Surface chemistry of atmospheric nanoparticles during a haze episode in Beijing by TOF-SIMS

The atmospheric aerosol particles have a potential heavy burden on environment, climate, and human health, which were closely related to the surface physicochemical properties. Time-of-flight secondary ion mass spectrometry (TOF-SIMS) technique is a powerful tool to obtain detailed surface chemical...

Full description

Autores:
Li, Wenjun
Shao, Longyi
Li, Zhanping
Li, Hong
Gao, Jian
Li, Jinjuan
Zhang, Hao
Zhang, Zhengzheng
Silva Oliveira, Luis Felipe
Zhang, Mengyuan
Chen, Yizhen
Silva Oliveira, Marcos Leandro
Tipo de recurso:
Article of journal
Fecha de publicación:
2022
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/9172
Acceso en línea:
https://hdl.handle.net/11323/9172
https://doi.org/10.1016/j.gr.2022.02.013
https://repositorio.cuc.edu.co/
Palabra clave:
Air pollution
Aerosol particles
Surface chemical composition
Source appointment
TOF–SIMS
Rights
embargoedAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id RCUC2_f7342662b6c3ab5c8777d0da593b9fff
oai_identifier_str oai:repositorio.cuc.edu.co:11323/9172
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Surface chemistry of atmospheric nanoparticles during a haze episode in Beijing by TOF-SIMS
title Surface chemistry of atmospheric nanoparticles during a haze episode in Beijing by TOF-SIMS
spellingShingle Surface chemistry of atmospheric nanoparticles during a haze episode in Beijing by TOF-SIMS
Air pollution
Aerosol particles
Surface chemical composition
Source appointment
TOF–SIMS
title_short Surface chemistry of atmospheric nanoparticles during a haze episode in Beijing by TOF-SIMS
title_full Surface chemistry of atmospheric nanoparticles during a haze episode in Beijing by TOF-SIMS
title_fullStr Surface chemistry of atmospheric nanoparticles during a haze episode in Beijing by TOF-SIMS
title_full_unstemmed Surface chemistry of atmospheric nanoparticles during a haze episode in Beijing by TOF-SIMS
title_sort Surface chemistry of atmospheric nanoparticles during a haze episode in Beijing by TOF-SIMS
dc.creator.fl_str_mv Li, Wenjun
Shao, Longyi
Li, Zhanping
Li, Hong
Gao, Jian
Li, Jinjuan
Zhang, Hao
Zhang, Zhengzheng
Silva Oliveira, Luis Felipe
Zhang, Mengyuan
Chen, Yizhen
Silva Oliveira, Marcos Leandro
dc.contributor.author.spa.fl_str_mv Li, Wenjun
Shao, Longyi
Li, Zhanping
Li, Hong
Gao, Jian
Li, Jinjuan
Zhang, Hao
Zhang, Zhengzheng
Silva Oliveira, Luis Felipe
Zhang, Mengyuan
Chen, Yizhen
Silva Oliveira, Marcos Leandro
dc.subject.proposal.eng.fl_str_mv Air pollution
Aerosol particles
Surface chemical composition
Source appointment
TOF–SIMS
topic Air pollution
Aerosol particles
Surface chemical composition
Source appointment
TOF–SIMS
description The atmospheric aerosol particles have a potential heavy burden on environment, climate, and human health, which were closely related to the surface physicochemical properties. Time-of-flight secondary ion mass spectrometry (TOF-SIMS) technique is a powerful tool to obtain detailed surface chemical information since it has high surface sensitivity for both elements and molecular ions, and high mass resolution. In this work, size-fractioned aerosol particles in the range of 0.43–10 µm during a severe haze episode in Beijing were analyzed by TOF-SIMS, the variation characteristics of chemical species corresponding to particle size and air pollution level was investigated by the normalization of secondary ion intensities, the possible sources were identified through principal component analysis (PCA), and the influence of meteorological factors and air mass transmission were also investigated. The study results showed that the surface chemical components of PM2.5 were more complicated during haze episode than on clean days. A total of 17 organic and inorganic species were detected, including crustal elements, heavy metals, sulfate, nitrate, siliceous compounds, hydrocarbons, oxygen-containing organics, and nitrogen-containing organics. In general, the particle surface mainly contained crustal elements, hydrocarbons, and carbon-containing inorganics. Organic and secondary ions significantly increased in heavy-polluted days, indicating the aging process of particles. Inorganic compounds had a higher percentage in coarse mode, while organic compounds were higher in accumulation mode. PCA results indicated that urban aerosol during this haze episode mainly came from vehicle emissions (24.7%), coal-fired combustion (22.4%), organic aerosol (19.3%), and dust resuspension (19.6%). The northern air mass could facilitate the dilution of air pollutants with the surface secondary formed components of particles significantly decreased.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-05-17T19:42:19Z
dc.date.available.none.fl_str_mv 2022-05-17T19:42:19Z
2024-03-08
dc.date.issued.none.fl_str_mv 2022-03-08
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 1342-937X
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/9172
dc.identifier.url.spa.fl_str_mv https://doi.org/10.1016/j.gr.2022.02.013
dc.identifier.doi.spa.fl_str_mv 10.1016/j.gr.2022.02.013
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 1342-937X
10.1016/j.gr.2022.02.013
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/9172
https://doi.org/10.1016/j.gr.2022.02.013
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Gondwana Research
dc.relation.references.spa.fl_str_mv Almstrand et al., 2016 A.C. Almstrand, E. Ljungström, J. Lausmaa, B. Bake, P. Sjövall, A.C. Olin Airway monitoring by collection and mass spectrometric analysis of exhaled particles Anal. Chem., 81 (2) (2016), pp. 662-668, 10.1021/ac802055k
Baril et al., 1992 M. Baril, N. Klaus, R. Leduc Aerosols characterization in a forested site in Québec, Canada Sci. Total. Environ., 116 (3) (1992), pp. 221-242, 10.1016/0048-9697(92)90451-W
Cai et al., 2017 L.S. Cai, M.C. Xia, Z.Y. Wang, Y.B. Zhao, Z.P. Li, S.C. Zhang, X.R. Zhang Chemical Visualization of Sweat Pores in Fingerprints Using GO-Enhanced TOF-SIMS Anal. Chem., 89 (16) (2017), pp. 8372-8376, 10.1021/acs.analchem.7b01629
Cheng et al., 2014 W.J. Cheng, L.T. Weng, Y.J. Li, A. Lau, C. Chan, C.M. Chan Characterization of size-segregated aerosols using ToF-SIMS imaging and depth profiling Surf. Interface. Anal., 46 (7) (2014), pp. 480-488, 10.1002/sia.5552
Chi et al., 2017 J.W. Chi, C.J. Li, J.Y. Sun, J. Zhang, H. Wang, H.T. Wang, W.J. Li Physico-chemical Characteristics of Individual Aerosol Particles in Marine Atmosphere on South Hemisphere Environ. Sci., 38 (03) (2017), pp. 903-910 (In Chinese with English Abstract)
Fan et al., 2016 J.S. Fan, L.Y. Shao, Y. Hu, J.Y. Wang, J. Wang, J.Z. Ma Classification and chemical compositions of individual particles at an eastern marginal site of Tibetan Plateau Atmos. Pollut. Res., 7 (5) (2016), pp. 833-842, 10.1016/j.apr.2016.04.007
Feng et al., 2019 Y.Y. Feng, M. Ning, Y. Lei, Y.M. Sun, W. Liu, J.N. Wang Defending blue sky in China: Effectiveness of the “Air Pollution Prevention and Control Action Plan” on air quality improvements from 2013 to 2017 J. Environ. Manage., 252 (2019), p. 109603, 10.1016/j.jenvman.2019.109603
Fukuhara et al., 2008 N. Fukuhara, K. Suzuki, K. Takeda, Y. Nihei Characterization of environmental nanoparticles Appl. Surf. Sci., 255 (4) (2008), pp. 1538-1540, 10.1016/j.apsusc.2008.05.013
Gard et al., 1998 E.E. Gard, M.J. Kleeman, D.S. Gross, L.S. Hughes, J.O. Allen, B.D. Morrical, D.P. Fergenson, T. Dienes, M.E. Galli, R.J. Johnson, G.R. Cass, K.A. Prather Direct Observation of Heterogeneous Chemistry in the Atmosphere Science, 279 (5354) (1998), pp. 1184-1187, 10.1126/science.279.5354.1184
Ham et al., 2002 R.V. Ham, A. Adriaens, P. Prati, A. Zucchiatti, L.V. Vaeck, F. Adams Static secondary ion mass spectrometry as a new analytical tool for measuring atmospheric particles on insulating substrates Atmos. Environ., 36 (5) (2002), pp. 899-909, 10.1016/S1352-2310(01)00436-8
Ham et al., 2000 R.V. Ham, A. Adriaens, L.V. Vaeck, F. Adams TOF-SIMS, a new versatile technique for the analysis of environmental aerosols? J. Aerosol. Sci., 31 (2000), pp. 396-397, 10.1016/S0021-8502(00)90407-5
Ham et al., 2006 R.V. Ham, A. Adriaens, L.V. Vaeck, F. Adams The use of time-of-flight static secondary ion mass spectrometry imaging for the molecular characterization of single aerosol surfaces Anal. Chim. Acta., 558 (1–2) (2006), pp. 115-124, 10.1016/j.aca.2005.11.041
Hou et al., 2018 C. Hou, L.Y. Shao, W. Hu, D.Z. Zhang, C.M. Zhao, J.P. Xing, X.F. Huang, M. Hu Characteristics and aging of traffic-derived particles in a highway tunnel at a coastal city in southern China Sci. Total. Environ., 619–620 (2018), pp. 1385-1393, 10.1016/j.scitotenv.2017.11.165
Hu and Wang, 2021 Y.L. Hu, S.G. Wang Formation mechanism of a severe air pollution event: A case study in the Sichuan Basin, Southwest China Atmos. Environ., 246 (2021), p. 118135, 10.1016/j.atmosenv.2020.118135
Huang et al., 2017a D. Huang, X. Hua, G.L. Xiu, Y.J. Zheng, X.Y. Yu, Y.T. Long Secondary ion mass spectrometry: The application in the analysis of atmospheric particulate matte Anal. Chim. Acta., 989 (2017), pp. 1-14, 10.1016/j.aca.2017.07.042
Huang et al., 2017b D. Huang, G.L. Xiu, M. Li, X. Hua, Y.T. Long Surface components of PM2.5 during clear and hazy days in Shanghai by ToF-SIMS Atmos. Environ., 148 (2017), pp. 175-181, 10.1016/j.atmosenv.2016.10.036
Huang et al., 2014 R.J. Huang, Y. Zhang, C. Bozzetti, K.F. Ho, J.J. Cao, Y.M. Han, K.R. Daellenbach, J.G. Slowik, S.M. Platt, F. Canonaco, P. Zotter, R. Wolf, S.M. Pieber, E.A. Bruns, M. Crippa, G. Ciarelli, A. Piazzalunga, M. Schwikowski, G. Abbaszade, J.S. Schnelle-Kreis, R. Zimmermann, Z. An, S. Szidat, U. Baltensperger, I.E. Haddad, A.S.H. Prévôt High secondary aerosol contribution to particulate pollution during haze events in China Nature, 514 (7521) (2014), pp. 218-222, 10.1038/nature13774
Jia et al., 2019 F.F Jia, K. Wu, Y.L. Che, Y.Y. Zhang, F.F. Zeng, Q. Luo, X.Y. Yu, Z.H. Zhu, Y. Zhao, F.Y. Wang ToF-SIMS analysis of chemical composition of atmospheric aerosols in Beijing Surf. Interface. Anal., 52 (5) (2019), pp. 272-282, 10.1002/sia.6710
Klaus, 1983 N. Klaus Urban aerosols, analysed by secondary ion mass spectroscopy Sci. Total. Environ., 31 (3) (1983), pp. 263-275, 10.1016/0048-9697(83)90080-3
Klaus, 1985a N. Klaus SIMS analysis of aerosols collected during a weather period with low aerosol concentrations Sci. Total. Environ., 41 (1) (1985), pp. 1-12, 10.1016/0048-9697(85)90157-3
Klaus, 1985b N. Klaus SIMS analysis of motor vehicle flue gas aerosols Sci. Total Environ., 44 (1) (1985), pp. 81-87, 10.1016/0048-9697(85)90052-X
Klaus, 1984 N. Klaus The configuration of impactor deposits analyzed by secondary ion mass spectroscopy Sci. Total Environ., 37 (2-3) (1984), pp. 187-194
Kong and Bai, 2013 S.F. Kong, Z.P. Bai Progress on the composition profiles for particulate matter from vehicle emission in source apportionment Environ. Sci. Technol., 36 (10) (2013), pp. 26-33, 10.3969/j.issn.1003-6504.2013.10.005
Kovochich et al., 2021 M. Kovochich, M. Liong, J.A. Parker, S.C. Oh, J.P. Lee, L. Xi, M.L. Kreider, K.M. Unice Chemical mapping of tire and road wear particles for single particle análisis Sci. Total. Environ., 757 (2021), p. 144085, 10.1016/j.scitotenv.2020.144085
Laskin et al., 2017 J. Laskin, A. Laskin, S.A. Nizkorodov Mass Spectrometry Analysis in Atmospheric Chemistry Anal. Chem., 90 (1) (2017), pp. 166-189, 10.1021/acs.analchem.7b04249
Li et al., 2010 H. Li, F.H. Chai, D.F. Lu, X.Z. Wang, L.Q. Deng, R.X. Ni, Y.Z. Chen Analysis of inorganic species on the surface of atmospheric aeorsol collected in Beijing using Time-of-flight Static Secondary Ion Mass Spectrometry Res. Environ. Sci., 23 (5) (2010), pp. 619-626, 10.13198/j.res.2010.05.95.lih.015
Li et al., 2015 W.J. Li, S.R. Chen, Y.S. Xu, X.C. Guo, Y.L. Sun, X.Y. Yang, Z.F. Wang, X.D. Zhao, J.M. Chen, W.X. Wang Mixing state and sources of submicron regional background aerosols in the northern Qinghai-Tibet Plateau and the influence of biomass burning Atmos. Chem. Phs., 15 (23) (2015), pp. 13365-13376, 10.5194/acp-15-13365-2015
Li et al., 2018a H. Li, J. Zhong, H. Vehkamäki, T. Kurtén, W.G. Wang, M.F. Ge, S.W. Zhang, Z.S. Li, X.H. Zhang, J.S. Francisco, X.C. Zeng Self-Catalytic reaction of SO3 and NH 3 to produce sulfamic acid and its implication to atmospheric particle formation J. Am. Chem. Soc., 140 (35) (2018), pp. 11020-11028, 10.1021/jacs.8b04928
Li et al., 2018b W.J. Li, H. Li, J.J. Li, X.L. Cheng, Z.Z. Zhang, F.H. Chai, H. Zhang, T. Yang, P.L. Duan, D.F. Lu, Y.Z. Chen TOF–SIMS surface analysis of chemical components of size–fractioned urban aerosols in a typical heavy air pollution event in Beijing J. Environ. Sci., 69 (2018), pp. 61-76, 10.1016/j.jes.2017.04.005
Li et al., 2021 W.J. Li, L. Liu, J. Zhang, L. Xu, Y.Y. Wang, Y.L. Sun, Z.B. Shi Microscopic Evidence for Phase Separation of Organic Species and Inorganic Salts in Fine Ambient Aerosol Particles Environ. Sci. Technol., 55 (4) (2021), pp. 2234-2242, 10.1021/acs.est.0c02333
Li et al., 2020a W.J. Li, L.Y. Shao, W.H. Wang, H. Li, X.M. Wang, Y.W. Li, W.J. Li, T. Jones, D.Z. Zhang Air quality improvement in response to intensified control strategies in Beijing during 2013– 2019 Sci. Total. Environ., 744 (2020), Article 140776, 10.1016/j.scitotenv.2020.140776
Li et al., 2016 W.J. Li, L.Y. Shao, D.Z. Zhang, C.U. Ro, M. Hu, X.H. Bi, H. Geng, A. Matsuki, H.Y. Niu, J.M. Chen A review of single aerosol particle studies in the atmosphere of East Asia: morphology, mixing state, source, and heterogeneous reactions J. Clean. Prod., 112 (2016), pp. 1330-1349, 10.1016/j.jclepro.2015.04.050
Li et al., 2020b Y.W. Li, L.Y. Shao, W.H. Wang, M.Y. Zhang, X.L. Feng, W.J. Li, D.Z. Zhang Airborne fiber particles: Types, size and concentration observed in Beijing Sci. Total. Environ., 705 (2020), Article 135967, 10.1016/j.scitotenv.2019.135967
Liu et al., 2016 L. Liu, Y.L. Wang, S.Y. Du, W.J. Zhang, L.J. Hou, S. Vedal, B. Han, W. Yang, M.D. Chen, Z.P. Bai Characteristics of atmospheric single particles during haze periods in a typical urban area of Beijing: A case study in October, 2014 J. Environ. Sci., 40 (2016), pp. 145-153, 10.1016/j.jes.2015.10.027
Liu et al., 2020 S.C. Liu, J. Xing, S.X. Wang, D. Ding, L. Chen, J.M. Hao Revealing the impacts of transboundary pollution on PM2.5-related deaths in China Environ. Int., 134 (2020), p. 105323, 10.1016/j.envint.2019.105323
Liu et al., 2019 Z.R. Liu, B. Hu, D.S. Ji, M.T. Cheng, W.K. Gao, S.Z. Shi, Y.Z. Xie, S.H. Yang, M. Gao, H.B. Fu, J.M. Chen, Y.S. Wang Characteristics of fine particle explosive growth events in Beijing, China: Seasonal variation, chemical evolution pattern and formation mechanism Sci. Total. Environ., 687 (2019), pp. 1073-1086, 10.1016/j.scitotenv.2019.06.068
Lorelei et al., 2020 J.A. Lorelei, H. Thompson, L.D. Knibbs, M. Kowalski, J. Cyrys, J.V. Niemi, A. Kousa, H. Timonen, K. Luoma, T. Petäjä, D. Beddows, R.M. Harrison, P. Hopke, L. Morawska Long-term trends in PM2.5 mass and particle number concentrations in urban air: The impacts of mitigation measures and extreme events due to changing climates Environ. Pollut., 263 (2020), p. 114500, 10.1016/j.envpol.2020.114500
Mayama et al., 2013 N. Mayama, Y. Miura, K. Misawa, A. Takami, T. Sakamoto, M. Fujii Characterization of Black Carbon in Fine Aerosol Particles Using High Lateral Resolution TOF-SIMS Anal. Sci., 29 (4) (2013), pp. 479-482, 10.2116/analsci.29.479
Meng et al., 2018 K. Meng, X.D. Xu, X.H. Cheng, X.B. Xu, X.L. Qu, W.H. Zhu, C.P. Ma, Y.L. Yang, Y.G. Zhao Spatio-temporal variations in SO2 and NO2 emissions caused by heating over the Beijing-Tianjin-Hebei Region constrained by an adaptive nudging method with OMI data Sci. Total. Environ., 642 (2018), pp. 543-552, 10.1016/j.scitotenv.2018.06.021
MEP, 2016 MEP (Ministry of Ecology and Environment of the People's Republic of China), 2016. China Environmental Bulletin, 2015. http://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/201606/P020160602333160471955.pdf. (Accessed 20 May 2016) (in Chinese).
Nair et al., 2004 A.P. Nair, B.J. Tyler, R.E. Peterson Application of a cryo-stage in the TOF-SIMS analysis of atmospheric aerosol surfaces Appl. Surf. Sci., 231–232 (2004), pp. 538-542, 10.1016/j.apsusc.2004.03.055
Palma et al., 2007 C.F. Palma, G.J. Evans, R.N.S. Sodhi Imaging of aerosols using time of flight secondary ion mass spectrometry Appl. Surf. Sci., 253 (14) (2007), pp. 5951-5956, 10.1016/j.apsusc.2006.12.126
Peterson et al., 2006 R.E. Peterson, A. Nair, S. Dambach, H.F. Arlinghaus, B.J. Tyler Characterization of individual atmospheric aerosol particles with SIMS and laser-SNMS Appl. Surf. Sci., 252 (19) (2006), pp. 7006-7009, 10.1016/j.apsusc.2006.02.279
Peterson and Tyler, 2002 R.E. Peterson, B.J. Tyler Analysis of organic and inorganic species on the surface of atmospheric aerosol using time-of-flight secondary ion mass spectrometry (TOF-SIMS) Atmos. Environ., 36 (39–40) (2002), pp. 6041-6049, 10.1016/S1352-2310(02)00686-6
Peterson and Tyler, 2003 R.E. Peterson, B.J. Tyler Surface composition of atmospheric aerosol: individual particle characterization by TOF-SIMS Appl. Surf. Sci., 203–204 (2003), pp. 751-756, 10.1016/S0169-4332(02)00812-7
Rinnen et al., 2015 S. Rinnen, C. Stroth, A. Ridsse, C. Ostertag-Henning, H.F. Arlinghaus Characterization and identification of minerals in rocks by ToF-SIMS and principal component análisis Appl. Surf. Sci., 349 (2015), pp. 622-628, 10.1016/j.apsusc.2015.04.231
Rogowski and Bem, 2007 J. Rogowski, H. Bem Surface analysis of the size-fractioned urban aerosols by secondary ion mass spectrometry (ToF-SIMS) Cent. Eur. J. Chem., 5 (1) (2007), pp. 132-143, 10.2478/s11532-006-0066-5
Shao et al., 2017 L.Y. Shao, Y. Hu, R.R. Shen, K. Schäfer, J. Wang, J.J. Wang, J.S. Kreis, R. Zimmermann, K. Kelly BéruBé, P. Suppan Seasonal variation of particle-induced oxidative potential of airborne particulate matter in Beijing Sci. Total. Environ., 579 (2017), pp. 1152-1160, 10.1016/j.scitotenv.2016.11.094
Shao et al., 2021 L.Y. Shao, J. Li, M.Y. Zhang, X.M. Wang, Y.W. Li, T. Jones, X.L. Feng, L.F.O. Silva, W.J. Li Morphology, composition and mixing state of individual airborne particles: Effects of the 2017 Action Plan in Beijing China. J. Clean. Prod., 329 (2021), p. 129748, 10.1016/j.jclepro.2021.129748
Shao et al., 2018a L.Y. Shao, W.H. Wang, J.P. Xing, W.J. Li, H.Y. Niu, C. Hou, S.S. Yang Physicochemical Characteristicsand Effectsof Airborne Particles: Research Progressand Prospects Earth. Sci., 43 (5) (2018), pp. 1691-1708, 10.3799/dqkx.2018.422
Shao et al., 2018b P.Y. Shao, H.Z. Tian, Y.J. Sun, H.J. Liu, B.B. Wu, S.H. Liu, X.Y. Liu, Y.M. Wu, W.Z. Liang, Y. Wang, J.J. Gao, Y.F. Xue, X.X. Bai, W. Liu, S.M. Lin, G.Z. Hu Characterizing remarkable changes of severe haze events and chemical compositions in multi-size airborne particles (PM1, PM2.5 and PM10) from January 2013 to 2016–2017 winter in Beijing China. Atmos. Environ., 189 (2018), pp. 133-144, 10.1016/j.atmosenv.2018.06.038
Szynkowska et al., 2008 M.I. Szynkowska, A. Pawlaczyk, J. Rogowski ToF-SIMS and SEM-EDS analysis of the surface of chosen bioindicators Appl. Surf. Sci., 255 (4) (2008), pp. 1165-1169, 10.1016/j.apsusc.2008.05.148
Tervahattu et al., 2002 H. Tervahattu, J. Juhanoja, K. Kupiainen Identification of an organic coating on marine aerosol particles by TOF-SIMS ACH 18–1–ACH–7 J. Geophys. Res-Atmos., 107 (D16) (2002), 10.1029/2001JD001403
The State Council of China, 2013 The State Council of China, 2013. Air pollution prevention and control action plan. http://www.gov.cn/zwgk/2013-09/12/content_2486773.htm. (Accessed 12 September 2013) (in Chinese).
Tian et al., 2019 Y.L. Tian, Y. Jiang, Q. Liu, D.X. Xu, S.D. Zhao, L.G. He, H.J. Liu, H. Xu Temporal and spatial trends in air quality in Beijing Landscape. Urban. Plan., 185 (2019), pp. 35-43, 10.1016/j.landurbplan.2019.01.006
Tomiyasu et al., 2003 B. Tomiyasu, T. Hoshi, M. Owari, Y. Nihei TOF-SIMS measurements for toxic air pollutants adsorbed on the surface of airborne particles Appl. Surf. Sci., 203–204 (2003), pp. 775-778, 10.1016/S0169-4332(02)00815-2
Tomiyasu et al., 2006 B. Tomiyasu, M. Owari, Y. Nihei TOF-SIMS measurements of the exhaust particles emitted from gasoline and diesel engine vehicles Appl. Surf. Sci., 252 (19) (2006), pp. 7026-7029, 10.1016/j.apsusc.2006.02.269
Tomiyasu et al., 2004 B. Tomiyasu, K. Suzuki, T. Gotoh, M. Owari, Y. Nihei TOF-SIMS measurement for the complex particulate matter in urban air environment Appl. Surf. Sci., 231–232 (2004), pp. 515-519, 10.1016/j.apsusc.2004.03.042
Wang et al., 2017 W.H. Wang, L.Y. Shao, M.L. Guo, C. Hou, J. Xing, F. Wu Physicochemical Properties of Individual Airborne Particles in Beijing during Pollution Periods Aerosol. Air. Qual. Res., 17 (12) (2017), pp. 3209-3219, 10.4209/aaqr.2017.03.0116
Wang et al., 2021 W.H. Wang, L.Y. Shao, C. Mazzoleni, Y.W. Li, S. Kotthaus, S. Grimmond, J. Bhandari, J.P. Xing, X.L. Feng, M.Y. Zhang, Z.B. Shi Measurement report: Comparison of wintertime individual particles at ground level and above the mixed layer in urban Beijing Atmos. Chem. Phys., 21 (7) (2021), pp. 5301-5314, 10.5194/acp-21-1-2021
Wu et al., 2022 L.Y. Wu, X.Y. Zhang, J.Y. Sun, Y. Wang, J.T. Zhong, Z.Y. Meng Intensified wintertime secondary inorganic aerosol formation during heavy haze pollution episod es (HPEs) in Beijing, ChinaJ. Environ. Sci-China (2022), 10.1016/j.jes.2022.01.008
Yuan et al., 2015 Q. Yuan, W.J. Li, S.Z. Zhou, L.X. Yang, J.W. Chi, X. Sui, W.X. Wang Integrated evaluation of aerosols during haze-fog episodes at one regional background site in North China Plain Atmos. Res., 156 (2015), pp. 102-110, 10.1016/j.atmosres.2015.01.002
Zhang et al., 2016 Z.Z. Zhang, H. Li, H.Y. Liu, R.X. Ni, J.J. Li, L.Q. Deng, D.F. Lu, X.L. Cheng, P.L. Duan, W.J. Li A preliminary analysis of the surface chemistry of atmospheric aerosol particles in a typical urban area of Beijing J. Environ. Sci., 47 (2016), pp. 71-81, 10.1016/j.jes.2016.01.025
Zhao et al., 2006 P. Zhao, T. Zhu, B.S. Liang, M. Hu, L. Kang, J.C. Kong Characteristics of mass Distributions of aerosol particle and its inorganic water-soluble ions in summer over a suburb farmland in Beijing Environ. Sci., 27 (2) (2006), pp. 193-199, 10.13227/j.hjkx.2006.02.001
Zhao et al., 2020 Y. Zhao, H.Y. Huang, Y.Y. Zhang, K. Wu, F.G. Zeng, J.G. Wang, X.F. Yu, Z.H. Zhu, X.Y. Yu, F.Y. Wang Atmospheric particulate characterization by ToF-SIMS in an urban site in Beijing Atmos. Environ., 220 (2020), p. 117090, 10.1016/j.atmosenv.2019.117090
Zhu et al., 2001 Y.J. Zhu, N. Olson, T.P. Beebe Surface chemical characterization of 2.5-microm particulates (PM2.5) from air pollution in Salt Lake City using TOF-SIMS, XPS, and FTIR Environ. Sci. Technol, 35 (15) (2001), pp. 3113-3121, 10.1021/es0019530
dc.relation.citationendpage.spa.fl_str_mv 14
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.rights.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
2022 Published by Elsevier B.V
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
2022 Published by Elsevier B.V
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.extent.spa.fl_str_mv 14 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.city.none.fl_str_mv Beijing
dc.publisher.spa.fl_str_mv Elsevier Inc.
dc.publisher.place.spa.fl_str_mv United States
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S1342937X22000764
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/3cbd797a-d342-40f6-a82f-f9f6d0bb3101/download
https://repositorio.cuc.edu.co/bitstreams/62cdd688-30ed-4d83-83db-7a006f710f4d/download
https://repositorio.cuc.edu.co/bitstreams/8c73cd44-a51d-46fb-8ec2-2c497c8658de/download
https://repositorio.cuc.edu.co/bitstreams/78bd7342-436a-4948-9746-1db52ab09a8d/download
bitstream.checksum.fl_str_mv 073a108546bb128179d7439e800e50e4
e30e9215131d99561d40d6b0abbe9bad
b87e11e49c8bd492218c811849cc19e2
dd75ece4f1ea77f1676541e2fb9317f1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760836673273856
spelling Li, WenjunShao, LongyiLi, ZhanpingLi, HongGao, JianLi, JinjuanZhang, HaoZhang, ZhengzhengSilva Oliveira, Luis FelipeZhang, MengyuanChen, YizhenSilva Oliveira, Marcos Leandro2022-05-17T19:42:19Z2024-03-082022-05-17T19:42:19Z2022-03-081342-937Xhttps://hdl.handle.net/11323/9172https://doi.org/10.1016/j.gr.2022.02.01310.1016/j.gr.2022.02.013Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The atmospheric aerosol particles have a potential heavy burden on environment, climate, and human health, which were closely related to the surface physicochemical properties. Time-of-flight secondary ion mass spectrometry (TOF-SIMS) technique is a powerful tool to obtain detailed surface chemical information since it has high surface sensitivity for both elements and molecular ions, and high mass resolution. In this work, size-fractioned aerosol particles in the range of 0.43–10 µm during a severe haze episode in Beijing were analyzed by TOF-SIMS, the variation characteristics of chemical species corresponding to particle size and air pollution level was investigated by the normalization of secondary ion intensities, the possible sources were identified through principal component analysis (PCA), and the influence of meteorological factors and air mass transmission were also investigated. The study results showed that the surface chemical components of PM2.5 were more complicated during haze episode than on clean days. A total of 17 organic and inorganic species were detected, including crustal elements, heavy metals, sulfate, nitrate, siliceous compounds, hydrocarbons, oxygen-containing organics, and nitrogen-containing organics. In general, the particle surface mainly contained crustal elements, hydrocarbons, and carbon-containing inorganics. Organic and secondary ions significantly increased in heavy-polluted days, indicating the aging process of particles. Inorganic compounds had a higher percentage in coarse mode, while organic compounds were higher in accumulation mode. PCA results indicated that urban aerosol during this haze episode mainly came from vehicle emissions (24.7%), coal-fired combustion (22.4%), organic aerosol (19.3%), and dust resuspension (19.6%). The northern air mass could facilitate the dilution of air pollutants with the surface secondary formed components of particles significantly decreased.14 páginasapplication/pdfengElsevier Inc.United StatesAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)2022 Published by Elsevier B.Vhttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfSurface chemistry of atmospheric nanoparticles during a haze episode in Beijing by TOF-SIMSArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionhttps://www.sciencedirect.com/science/article/pii/S1342937X22000764BeijingGondwana ResearchAlmstrand et al., 2016 A.C. Almstrand, E. Ljungström, J. Lausmaa, B. Bake, P. Sjövall, A.C. Olin Airway monitoring by collection and mass spectrometric analysis of exhaled particles Anal. Chem., 81 (2) (2016), pp. 662-668, 10.1021/ac802055kBaril et al., 1992 M. Baril, N. Klaus, R. Leduc Aerosols characterization in a forested site in Québec, Canada Sci. Total. Environ., 116 (3) (1992), pp. 221-242, 10.1016/0048-9697(92)90451-WCai et al., 2017 L.S. Cai, M.C. Xia, Z.Y. Wang, Y.B. Zhao, Z.P. Li, S.C. Zhang, X.R. Zhang Chemical Visualization of Sweat Pores in Fingerprints Using GO-Enhanced TOF-SIMS Anal. Chem., 89 (16) (2017), pp. 8372-8376, 10.1021/acs.analchem.7b01629Cheng et al., 2014 W.J. Cheng, L.T. Weng, Y.J. Li, A. Lau, C. Chan, C.M. Chan Characterization of size-segregated aerosols using ToF-SIMS imaging and depth profiling Surf. Interface. Anal., 46 (7) (2014), pp. 480-488, 10.1002/sia.5552Chi et al., 2017 J.W. Chi, C.J. Li, J.Y. Sun, J. Zhang, H. Wang, H.T. Wang, W.J. Li Physico-chemical Characteristics of Individual Aerosol Particles in Marine Atmosphere on South Hemisphere Environ. Sci., 38 (03) (2017), pp. 903-910 (In Chinese with English Abstract)Fan et al., 2016 J.S. Fan, L.Y. Shao, Y. Hu, J.Y. Wang, J. Wang, J.Z. Ma Classification and chemical compositions of individual particles at an eastern marginal site of Tibetan Plateau Atmos. Pollut. Res., 7 (5) (2016), pp. 833-842, 10.1016/j.apr.2016.04.007Feng et al., 2019 Y.Y. Feng, M. Ning, Y. Lei, Y.M. Sun, W. Liu, J.N. Wang Defending blue sky in China: Effectiveness of the “Air Pollution Prevention and Control Action Plan” on air quality improvements from 2013 to 2017 J. Environ. Manage., 252 (2019), p. 109603, 10.1016/j.jenvman.2019.109603Fukuhara et al., 2008 N. Fukuhara, K. Suzuki, K. Takeda, Y. Nihei Characterization of environmental nanoparticles Appl. Surf. Sci., 255 (4) (2008), pp. 1538-1540, 10.1016/j.apsusc.2008.05.013Gard et al., 1998 E.E. Gard, M.J. Kleeman, D.S. Gross, L.S. Hughes, J.O. Allen, B.D. Morrical, D.P. Fergenson, T. Dienes, M.E. Galli, R.J. Johnson, G.R. Cass, K.A. Prather Direct Observation of Heterogeneous Chemistry in the Atmosphere Science, 279 (5354) (1998), pp. 1184-1187, 10.1126/science.279.5354.1184Ham et al., 2002 R.V. Ham, A. Adriaens, P. Prati, A. Zucchiatti, L.V. Vaeck, F. Adams Static secondary ion mass spectrometry as a new analytical tool for measuring atmospheric particles on insulating substrates Atmos. Environ., 36 (5) (2002), pp. 899-909, 10.1016/S1352-2310(01)00436-8Ham et al., 2000 R.V. Ham, A. Adriaens, L.V. Vaeck, F. Adams TOF-SIMS, a new versatile technique for the analysis of environmental aerosols? J. Aerosol. Sci., 31 (2000), pp. 396-397, 10.1016/S0021-8502(00)90407-5Ham et al., 2006 R.V. Ham, A. Adriaens, L.V. Vaeck, F. Adams The use of time-of-flight static secondary ion mass spectrometry imaging for the molecular characterization of single aerosol surfaces Anal. Chim. Acta., 558 (1–2) (2006), pp. 115-124, 10.1016/j.aca.2005.11.041Hou et al., 2018 C. Hou, L.Y. Shao, W. Hu, D.Z. Zhang, C.M. Zhao, J.P. Xing, X.F. Huang, M. Hu Characteristics and aging of traffic-derived particles in a highway tunnel at a coastal city in southern China Sci. Total. Environ., 619–620 (2018), pp. 1385-1393, 10.1016/j.scitotenv.2017.11.165Hu and Wang, 2021 Y.L. Hu, S.G. Wang Formation mechanism of a severe air pollution event: A case study in the Sichuan Basin, Southwest China Atmos. Environ., 246 (2021), p. 118135, 10.1016/j.atmosenv.2020.118135Huang et al., 2017a D. Huang, X. Hua, G.L. Xiu, Y.J. Zheng, X.Y. Yu, Y.T. Long Secondary ion mass spectrometry: The application in the analysis of atmospheric particulate matte Anal. Chim. Acta., 989 (2017), pp. 1-14, 10.1016/j.aca.2017.07.042Huang et al., 2017b D. Huang, G.L. Xiu, M. Li, X. Hua, Y.T. Long Surface components of PM2.5 during clear and hazy days in Shanghai by ToF-SIMS Atmos. Environ., 148 (2017), pp. 175-181, 10.1016/j.atmosenv.2016.10.036Huang et al., 2014 R.J. Huang, Y. Zhang, C. Bozzetti, K.F. Ho, J.J. Cao, Y.M. Han, K.R. Daellenbach, J.G. Slowik, S.M. Platt, F. Canonaco, P. Zotter, R. Wolf, S.M. Pieber, E.A. Bruns, M. Crippa, G. Ciarelli, A. Piazzalunga, M. Schwikowski, G. Abbaszade, J.S. Schnelle-Kreis, R. Zimmermann, Z. An, S. Szidat, U. Baltensperger, I.E. Haddad, A.S.H. Prévôt High secondary aerosol contribution to particulate pollution during haze events in China Nature, 514 (7521) (2014), pp. 218-222, 10.1038/nature13774Jia et al., 2019 F.F Jia, K. Wu, Y.L. Che, Y.Y. Zhang, F.F. Zeng, Q. Luo, X.Y. Yu, Z.H. Zhu, Y. Zhao, F.Y. Wang ToF-SIMS analysis of chemical composition of atmospheric aerosols in Beijing Surf. Interface. Anal., 52 (5) (2019), pp. 272-282, 10.1002/sia.6710Klaus, 1983 N. Klaus Urban aerosols, analysed by secondary ion mass spectroscopy Sci. Total. Environ., 31 (3) (1983), pp. 263-275, 10.1016/0048-9697(83)90080-3Klaus, 1985a N. Klaus SIMS analysis of aerosols collected during a weather period with low aerosol concentrations Sci. Total. Environ., 41 (1) (1985), pp. 1-12, 10.1016/0048-9697(85)90157-3Klaus, 1985b N. Klaus SIMS analysis of motor vehicle flue gas aerosols Sci. Total Environ., 44 (1) (1985), pp. 81-87, 10.1016/0048-9697(85)90052-XKlaus, 1984 N. Klaus The configuration of impactor deposits analyzed by secondary ion mass spectroscopy Sci. Total Environ., 37 (2-3) (1984), pp. 187-194Kong and Bai, 2013 S.F. Kong, Z.P. Bai Progress on the composition profiles for particulate matter from vehicle emission in source apportionment Environ. Sci. Technol., 36 (10) (2013), pp. 26-33, 10.3969/j.issn.1003-6504.2013.10.005Kovochich et al., 2021 M. Kovochich, M. Liong, J.A. Parker, S.C. Oh, J.P. Lee, L. Xi, M.L. Kreider, K.M. Unice Chemical mapping of tire and road wear particles for single particle análisis Sci. Total. Environ., 757 (2021), p. 144085, 10.1016/j.scitotenv.2020.144085Laskin et al., 2017 J. Laskin, A. Laskin, S.A. Nizkorodov Mass Spectrometry Analysis in Atmospheric Chemistry Anal. Chem., 90 (1) (2017), pp. 166-189, 10.1021/acs.analchem.7b04249Li et al., 2010 H. Li, F.H. Chai, D.F. Lu, X.Z. Wang, L.Q. Deng, R.X. Ni, Y.Z. Chen Analysis of inorganic species on the surface of atmospheric aeorsol collected in Beijing using Time-of-flight Static Secondary Ion Mass Spectrometry Res. Environ. Sci., 23 (5) (2010), pp. 619-626, 10.13198/j.res.2010.05.95.lih.015Li et al., 2015 W.J. Li, S.R. Chen, Y.S. Xu, X.C. Guo, Y.L. Sun, X.Y. Yang, Z.F. Wang, X.D. Zhao, J.M. Chen, W.X. Wang Mixing state and sources of submicron regional background aerosols in the northern Qinghai-Tibet Plateau and the influence of biomass burning Atmos. Chem. Phs., 15 (23) (2015), pp. 13365-13376, 10.5194/acp-15-13365-2015Li et al., 2018a H. Li, J. Zhong, H. Vehkamäki, T. Kurtén, W.G. Wang, M.F. Ge, S.W. Zhang, Z.S. Li, X.H. Zhang, J.S. Francisco, X.C. Zeng Self-Catalytic reaction of SO3 and NH 3 to produce sulfamic acid and its implication to atmospheric particle formation J. Am. Chem. Soc., 140 (35) (2018), pp. 11020-11028, 10.1021/jacs.8b04928Li et al., 2018b W.J. Li, H. Li, J.J. Li, X.L. Cheng, Z.Z. Zhang, F.H. Chai, H. Zhang, T. Yang, P.L. Duan, D.F. Lu, Y.Z. Chen TOF–SIMS surface analysis of chemical components of size–fractioned urban aerosols in a typical heavy air pollution event in Beijing J. Environ. Sci., 69 (2018), pp. 61-76, 10.1016/j.jes.2017.04.005Li et al., 2021 W.J. Li, L. Liu, J. Zhang, L. Xu, Y.Y. Wang, Y.L. Sun, Z.B. Shi Microscopic Evidence for Phase Separation of Organic Species and Inorganic Salts in Fine Ambient Aerosol Particles Environ. Sci. Technol., 55 (4) (2021), pp. 2234-2242, 10.1021/acs.est.0c02333Li et al., 2020a W.J. Li, L.Y. Shao, W.H. Wang, H. Li, X.M. Wang, Y.W. Li, W.J. Li, T. Jones, D.Z. Zhang Air quality improvement in response to intensified control strategies in Beijing during 2013– 2019 Sci. Total. Environ., 744 (2020), Article 140776, 10.1016/j.scitotenv.2020.140776Li et al., 2016 W.J. Li, L.Y. Shao, D.Z. Zhang, C.U. Ro, M. Hu, X.H. Bi, H. Geng, A. Matsuki, H.Y. Niu, J.M. Chen A review of single aerosol particle studies in the atmosphere of East Asia: morphology, mixing state, source, and heterogeneous reactions J. Clean. Prod., 112 (2016), pp. 1330-1349, 10.1016/j.jclepro.2015.04.050Li et al., 2020b Y.W. Li, L.Y. Shao, W.H. Wang, M.Y. Zhang, X.L. Feng, W.J. Li, D.Z. Zhang Airborne fiber particles: Types, size and concentration observed in Beijing Sci. Total. Environ., 705 (2020), Article 135967, 10.1016/j.scitotenv.2019.135967Liu et al., 2016 L. Liu, Y.L. Wang, S.Y. Du, W.J. Zhang, L.J. Hou, S. Vedal, B. Han, W. Yang, M.D. Chen, Z.P. Bai Characteristics of atmospheric single particles during haze periods in a typical urban area of Beijing: A case study in October, 2014 J. Environ. Sci., 40 (2016), pp. 145-153, 10.1016/j.jes.2015.10.027Liu et al., 2020 S.C. Liu, J. Xing, S.X. Wang, D. Ding, L. Chen, J.M. Hao Revealing the impacts of transboundary pollution on PM2.5-related deaths in China Environ. Int., 134 (2020), p. 105323, 10.1016/j.envint.2019.105323Liu et al., 2019 Z.R. Liu, B. Hu, D.S. Ji, M.T. Cheng, W.K. Gao, S.Z. Shi, Y.Z. Xie, S.H. Yang, M. Gao, H.B. Fu, J.M. Chen, Y.S. Wang Characteristics of fine particle explosive growth events in Beijing, China: Seasonal variation, chemical evolution pattern and formation mechanism Sci. Total. Environ., 687 (2019), pp. 1073-1086, 10.1016/j.scitotenv.2019.06.068Lorelei et al., 2020 J.A. Lorelei, H. Thompson, L.D. Knibbs, M. Kowalski, J. Cyrys, J.V. Niemi, A. Kousa, H. Timonen, K. Luoma, T. Petäjä, D. Beddows, R.M. Harrison, P. Hopke, L. Morawska Long-term trends in PM2.5 mass and particle number concentrations in urban air: The impacts of mitigation measures and extreme events due to changing climates Environ. Pollut., 263 (2020), p. 114500, 10.1016/j.envpol.2020.114500Mayama et al., 2013 N. Mayama, Y. Miura, K. Misawa, A. Takami, T. Sakamoto, M. Fujii Characterization of Black Carbon in Fine Aerosol Particles Using High Lateral Resolution TOF-SIMS Anal. Sci., 29 (4) (2013), pp. 479-482, 10.2116/analsci.29.479Meng et al., 2018 K. Meng, X.D. Xu, X.H. Cheng, X.B. Xu, X.L. Qu, W.H. Zhu, C.P. Ma, Y.L. Yang, Y.G. Zhao Spatio-temporal variations in SO2 and NO2 emissions caused by heating over the Beijing-Tianjin-Hebei Region constrained by an adaptive nudging method with OMI data Sci. Total. Environ., 642 (2018), pp. 543-552, 10.1016/j.scitotenv.2018.06.021MEP, 2016 MEP (Ministry of Ecology and Environment of the People's Republic of China), 2016. China Environmental Bulletin, 2015. http://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/201606/P020160602333160471955.pdf. (Accessed 20 May 2016) (in Chinese).Nair et al., 2004 A.P. Nair, B.J. Tyler, R.E. Peterson Application of a cryo-stage in the TOF-SIMS analysis of atmospheric aerosol surfaces Appl. Surf. Sci., 231–232 (2004), pp. 538-542, 10.1016/j.apsusc.2004.03.055Palma et al., 2007 C.F. Palma, G.J. Evans, R.N.S. Sodhi Imaging of aerosols using time of flight secondary ion mass spectrometry Appl. Surf. Sci., 253 (14) (2007), pp. 5951-5956, 10.1016/j.apsusc.2006.12.126Peterson et al., 2006 R.E. Peterson, A. Nair, S. Dambach, H.F. Arlinghaus, B.J. Tyler Characterization of individual atmospheric aerosol particles with SIMS and laser-SNMS Appl. Surf. Sci., 252 (19) (2006), pp. 7006-7009, 10.1016/j.apsusc.2006.02.279Peterson and Tyler, 2002 R.E. Peterson, B.J. Tyler Analysis of organic and inorganic species on the surface of atmospheric aerosol using time-of-flight secondary ion mass spectrometry (TOF-SIMS) Atmos. Environ., 36 (39–40) (2002), pp. 6041-6049, 10.1016/S1352-2310(02)00686-6Peterson and Tyler, 2003 R.E. Peterson, B.J. Tyler Surface composition of atmospheric aerosol: individual particle characterization by TOF-SIMS Appl. Surf. Sci., 203–204 (2003), pp. 751-756, 10.1016/S0169-4332(02)00812-7Rinnen et al., 2015 S. Rinnen, C. Stroth, A. Ridsse, C. Ostertag-Henning, H.F. Arlinghaus Characterization and identification of minerals in rocks by ToF-SIMS and principal component análisis Appl. Surf. Sci., 349 (2015), pp. 622-628, 10.1016/j.apsusc.2015.04.231Rogowski and Bem, 2007 J. Rogowski, H. Bem Surface analysis of the size-fractioned urban aerosols by secondary ion mass spectrometry (ToF-SIMS) Cent. Eur. J. Chem., 5 (1) (2007), pp. 132-143, 10.2478/s11532-006-0066-5Shao et al., 2017 L.Y. Shao, Y. Hu, R.R. Shen, K. Schäfer, J. Wang, J.J. Wang, J.S. Kreis, R. Zimmermann, K. Kelly BéruBé, P. Suppan Seasonal variation of particle-induced oxidative potential of airborne particulate matter in Beijing Sci. Total. Environ., 579 (2017), pp. 1152-1160, 10.1016/j.scitotenv.2016.11.094Shao et al., 2021 L.Y. Shao, J. Li, M.Y. Zhang, X.M. Wang, Y.W. Li, T. Jones, X.L. Feng, L.F.O. Silva, W.J. Li Morphology, composition and mixing state of individual airborne particles: Effects of the 2017 Action Plan in Beijing China. J. Clean. Prod., 329 (2021), p. 129748, 10.1016/j.jclepro.2021.129748Shao et al., 2018a L.Y. Shao, W.H. Wang, J.P. Xing, W.J. Li, H.Y. Niu, C. Hou, S.S. Yang Physicochemical Characteristicsand Effectsof Airborne Particles: Research Progressand Prospects Earth. Sci., 43 (5) (2018), pp. 1691-1708, 10.3799/dqkx.2018.422Shao et al., 2018b P.Y. Shao, H.Z. Tian, Y.J. Sun, H.J. Liu, B.B. Wu, S.H. Liu, X.Y. Liu, Y.M. Wu, W.Z. Liang, Y. Wang, J.J. Gao, Y.F. Xue, X.X. Bai, W. Liu, S.M. Lin, G.Z. Hu Characterizing remarkable changes of severe haze events and chemical compositions in multi-size airborne particles (PM1, PM2.5 and PM10) from January 2013 to 2016–2017 winter in Beijing China. Atmos. Environ., 189 (2018), pp. 133-144, 10.1016/j.atmosenv.2018.06.038Szynkowska et al., 2008 M.I. Szynkowska, A. Pawlaczyk, J. Rogowski ToF-SIMS and SEM-EDS analysis of the surface of chosen bioindicators Appl. Surf. Sci., 255 (4) (2008), pp. 1165-1169, 10.1016/j.apsusc.2008.05.148Tervahattu et al., 2002 H. Tervahattu, J. Juhanoja, K. Kupiainen Identification of an organic coating on marine aerosol particles by TOF-SIMS ACH 18–1–ACH–7 J. Geophys. Res-Atmos., 107 (D16) (2002), 10.1029/2001JD001403The State Council of China, 2013 The State Council of China, 2013. Air pollution prevention and control action plan. http://www.gov.cn/zwgk/2013-09/12/content_2486773.htm. (Accessed 12 September 2013) (in Chinese).Tian et al., 2019 Y.L. Tian, Y. Jiang, Q. Liu, D.X. Xu, S.D. Zhao, L.G. He, H.J. Liu, H. Xu Temporal and spatial trends in air quality in Beijing Landscape. Urban. Plan., 185 (2019), pp. 35-43, 10.1016/j.landurbplan.2019.01.006Tomiyasu et al., 2003 B. Tomiyasu, T. Hoshi, M. Owari, Y. Nihei TOF-SIMS measurements for toxic air pollutants adsorbed on the surface of airborne particles Appl. Surf. Sci., 203–204 (2003), pp. 775-778, 10.1016/S0169-4332(02)00815-2Tomiyasu et al., 2006 B. Tomiyasu, M. Owari, Y. Nihei TOF-SIMS measurements of the exhaust particles emitted from gasoline and diesel engine vehicles Appl. Surf. Sci., 252 (19) (2006), pp. 7026-7029, 10.1016/j.apsusc.2006.02.269Tomiyasu et al., 2004 B. Tomiyasu, K. Suzuki, T. Gotoh, M. Owari, Y. Nihei TOF-SIMS measurement for the complex particulate matter in urban air environment Appl. Surf. Sci., 231–232 (2004), pp. 515-519, 10.1016/j.apsusc.2004.03.042Wang et al., 2017 W.H. Wang, L.Y. Shao, M.L. Guo, C. Hou, J. Xing, F. Wu Physicochemical Properties of Individual Airborne Particles in Beijing during Pollution Periods Aerosol. Air. Qual. Res., 17 (12) (2017), pp. 3209-3219, 10.4209/aaqr.2017.03.0116Wang et al., 2021 W.H. Wang, L.Y. Shao, C. Mazzoleni, Y.W. Li, S. Kotthaus, S. Grimmond, J. Bhandari, J.P. Xing, X.L. Feng, M.Y. Zhang, Z.B. Shi Measurement report: Comparison of wintertime individual particles at ground level and above the mixed layer in urban Beijing Atmos. Chem. Phys., 21 (7) (2021), pp. 5301-5314, 10.5194/acp-21-1-2021Wu et al., 2022 L.Y. Wu, X.Y. Zhang, J.Y. Sun, Y. Wang, J.T. Zhong, Z.Y. Meng Intensified wintertime secondary inorganic aerosol formation during heavy haze pollution episod es (HPEs) in Beijing, ChinaJ. Environ. Sci-China (2022), 10.1016/j.jes.2022.01.008Yuan et al., 2015 Q. Yuan, W.J. Li, S.Z. Zhou, L.X. Yang, J.W. Chi, X. Sui, W.X. Wang Integrated evaluation of aerosols during haze-fog episodes at one regional background site in North China Plain Atmos. Res., 156 (2015), pp. 102-110, 10.1016/j.atmosres.2015.01.002Zhang et al., 2016 Z.Z. Zhang, H. Li, H.Y. Liu, R.X. Ni, J.J. Li, L.Q. Deng, D.F. Lu, X.L. Cheng, P.L. Duan, W.J. Li A preliminary analysis of the surface chemistry of atmospheric aerosol particles in a typical urban area of Beijing J. Environ. Sci., 47 (2016), pp. 71-81, 10.1016/j.jes.2016.01.025Zhao et al., 2006 P. Zhao, T. Zhu, B.S. Liang, M. Hu, L. Kang, J.C. Kong Characteristics of mass Distributions of aerosol particle and its inorganic water-soluble ions in summer over a suburb farmland in Beijing Environ. Sci., 27 (2) (2006), pp. 193-199, 10.13227/j.hjkx.2006.02.001Zhao et al., 2020 Y. Zhao, H.Y. Huang, Y.Y. Zhang, K. Wu, F.G. Zeng, J.G. Wang, X.F. Yu, Z.H. Zhu, X.Y. Yu, F.Y. Wang Atmospheric particulate characterization by ToF-SIMS in an urban site in Beijing Atmos. Environ., 220 (2020), p. 117090, 10.1016/j.atmosenv.2019.117090Zhu et al., 2001 Y.J. Zhu, N. Olson, T.P. Beebe Surface chemical characterization of 2.5-microm particulates (PM2.5) from air pollution in Salt Lake City using TOF-SIMS, XPS, and FTIR Environ. Sci. Technol, 35 (15) (2001), pp. 3113-3121, 10.1021/es0019530141Air pollutionAerosol particlesSurface chemical compositionSource appointmentTOF–SIMSPublicationORIGINALSurface chemistry of atmospheric nanoparticles during a haze episode in Beijing by TOF-SIMS.pdfSurface chemistry of atmospheric nanoparticles during a haze episode in Beijing by TOF-SIMS.pdfapplication/pdf4772446https://repositorio.cuc.edu.co/bitstreams/3cbd797a-d342-40f6-a82f-f9f6d0bb3101/download073a108546bb128179d7439e800e50e4MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/62cdd688-30ed-4d83-83db-7a006f710f4d/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTSurface chemistry of atmospheric nanoparticles during a haze episode in Beijing by TOF-SIMS.pdf.txtSurface chemistry of atmospheric nanoparticles during a haze episode in Beijing by TOF-SIMS.pdf.txttext/plain70456https://repositorio.cuc.edu.co/bitstreams/8c73cd44-a51d-46fb-8ec2-2c497c8658de/downloadb87e11e49c8bd492218c811849cc19e2MD53THUMBNAILSurface chemistry of atmospheric nanoparticles during a haze episode in Beijing by TOF-SIMS.pdf.jpgSurface chemistry of atmospheric nanoparticles during a haze episode in Beijing by TOF-SIMS.pdf.jpgimage/jpeg16110https://repositorio.cuc.edu.co/bitstreams/78bd7342-436a-4948-9746-1db52ab09a8d/downloaddd75ece4f1ea77f1676541e2fb9317f1MD5411323/9172oai:repositorio.cuc.edu.co:11323/91722024-09-17 14:08:10.595https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==