Un modelo Box Jenkins ARIMA para modelar y pronosticar la producción de mora de castilla en Colombia
La producción de mora de castilla en Colombia contribuye al producto interno bruto, al empleo y al bienestar social de los agricultores del país. Es considerado de gran importancia económica una vez que los frutos de la mora son utilizados como materia prima para la agroindustria. De esta manera, la...
- Autores:
-
Cancino, Susan Elsa
Cancino Escalante, Giovanni Orlando
Cancino Ricketts, Daniel Francisco
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2022
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/11976
- Acceso en línea:
- https://hdl.handle.net/11323/11976
https://doi.org/10.17981/econcuc.44.1.2023.Econ.4
- Palabra clave:
- Capacidad predictiva
análisis univariado
modelado de datos
producción
Predictive capacity
univariate analysis
data modeling
production
- Rights
- openAccess
- License
- Susan Elsa Cancino, Giovanni Orlando Cancino Escalante, Daniel Francisco Cancino Ricketts - 2023
Summary: | La producción de mora de castilla en Colombia contribuye al producto interno bruto, al empleo y al bienestar social de los agricultores del país. Es considerado de gran importancia económica una vez que los frutos de la mora son utilizados como materia prima para la agroindustria. De esta manera, la inestabilidad de la producción afecta la rentabilidad económica de los agricultores; por lo tanto, el pronóstico de la producción de mora posee un importante papel en la asignación de recursos y la toma de decisiones de los agricultores. Por lo tanto, el propósito del estudio fue modelar y pronosticar la producción de mora en Colombia utilizando un enfoque ARIMA de Box Jenkins para el período 1992-2023. Se seleccionó una investigación tipo cuantitativa, no experimental, correlacional y descriptiva. Se evaluó la adecuación del modelo y su capacidad predictiva mediante la verificación de los diferentes criterios de bondad de ajuste. Los resultados mostraron que ARIMA (1,1,0) fue el modelo más adecuado una vez que capturó el comportamiento de la serie temporal actual. Con base en los valores pronosticados se espera un aumento de 5,47% en la producción de mora para el período 2021-2023 lo que mejorará los ingresos de los agricultores y contribuirá, así a la reducción de la pobreza en el campo. |
---|