Analyzing and predicting power consumption profiles using big data
The Euclidean distance (ED), the mean absolute error (MAE), the mean absolute percentage error (MAPE) and the root of the mean quadratic error (RMQE) are used to evaluate the predictive capability of the models supported by each statistical method, asserting, according to the assessment, that the be...
- Autores:
-
amelec, viloria
Prieto Pulido, Ronald Antonio
García Guiliany, Jesús
Martínez Ventura, Jairo
Hernández Palma, Hugo
Jinete Torres, José
REDONDO BILBAO, OSMAN ENRIQUE
Pineda Lezam, Omar Bonerge
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/5828
- Acceso en línea:
- https://hdl.handle.net/11323/5828
https://repositorio.cuc.edu.co/
- Palabra clave:
- Prediction
Power consumption
Big Data
ARIMA
Predicción
Consumo de energía
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_f7140a16971e1d8eaee19707e1a9ae52 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/5828 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Analyzing and predicting power consumption profiles using big data |
dc.title.translated.spa.fl_str_mv |
Análisis y predicción de perfiles de consumo de energía utilizando big data |
title |
Analyzing and predicting power consumption profiles using big data |
spellingShingle |
Analyzing and predicting power consumption profiles using big data Prediction Power consumption Big Data ARIMA Predicción Consumo de energía |
title_short |
Analyzing and predicting power consumption profiles using big data |
title_full |
Analyzing and predicting power consumption profiles using big data |
title_fullStr |
Analyzing and predicting power consumption profiles using big data |
title_full_unstemmed |
Analyzing and predicting power consumption profiles using big data |
title_sort |
Analyzing and predicting power consumption profiles using big data |
dc.creator.fl_str_mv |
amelec, viloria Prieto Pulido, Ronald Antonio García Guiliany, Jesús Martínez Ventura, Jairo Hernández Palma, Hugo Jinete Torres, José REDONDO BILBAO, OSMAN ENRIQUE Pineda Lezam, Omar Bonerge |
dc.contributor.author.spa.fl_str_mv |
amelec, viloria Prieto Pulido, Ronald Antonio García Guiliany, Jesús Martínez Ventura, Jairo Hernández Palma, Hugo Jinete Torres, José REDONDO BILBAO, OSMAN ENRIQUE Pineda Lezam, Omar Bonerge |
dc.subject.spa.fl_str_mv |
Prediction Power consumption Big Data ARIMA Predicción Consumo de energía |
topic |
Prediction Power consumption Big Data ARIMA Predicción Consumo de energía |
description |
The Euclidean distance (ED), the mean absolute error (MAE), the mean absolute percentage error (MAPE) and the root of the mean quadratic error (RMQE) are used to evaluate the predictive capability of the models supported by each statistical method, asserting, according to the assessment, that the best predictions come from the ARIMA method. This paper presents a prediction study for two buildings located at the University of Mumbai in India, in order to determine a method that fits the forecasts of organization expenses |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-01-15T19:30:28Z |
dc.date.available.none.fl_str_mv |
2020-01-15T19:30:28Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
18650929 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/5828 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
18650929 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/5828 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.spa.fl_str_mv |
https://doi.org/10.1007/978-981-15-1304-6_31 |
dc.relation.references.spa.fl_str_mv |
Bradley, P., Mangasarian, O.: Feature selection via concave minimization and support vector machines. In: Shavlik, J. (ed.) Machine Learning, pp. 82–90. ICML, San Francisco (1998) Hu, C., Du, S., Su, J., et al.: Discussion on the ways of purchasing and selling electricity and the mode of operation in China’s electricity sales companies under the background of new electric power reform. Power Netw. Technol. 40(11), 3293–3299 (2016) Xue, Y., Lai, Y.: The integration of great energy thinking and big datas thinking: Big data and electricity big data. Power Syst. Autom. 40(1), 1–8 (2016) Wang, Y., Chen, Q., Kang, C., et al.: Clustering of electricity consumption behaviour dynamics toward big data applications. IEEE Trans. Smart Grid 7(5), 2437–2447 (2017) Rong, L., Guosheng, F., Weidai, D.: Statistical Analysis and Application of SAS. China Machine Press, Beijing (2011) . Ozger, M., Cetinkaya, O., Akan, O.B.: Energy harvesting cognitive radio networking for IoT-enabled smart grid. Mob. Netw. Appl. 23(4), 956–966 (2017) Isasi, P., Galván, I.: Redes de Neuronas Artificiales. Un enfoque Práctico, ISBN 8420540250. Pearson (2004) Mangasarian, O.: Arbitrary-norm separating plane, Tech. rep. 97-07, Computer Science Department, University Wisconsin, Madison (1997) Bradley, P., Fayyad, U., Mangasarian, O.: Mathematical programming for data mining: formulations and challenges. Informs J. Comput. 11, 217–238 (1999) Rahmani, A.M., Liljeberg, P., Preden, J., Jantsch, A.: Fog Computing in the Internet of Things. Springer, New York (2018). ISBN 978-3-319-57638-1, ISBN 978-3-319-57639-8 (eBook) Gangurde, H.D.: Feature selection using clustering approach for big data, Int. J. Comput. Appl. (0975–8887) Innovations and Trends in Computer and Communication Engineering (ITCCE), pp. 1–3 (2014) Abualigah, L.M., Khader, A.T., Al-Beta, M.A., Alomari, O.A.: Text feature selection with a robust weight scheme and dynamic dimension reduction to text document clustering. Expert Syst. Appl. 84, 24–36 (2017) Sanchez, L., Vásquez, C., Viloria, A., Cmeza-estrada: Conglomerates of latin American countries and public policies for the sustainable development of the electric power generation sector. In: Tan, Y., Shi, Y., Tang, Q. (eds.) DMBD 2018. LNCS, vol. 10943. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93803-5_71 Sánchez, L., Vásquez, C., Viloria, A., Rodríguez Potes, L.: Greenhouse gases emissions and electric power generation in latin American countries in the period 2006–2013. In: Tan, Y., Shi, Y., Tang, Q. (eds.) DMBD 2018. LNCS, vol. 10943. Springer, Cham (2018). https://doi. org/10.1007/978-3-319-93803-5_73 Perez, R., et al.: Fault diagnosis on electrical distribution systems based on fuzzy logic. In: Tan, Y., Shi, Y., Tang, Q. (eds.) ICSI 2018. LNCS, vol. 10942, pp. 174–185. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93818-9_17 Suárez, O.M.: Application of the factorial analysis to the investigation of markets. case of study. Sci. Tech. 3(35), 281–286 (2007) Bin Mohamad, I., Usman, D.: Standardization and its effects on K-means clustering algorithm. Res. J. Appl. Sci. Eng. Technol. 6(17), 3299–3303 (2013) Carrasco, Á.: Explicando puntaje Z. Tripod.com (2003). http://aathosc.tripod.com/ PuntajeZ22.htm. Accessed 06 Dec 2017 Silva, V., Jesús, A.: Indicators systems for evaluating the efficiency of political awareness of rational use of electricity. In: Advanced Materials Research, vol. 601, pp. 618–625. Trans Tech Publications (2013) Peralta, A., Inga, E., Hincapié, R.: Optimal scalability of FiWi networks based on multistage stochastic programming and policies. J. Opt. Commun. Netw. 9(12), 1172 (2017) Ramón, P., Vásquez, C., Viloria, A.: An intelligent strategy for faults location in distribution networks with distributed generation. J. Intell. Fuzzy Systems Preprint, 1–11 (2019) Gonen, T.: Electric Power Distribution System Engineering, vol. II. McGraw-Hill, Sacramento (1986) Ghia, A., Rosso, A.: Análisis de respuesta de la demanda para mejorar la eficiencia de sistemas eléctricos, 2nd edn. Camara Argentina de la Construccion, Buenos Aires (2009) Pérez Arriaga, J.I., Sánchez de Tembleque, L.J., Pardo, M.: La gestión de la demanda de electricidad, vol. I, no. I (2005) Microsoft: Microsoft Excel 2016, Microsoft (2016). https://products.office.com/es/excel. Accessed 03 Aug 2017 Castañeda, M.B., Cabrera, A., Navarro, Y., Vries, W.: Procesamiento de Datos y Análisis Estadístico usando SPSS, vol. 53, no. 9. Porto Alegre (2010) MathWorks: MathWorks America Latina (2017). https://la.mathworks.com/help/matlab/ index.html. Accessed 25 Aug 2017 |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Communications in Computer and Information Science |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/ac217667-9b55-4b3c-bdbe-951ebef5c02b/download https://repositorio.cuc.edu.co/bitstreams/07fc3a85-25dd-4f07-89ed-0fcedd5e3d29/download https://repositorio.cuc.edu.co/bitstreams/8391f277-5c2d-4457-a7c8-95873ccfd638/download https://repositorio.cuc.edu.co/bitstreams/4bc3f368-a27d-4529-9dbe-d4ccbf0aa7d6/download https://repositorio.cuc.edu.co/bitstreams/459d98ad-dc49-48fe-82a3-f92cacbc4347/download |
bitstream.checksum.fl_str_mv |
2c56584f61dc274ca3eed2f3dae1c445 42fd4ad1e89814f5e4a476b409eb708c 8a4605be74aa9ea9d79846c1fba20a33 ff834ebd1b7d39ec50c3c5d346ee0fa8 ff834ebd1b7d39ec50c3c5d346ee0fa8 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166693361287168 |
spelling |
amelec, viloriaPrieto Pulido, Ronald AntonioGarcía Guiliany, JesúsMartínez Ventura, JairoHernández Palma, HugoJinete Torres, JoséREDONDO BILBAO, OSMAN ENRIQUEPineda Lezam, Omar Bonerge2020-01-15T19:30:28Z2020-01-15T19:30:28Z201918650929https://hdl.handle.net/11323/5828Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The Euclidean distance (ED), the mean absolute error (MAE), the mean absolute percentage error (MAPE) and the root of the mean quadratic error (RMQE) are used to evaluate the predictive capability of the models supported by each statistical method, asserting, according to the assessment, that the best predictions come from the ARIMA method. This paper presents a prediction study for two buildings located at the University of Mumbai in India, in order to determine a method that fits the forecasts of organization expensesLa distancia euclidiana (DE), el error absoluto medio (MAE), el error porcentual absoluto medio (MAPE) y la raíz del error cuadrático medio (RMQE) se utilizan para evaluar la capacidad predictiva de los modelos soportados por cada método estadístico, afirmando, según la evaluación, que las mejores predicciones provienen del método ARIMA. Este documento presenta un estudio de predicción para dos edificios ubicados en la Universidad de Mumbai en India, con el fin de determinar un método que se ajuste a las previsiones de gastos de la organización.Pérez Arriaga, J.I., Sánchez de Tembleque, L.J., Pardo, M.: La gestión de la demanda de electricidad, vol. I, no. I (2005)Amelec, Viloria-will be generated-orcid-0000-0003-2673-6350-600Prieto Pulido, Ronald Antonio-will be generated-orcid-0000-0003-3901-4250-600García Guiliany, JesúsMartínez Ventura, JairoHernández Palma, HugoJinete Torres, JoséRedondo Bilbao, Osman Enrique-will be generated-orcid-0000-0002-5477-0655-600Pineda Lezam, Omar BonergeengCommunications in Computer and Information Sciencehttps://doi.org/10.1007/978-981-15-1304-6_31Bradley, P., Mangasarian, O.: Feature selection via concave minimization and support vector machines. In: Shavlik, J. (ed.) Machine Learning, pp. 82–90. ICML, San Francisco (1998)Hu, C., Du, S., Su, J., et al.: Discussion on the ways of purchasing and selling electricity and the mode of operation in China’s electricity sales companies under the background of new electric power reform. Power Netw. Technol. 40(11), 3293–3299 (2016)Xue, Y., Lai, Y.: The integration of great energy thinking and big datas thinking: Big data and electricity big data. Power Syst. Autom. 40(1), 1–8 (2016)Wang, Y., Chen, Q., Kang, C., et al.: Clustering of electricity consumption behaviour dynamics toward big data applications. IEEE Trans. Smart Grid 7(5), 2437–2447 (2017)Rong, L., Guosheng, F., Weidai, D.: Statistical Analysis and Application of SAS. China Machine Press, Beijing (2011). Ozger, M., Cetinkaya, O., Akan, O.B.: Energy harvesting cognitive radio networking for IoT-enabled smart grid. Mob. Netw. Appl. 23(4), 956–966 (2017)Isasi, P., Galván, I.: Redes de Neuronas Artificiales. Un enfoque Práctico, ISBN 8420540250. Pearson (2004)Mangasarian, O.: Arbitrary-norm separating plane, Tech. rep. 97-07, Computer Science Department, University Wisconsin, Madison (1997)Bradley, P., Fayyad, U., Mangasarian, O.: Mathematical programming for data mining: formulations and challenges. Informs J. Comput. 11, 217–238 (1999)Rahmani, A.M., Liljeberg, P., Preden, J., Jantsch, A.: Fog Computing in the Internet of Things. Springer, New York (2018). ISBN 978-3-319-57638-1, ISBN 978-3-319-57639-8 (eBook)Gangurde, H.D.: Feature selection using clustering approach for big data, Int. J. Comput. Appl. (0975–8887) Innovations and Trends in Computer and Communication Engineering (ITCCE), pp. 1–3 (2014)Abualigah, L.M., Khader, A.T., Al-Beta, M.A., Alomari, O.A.: Text feature selection with a robust weight scheme and dynamic dimension reduction to text document clustering. Expert Syst. Appl. 84, 24–36 (2017)Sanchez, L., Vásquez, C., Viloria, A., Cmeza-estrada: Conglomerates of latin American countries and public policies for the sustainable development of the electric power generation sector. In: Tan, Y., Shi, Y., Tang, Q. (eds.) DMBD 2018. LNCS, vol. 10943. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93803-5_71Sánchez, L., Vásquez, C., Viloria, A., Rodríguez Potes, L.: Greenhouse gases emissions and electric power generation in latin American countries in the period 2006–2013. In: Tan, Y., Shi, Y., Tang, Q. (eds.) DMBD 2018. LNCS, vol. 10943. Springer, Cham (2018). https://doi. org/10.1007/978-3-319-93803-5_73Perez, R., et al.: Fault diagnosis on electrical distribution systems based on fuzzy logic. In: Tan, Y., Shi, Y., Tang, Q. (eds.) ICSI 2018. LNCS, vol. 10942, pp. 174–185. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93818-9_17Suárez, O.M.: Application of the factorial analysis to the investigation of markets. case of study. Sci. Tech. 3(35), 281–286 (2007)Bin Mohamad, I., Usman, D.: Standardization and its effects on K-means clustering algorithm. Res. J. Appl. Sci. Eng. Technol. 6(17), 3299–3303 (2013)Carrasco, Á.: Explicando puntaje Z. Tripod.com (2003). http://aathosc.tripod.com/ PuntajeZ22.htm. Accessed 06 Dec 2017Silva, V., Jesús, A.: Indicators systems for evaluating the efficiency of political awareness of rational use of electricity. In: Advanced Materials Research, vol. 601, pp. 618–625. Trans Tech Publications (2013)Peralta, A., Inga, E., Hincapié, R.: Optimal scalability of FiWi networks based on multistage stochastic programming and policies. J. Opt. Commun. Netw. 9(12), 1172 (2017)Ramón, P., Vásquez, C., Viloria, A.: An intelligent strategy for faults location in distribution networks with distributed generation. J. Intell. Fuzzy Systems Preprint, 1–11 (2019)Gonen, T.: Electric Power Distribution System Engineering, vol. II. McGraw-Hill, Sacramento (1986)Ghia, A., Rosso, A.: Análisis de respuesta de la demanda para mejorar la eficiencia de sistemas eléctricos, 2nd edn. Camara Argentina de la Construccion, Buenos Aires (2009)Pérez Arriaga, J.I., Sánchez de Tembleque, L.J., Pardo, M.: La gestión de la demanda de electricidad, vol. I, no. I (2005)Microsoft: Microsoft Excel 2016, Microsoft (2016). https://products.office.com/es/excel. Accessed 03 Aug 2017Castañeda, M.B., Cabrera, A., Navarro, Y., Vries, W.: Procesamiento de Datos y Análisis Estadístico usando SPSS, vol. 53, no. 9. Porto Alegre (2010)MathWorks: MathWorks America Latina (2017). https://la.mathworks.com/help/matlab/ index.html. Accessed 25 Aug 2017CC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PredictionPower consumptionBig DataARIMAPredicciónConsumo de energíaAnalyzing and predicting power consumption profiles using big dataAnálisis y predicción de perfiles de consumo de energía utilizando big dataArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALANALYZING AND PREDICTING POWER CONSUMPTION PROFILES USING BIG DATA.docxANALYZING AND PREDICTING POWER CONSUMPTION PROFILES USING BIG DATA.docxapplication/vnd.openxmlformats-officedocument.wordprocessingml.document14773https://repositorio.cuc.edu.co/bitstreams/ac217667-9b55-4b3c-bdbe-951ebef5c02b/download2c56584f61dc274ca3eed2f3dae1c445MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/07fc3a85-25dd-4f07-89ed-0fcedd5e3d29/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/8391f277-5c2d-4457-a7c8-95873ccfd638/download8a4605be74aa9ea9d79846c1fba20a33MD53TEXTANALYZING AND PREDICTING POWER CONSUMPTION PROFILES USING BIG DATA.docx.txtANALYZING AND PREDICTING POWER CONSUMPTION PROFILES USING BIG DATA.docx.txttext/plain851https://repositorio.cuc.edu.co/bitstreams/4bc3f368-a27d-4529-9dbe-d4ccbf0aa7d6/downloadff834ebd1b7d39ec50c3c5d346ee0fa8MD54ANALYZING AND PREDICTING POWER CONSUMPTION PROFILES USING BIG DATA.docx.txtANALYZING AND PREDICTING POWER CONSUMPTION PROFILES USING BIG DATA.docx.txttext/plain851https://repositorio.cuc.edu.co/bitstreams/459d98ad-dc49-48fe-82a3-f92cacbc4347/downloadff834ebd1b7d39ec50c3c5d346ee0fa8MD55TEXT11323/5828oai:repositorio.cuc.edu.co:11323/58282024-09-17 11:05:20.758http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |