guildf)., vol. 55, no. 23, pp. 6069–6075, Nov. 2014. https://doi.org/10.1016/j.polymer.2014.09.069M. Lu et al., “Photo- and thermo-oxidative aging of polypropylene filled with surface modified fumed nanosilica,” Compos. Commun., vol. 3, pp. 51–58, Mar. 2017. https://doi.org/10.1016/j.coco.2017.02.004S. C. Tjong, K. Yeung, H. M. Wong, and C. Z. Liao, “The development, fabrication, and material characterization of polypropylene composites reinforced with carbon nanofiber and hydroxyapatite nanorod hybrid fillers,” Int. J. Nanomedicine, vol. 9, p. 1299, Mar. 2014. https://doi.org/10.2147/IJN.S58332Y. Liu and M. Wang, “Fabrication and characteristics of hydroxyapatite reinforced polypropylene as a bone analogue biomaterial,” J. Appl. Polym. Sci., vol. 106, no. 4, pp. 2780–2790, Nov. 2007. https://doi.org/10.1002/app.26917K. Seshan, Handbook of thin film deposition: techniques, processes, and technologies. William Andrew, 2012.P. Saravanan, M. Ganapathy, A. Charles, S. Tamilselvan, and R. Jeyasekaran, “Electrical properties of green synthesized TiO2 nanoparticles,” Adv. Appl. Sci. Res., vol. 7, no. 3, pp. 158–168, 2016.M. Poté, (2016). Dip Coating vs. Spin Coating. Satisloh Italy S.r.l. [Online]. Available http://www.satisloh.com/fileadmin/contents/Whitepaper/Dip-Coating-vs-Spin-Coating_EN.pdfS. Thirugnanaselvi, S. Kuttirani, and A. R. Emelda, “Effect of Schiff base as corrosion inhibitor on AZ31 magnesium alloy in hydrochloric acid solution,” Trans. Nonferrous Met. Soc. China, vol. 24, no. 6, pp. 1969–1977, Jul.2014. https://doi.org/10.1016/S1003-6326(14)63278-7T. Schneller, R. Waser, M. Kosec, and D. Payne Editors, Chemical Solution Deposition of Functional Oxide Thin Films. New york: Springer, 2013.V. G. Parale, D. B. Mahadik, V. D. Phadtare, A. A. Pisal, H. H. Park, and S. B. Wategaonkar, “Dip Coated Superhydrophobic and Anticorrosive Silica Coatings,” Int. J. Mater. Sciene Eng., vol. 4, no. 1, pp. 60–68, 2016.X. Wang, F. Shi, X. Gao, C. Fan, W. Huang, and X. Feng, “A sol-gel dip/spin coating method to prepare titanium oxide films,” Thin Solid Films, vol. 548, pp. 34–39, 2013. https://doi.org/10.1016/j.tsf.2013.08.056Y. Reyes, A. Durán, and Y. Castro, “Glass-like cerium sol-gel coatings on AZ31B magnesium alloy for controlling the biodegradation of temporary implants,” Surf. Coatings Technol., vol. 307, no. Part A, pp. 574–582, 2016.N. Van Phuong, M. Gupta, and S. Moon, “Enhanced corrosion performance of magnesium phosphate conversion coating on AZ31 magnesium alloy,” Trans. Nonferrous Met. Soc. China, vol. 27, no. 5, pp. 1087–1095, May 2017. https://doi.org/10.1016/S1003-6326(17)60127-4G. S. Frankel, A. Samaniego, and N. Birbilis, “Evolution of hydrogen at dissolving magnesium surfaces,” Corros. Sci., vol. 70, pp. 104–111, May 2013. https://doi.org/10.1016/j.corsci.2013.01.017N. T. Kirkland, N. Birbilis, and M. P. Staiger, “Assessing the corrosion of biodegradable magnesium implants: A critical review of current methodologies and their limitations,” Acta Biomater., vol. 8, no. 3, pp. 925–936, Mar. 2012. https://doi.org/10.1016/j.actbio.2011.11.014H.-S. Chen, C. Su, J.-L. Chen, T.-Y. Yang, N.-M. Hsu, and W.-R. Li, “Preparation and Characterization of Pure Rutile TiO 2 Nanoparticles for Photocatalytic Study and Thin Films for Dye-Sensitized Solar Cells,” J. Nanomater., vol. 2011, pp. 1–8, Nov. 2011. https://doi.org/10.1155/2011/510237E. Firlar, S. Çınar, S. Kashyap, M. Akinc, and T. Prozorov, “Direct Visualization of the Hydration Layer on Alumina Nanoparticles with the Fluid Cell STEM in situ,” Sci. Rep., vol. 5, no. 1, p. 9830, Sep. 2015. https://doi.org/10.1038/srep09830O. Cohu and H. Benkreira, “Air entrainment in angled dip coating,” Chem. Eng. Sci., vol. 53, no. 3, pp. 533–540, Feb. 1998. https://doi.org/10.1016/S0009-2509(97)00323-0C. J. Brinker, G. C. Frye, A. J. Hurd, and C. S. Ashley, “Fundamentals of sol-gel dip coating,” Thin Solid Films, vol. 201, no. 1, pp. 97–108, Jun. 1991. https://doi.org/10.1016/0040-6090(91)90158-TG. Berteloot, A. Daerr, F. Lequeux, and L. Limat, “Dip coating with colloids and evaporation,” Chem. Eng. Process. Process Intensif., vol. 68, pp. 69–73, Jun. 2013. https://doi.org/10.1016/j.cep.2012.09.001S. Zhang, Hydroxyapatite coatings for biomedical applications. Boca Ratón: CRC Press, Taylor & Francis Group, 2013. https://doi.org/10.1201/b14803M. Driver, "Coatings for biomedical applications," Woodhead Publishing Series in Biomaterials, 2012. pp. 353- 366. https://doi.org/10.1533/97808570936775445214https://revistascientificas.cuc.edu.co/ingecuc/article/download/1756/1869Núm. 2 , Año 2018 : (Julio - Diciembre)PublicationOREORE.xmltext/xml2839https://repositorio.cuc.edu.co/bitstreams/311cad85-7a16-4380-a56f-cd812bc69971/download818d39d4d15ce75cb5d19c9a72b91dd0MD5111323/12189oai:repositorio.cuc.edu.co:11323/121892024-09-17 14:07:00.731https://creativecommons.org/licenses/by-nc-sa/4.0/INGE CUC - 2018metadata.onlyhttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.co