Inspection process for dimensioning through images and fuzzy logic
This paper presents a hybrid methodology based on a type 1 fuzzy model in singleton version using a 2k factorial design that optimizes the model of the expert system and serves to perform in-line inspection. The factorial design method provides the required database for the creation of the rule base...
- Autores:
-
amelec, viloria
Pineda Lezama, Omar Bonerge
Cabrera, Danelys
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/7664
- Acceso en línea:
- https://hdl.handle.net/11323/7664
https://doi.org/10.1016/j.procs.2020.07.095
https://repositorio.cuc.edu.co/
- Palabra clave:
- Neural networks
Irrigation control
Instrumentation and image analysis
Micro-greenhouse
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_f5422b453faad13cee78ad8b0638bbff |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/7664 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Inspection process for dimensioning through images and fuzzy logic |
title |
Inspection process for dimensioning through images and fuzzy logic |
spellingShingle |
Inspection process for dimensioning through images and fuzzy logic Neural networks Irrigation control Instrumentation and image analysis Micro-greenhouse |
title_short |
Inspection process for dimensioning through images and fuzzy logic |
title_full |
Inspection process for dimensioning through images and fuzzy logic |
title_fullStr |
Inspection process for dimensioning through images and fuzzy logic |
title_full_unstemmed |
Inspection process for dimensioning through images and fuzzy logic |
title_sort |
Inspection process for dimensioning through images and fuzzy logic |
dc.creator.fl_str_mv |
amelec, viloria Pineda Lezama, Omar Bonerge Cabrera, Danelys |
dc.contributor.author.spa.fl_str_mv |
amelec, viloria Pineda Lezama, Omar Bonerge Cabrera, Danelys |
dc.subject.spa.fl_str_mv |
Neural networks Irrigation control Instrumentation and image analysis Micro-greenhouse |
topic |
Neural networks Irrigation control Instrumentation and image analysis Micro-greenhouse |
description |
This paper presents a hybrid methodology based on a type 1 fuzzy model in singleton version using a 2k factorial design that optimizes the model of the expert system and serves to perform in-line inspection. The factorial design method provides the required database for the creation of the rule base for the fuzzy model and also generates the database to train the expert system. The proposed method was validated in the process of verifying dimensional parameters by means of images compared with the ANFIS and RBFN models which show greater margins of error in the approximation of the function represented by the system compared with the proposed model. The results obtained show that the model has an excellent performance in the prediction and quality control of the industrial process studied when compared with similar expert system techniques as ANFIS and RBFN. |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-01-07T14:25:32Z |
dc.date.available.none.fl_str_mv |
2021-01-07T14:25:32Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
1877-0509 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/7664 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1016/j.procs.2020.07.095 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
1877-0509 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/7664 https://doi.org/10.1016/j.procs.2020.07.095 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
[1] Zhang, C., Craine, W. A., McGee, R. J., Vandemark, G. J., Davis, J. B., Brown, J., ... & Sankaran, S. (2020). Image-Based Phenotyping of Flowering Intensity in Cool-Season Crops. Sensors, 20(5), 1450. [2] Zhang, F., Zhang, X.: Classification and Quality Evaluation of Tobacco leaves Based in Image Processing and Fuzzy Comprehensive Evaluation. Sensors. 11(3), pp. 2369–2384 (2011) [3] Mittal, P., Saini, R. K., & Jain, N. K. (2019). Image enhancement using fuzzy logic techniques. In Soft Computing: Theories and Applications (pp. 537-546). Springer, Singapore. [4] Ramya, H. R., & Sujatha, B. K. (2016, October). A novel approach for medical image fusion using fuzzy logic type-2. In 2016 International Conference on Circuits, Controls, Communications and Computing (I4C) (pp. 1-5). IEEE. [5] Pekaslan, D., Garibaldi, J. M., & Wagner, C. (2018, October). Noise parameter estimation for non-singleton fuzzy logic systems. In 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (pp. 2960-2965). IEEE. [6] Izquierdo, N.V., Lezama, O.B.P., Dorta, R.G., Viloria, A., Deras, I., Hernández-Fernández, L.: Fuzzy logic applied to the performance evaluation. Honduran coffee sector case. In: Tan, Y., Shi, Y., Tang, Q. (eds.) Advances in Swarm Intelligence, ICSI 2018. Lecture Notes in Computer Science, vol 10942. Springer, Cham (2018) [7] Bora, D. J., & Thakur, R. S. (2018). An Efficient Technique for Medical Image Enhancement Based on Interval Type-2 Fuzzy Set Logic. In Progress in Computing, Analytics and Networking (pp. 667-678). Springer, Singapore. [8] Gonzalez, C. I., Melin, P., Castro, J. R., Castillo, O., & Mendoza, O. (2016). Optimization of interval type-2 fuzzy systems for image edge detection. Applied Soft Computing, 47, 631-643. [9] Reyes, D., Álvarez, A., Rincón, E. J., Valderrama, J., Noradino, P., & Méndez, G. M. (2017, October). A PID using a non-singleton fuzzy logic system type 1 to control a second-order system. In North American Fuzzy Information Processing Society Annual Conference (pp. 264- 269). Springer, Cham. [10] Sv, A. K., & Srivatsa, S. K. (2018). An image fusion technique based on sparse wavelet transform and non-singleton type-2 FNN techniques. TAGA J, 14, 76-86. [11] Bengochea-Guevara, J. M., Andújar, D., Cantuña, K., Garijo-Del-Río, C., & Ribeiro, A. (2019, November). An Autonomous Guided Field Inspection Vehicle for 3D Woody Crops Monitoring. In Iberian Robotics conference (pp. 164-175). Springer, Cham. [12] Myna, A. N., & Prakash, J. (2018). Medical Image Fusion using Interval Type 2 Fuzzy Logic. International Journal of Applied Engineering Research, 13(14), 11410-11416. [13] Mohammadzadeh, A., & Kayacan, E. (2019). A non-singleton type-2 fuzzy neural network with adaptive secondary membership for high dimensional applications. Neurocomputing, 338, 63-71. [14] Desta, H. (2017). Development of Automatic Sesame Grain Classification and Grading System Using Image Processing Techniques (Doctoral dissertation, Addis Ababa University). [15] Davila, I., Lopez-Juarez, I., Mendez, G. M., Osorio-Comparan, R., Lefranc, G., & Cubillos, C. (2017). A singleton type-1 fuzzy logic controller for on-line error compensation during robotic welding. International Journal of Computers Communications & Control, 12(2), 201- 216. [16] Varela, N., Silva, J., Pineda, O. B., & Cabrera, D. (2020). Prediction of the Corn Grains Yield through Artificial Intelligence. Procedia Computer Science, 170, 1017-1022. [17] Viloria A., Varela N., Pérez D.M., Lezama O.B.P. (2020) Data Processing for Direct Marketing Through Big Data. In: Smys S., Tavares J., Balas V., Iliyasu A. (eds) Computational Vision and Bio-Inspired Computing. ICCVBIC 2019. Advances in Intelligent Systems and Computing, vol 1108. Springer, Cham. |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
Procedia Computer Science |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S1877050920317956 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/adbe074e-e06a-4784-861b-0653b5c277bb/download https://repositorio.cuc.edu.co/bitstreams/0c98fb68-f179-4dc7-9c83-d64651728765/download https://repositorio.cuc.edu.co/bitstreams/b2dde575-ed16-406e-941e-d1e7d4162fc9/download https://repositorio.cuc.edu.co/bitstreams/df54ff53-0c59-46d6-b8ac-90c8b955d08c/download https://repositorio.cuc.edu.co/bitstreams/3533c054-449e-476e-b0e9-4f412042b97e/download |
bitstream.checksum.fl_str_mv |
05eab1e199af4da49fccd429ab42a750 42fd4ad1e89814f5e4a476b409eb708c e30e9215131d99561d40d6b0abbe9bad 423b8c51971313b0b1cd57bd8a9aacb4 39532b35ab9c82d21dcb438c7459ca59 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760726746857472 |
spelling |
amelec, viloriaPineda Lezama, Omar BonergeCabrera, Danelys2021-01-07T14:25:32Z2021-01-07T14:25:32Z20201877-0509https://hdl.handle.net/11323/7664https://doi.org/10.1016/j.procs.2020.07.095Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This paper presents a hybrid methodology based on a type 1 fuzzy model in singleton version using a 2k factorial design that optimizes the model of the expert system and serves to perform in-line inspection. The factorial design method provides the required database for the creation of the rule base for the fuzzy model and also generates the database to train the expert system. The proposed method was validated in the process of verifying dimensional parameters by means of images compared with the ANFIS and RBFN models which show greater margins of error in the approximation of the function represented by the system compared with the proposed model. The results obtained show that the model has an excellent performance in the prediction and quality control of the industrial process studied when compared with similar expert system techniques as ANFIS and RBFN.amelec, viloria-will be generated-orcid-0000-0003-2673-6350-600Pineda Lezama, Omar BonergeCabrera, Danelys-will be generated-orcid-0000-0002-9486-9764-600application/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Procedia Computer Sciencehttps://www.sciencedirect.com/science/article/pii/S1877050920317956Neural networksIrrigation controlInstrumentation and image analysisMicro-greenhouseInspection process for dimensioning through images and fuzzy logicArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] Zhang, C., Craine, W. A., McGee, R. J., Vandemark, G. J., Davis, J. B., Brown, J., ... & Sankaran, S. (2020). Image-Based Phenotyping of Flowering Intensity in Cool-Season Crops. Sensors, 20(5), 1450.[2] Zhang, F., Zhang, X.: Classification and Quality Evaluation of Tobacco leaves Based in Image Processing and Fuzzy Comprehensive Evaluation. Sensors. 11(3), pp. 2369–2384 (2011)[3] Mittal, P., Saini, R. K., & Jain, N. K. (2019). Image enhancement using fuzzy logic techniques. In Soft Computing: Theories and Applications (pp. 537-546). Springer, Singapore.[4] Ramya, H. R., & Sujatha, B. K. (2016, October). A novel approach for medical image fusion using fuzzy logic type-2. In 2016 International Conference on Circuits, Controls, Communications and Computing (I4C) (pp. 1-5). IEEE.[5] Pekaslan, D., Garibaldi, J. M., & Wagner, C. (2018, October). Noise parameter estimation for non-singleton fuzzy logic systems. In 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (pp. 2960-2965). IEEE.[6] Izquierdo, N.V., Lezama, O.B.P., Dorta, R.G., Viloria, A., Deras, I., Hernández-Fernández, L.: Fuzzy logic applied to the performance evaluation. Honduran coffee sector case. In: Tan, Y., Shi, Y., Tang, Q. (eds.) Advances in Swarm Intelligence, ICSI 2018. Lecture Notes in Computer Science, vol 10942. Springer, Cham (2018)[7] Bora, D. J., & Thakur, R. S. (2018). An Efficient Technique for Medical Image Enhancement Based on Interval Type-2 Fuzzy Set Logic. In Progress in Computing, Analytics and Networking (pp. 667-678). Springer, Singapore.[8] Gonzalez, C. I., Melin, P., Castro, J. R., Castillo, O., & Mendoza, O. (2016). Optimization of interval type-2 fuzzy systems for image edge detection. Applied Soft Computing, 47, 631-643.[9] Reyes, D., Álvarez, A., Rincón, E. J., Valderrama, J., Noradino, P., & Méndez, G. M. (2017, October). A PID using a non-singleton fuzzy logic system type 1 to control a second-order system. In North American Fuzzy Information Processing Society Annual Conference (pp. 264- 269). Springer, Cham.[10] Sv, A. K., & Srivatsa, S. K. (2018). An image fusion technique based on sparse wavelet transform and non-singleton type-2 FNN techniques. TAGA J, 14, 76-86.[11] Bengochea-Guevara, J. M., Andújar, D., Cantuña, K., Garijo-Del-Río, C., & Ribeiro, A. (2019, November). An Autonomous Guided Field Inspection Vehicle for 3D Woody Crops Monitoring. In Iberian Robotics conference (pp. 164-175). Springer, Cham.[12] Myna, A. N., & Prakash, J. (2018). Medical Image Fusion using Interval Type 2 Fuzzy Logic. International Journal of Applied Engineering Research, 13(14), 11410-11416.[13] Mohammadzadeh, A., & Kayacan, E. (2019). A non-singleton type-2 fuzzy neural network with adaptive secondary membership for high dimensional applications. Neurocomputing, 338, 63-71.[14] Desta, H. (2017). Development of Automatic Sesame Grain Classification and Grading System Using Image Processing Techniques (Doctoral dissertation, Addis Ababa University).[15] Davila, I., Lopez-Juarez, I., Mendez, G. M., Osorio-Comparan, R., Lefranc, G., & Cubillos, C. (2017). A singleton type-1 fuzzy logic controller for on-line error compensation during robotic welding. International Journal of Computers Communications & Control, 12(2), 201- 216.[16] Varela, N., Silva, J., Pineda, O. B., & Cabrera, D. (2020). Prediction of the Corn Grains Yield through Artificial Intelligence. Procedia Computer Science, 170, 1017-1022.[17] Viloria A., Varela N., Pérez D.M., Lezama O.B.P. (2020) Data Processing for Direct Marketing Through Big Data. In: Smys S., Tavares J., Balas V., Iliyasu A. (eds) Computational Vision and Bio-Inspired Computing. ICCVBIC 2019. Advances in Intelligent Systems and Computing, vol 1108. Springer, Cham.PublicationORIGINALInspection process for dimensioning through images and fuzzy logic.pdfInspection process for dimensioning through images and fuzzy logic.pdfapplication/pdf473978https://repositorio.cuc.edu.co/bitstreams/adbe074e-e06a-4784-861b-0653b5c277bb/download05eab1e199af4da49fccd429ab42a750MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/0c98fb68-f179-4dc7-9c83-d64651728765/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/b2dde575-ed16-406e-941e-d1e7d4162fc9/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILInspection process for dimensioning through images and fuzzy logic.pdf.jpgInspection process for dimensioning through images and fuzzy logic.pdf.jpgimage/jpeg45425https://repositorio.cuc.edu.co/bitstreams/df54ff53-0c59-46d6-b8ac-90c8b955d08c/download423b8c51971313b0b1cd57bd8a9aacb4MD54TEXTInspection process for dimensioning through images and fuzzy logic.pdf.txtInspection process for dimensioning through images and fuzzy logic.pdf.txttext/plain21204https://repositorio.cuc.edu.co/bitstreams/3533c054-449e-476e-b0e9-4f412042b97e/download39532b35ab9c82d21dcb438c7459ca59MD5511323/7664oai:repositorio.cuc.edu.co:11323/76642024-09-17 10:50:00.053http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |