Understanding the Cu2+ adsorption mechanism on activated carbon using advanced statistical physics modelling

Adsorption modeling via statistical physics theory allows to understand the adsorption mechanism of heavy metal ions. Therefore, this paper reports the analysis of the mechanism of copper ion (Cu2+) adsorption on four activated carbons using statistical physics models. These models contain parameter...

Full description

Autores:
Sellaoui, Lotfi
Dhaouadi, Fatma
sonia, taamalli
Louis, Florent
Abderrahman, El Bakali
Badawi, Michael
Bonilla-Petriciolet, Adrian
Silva Oliveira, Luis Felipe
da Boit Martinello, Kátia
Dotto, Guilherme Luiz
Ben Lamine, Abdemottaleb
Tipo de recurso:
Article of journal
Fecha de publicación:
2022
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/9168
Acceso en línea:
https://hdl.handle.net/11323/9168
https://doi.org/10.1007/s11356-022-19795-7
https://repositorio.cuc.edu.co/
Palabra clave:
Adsorption
Cooper
Isotherms
Statistical physics
Rights
embargoedAccess
License
© 2022 Springer Nature Switzerland AG. Part of Springer Nature.
id RCUC2_f529d884be103e7e37c8f2ce6a97dbaf
oai_identifier_str oai:repositorio.cuc.edu.co:11323/9168
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Understanding the Cu2+ adsorption mechanism on activated carbon using advanced statistical physics modelling
title Understanding the Cu2+ adsorption mechanism on activated carbon using advanced statistical physics modelling
spellingShingle Understanding the Cu2+ adsorption mechanism on activated carbon using advanced statistical physics modelling
Adsorption
Cooper
Isotherms
Statistical physics
title_short Understanding the Cu2+ adsorption mechanism on activated carbon using advanced statistical physics modelling
title_full Understanding the Cu2+ adsorption mechanism on activated carbon using advanced statistical physics modelling
title_fullStr Understanding the Cu2+ adsorption mechanism on activated carbon using advanced statistical physics modelling
title_full_unstemmed Understanding the Cu2+ adsorption mechanism on activated carbon using advanced statistical physics modelling
title_sort Understanding the Cu2+ adsorption mechanism on activated carbon using advanced statistical physics modelling
dc.creator.fl_str_mv Sellaoui, Lotfi
Dhaouadi, Fatma
sonia, taamalli
Louis, Florent
Abderrahman, El Bakali
Badawi, Michael
Bonilla-Petriciolet, Adrian
Silva Oliveira, Luis Felipe
da Boit Martinello, Kátia
Dotto, Guilherme Luiz
Ben Lamine, Abdemottaleb
dc.contributor.author.spa.fl_str_mv Sellaoui, Lotfi
Dhaouadi, Fatma
sonia, taamalli
Louis, Florent
Abderrahman, El Bakali
Badawi, Michael
Bonilla-Petriciolet, Adrian
Silva Oliveira, Luis Felipe
da Boit Martinello, Kátia
Dotto, Guilherme Luiz
Ben Lamine, Abdemottaleb
dc.subject.proposal.eng.fl_str_mv Adsorption
Cooper
Isotherms
Statistical physics
topic Adsorption
Cooper
Isotherms
Statistical physics
description Adsorption modeling via statistical physics theory allows to understand the adsorption mechanism of heavy metal ions. Therefore, this paper reports the analysis of the mechanism of copper ion (Cu2+) adsorption on four activated carbons using statistical physics models. These models contain parameters that were utilized to provide new insights into the possible adsorption mechanism at the molecular scale. In particular, a monolayer adsorption model was the best alternative to correlate the Cu2+ adsorption data at 25–55 °C and pH 5.5. Furthermore, the application of this model for copper adsorption data analysis showed that the removal of this heavy metal ion was a multi-cationic process. This theoretical finding indicated that Cu2+ ions interacted via one functional group of activated carbon surface during adsorption. In this direction, the adsorption energy was calculated thus showing that Cu2+ removal was endothermic and associated with physical interaction forces. Furthermore, these activated carbons showed saturation adsorption capacities from 54.6 to 87.0 mg/g for Cu2+ removal, and their performances outperformed other adsorbents available in the literature. Overall, these results provide new insights of the adsorption mechanism of this water pollutant using activated carbons.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-05-16T13:46:39Z
dc.date.available.none.fl_str_mv 2022-05-16T13:46:39Z
dc.date.issued.none.fl_str_mv 2022
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
dc.identifier.citation.spa.fl_str_mv Sellaoui, L., Dhaouadi, F., Taamalli, S. et al. Understanding the Cu2+ adsorption mechanism on activated carbon using advanced statistical physics modelling. Environ Sci Pollut Res (2022). https://doi.org/10.1007/s11356-022-19795-7
dc.identifier.issn.spa.fl_str_mv 0944-1344
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/9168
dc.identifier.url.spa.fl_str_mv https://doi.org/10.1007/s11356-022-19795-7
dc.identifier.doi.spa.fl_str_mv 10.1007/s11356-022-19795-7
dc.identifier.eissn.spa.fl_str_mv 1614-7499
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Sellaoui, L., Dhaouadi, F., Taamalli, S. et al. Understanding the Cu2+ adsorption mechanism on activated carbon using advanced statistical physics modelling. Environ Sci Pollut Res (2022). https://doi.org/10.1007/s11356-022-19795-7
0944-1344
10.1007/s11356-022-19795-7
1614-7499
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/9168
https://doi.org/10.1007/s11356-022-19795-7
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Environmental Science and Pollution Research
dc.relation.references.spa.fl_str_mv Anbazhagan S, Thiruvengadam V, Sukeri A (2021) An Amberlite IRA-400 Cl− ion-exchange resin modified with Prosopis juliflora seeds as an efficient Pb2+ adsorbent: adsorption, kinetics, thermodynamics, and computational modeling studies by density functional theory. RSC Adv 11:4478–4488. https://doi.org/10.1039/D0RA10128A
Bell JG, Zhao X, Uygur Y, Thomas KM (2011) Adsorption of chloroaromatic models for dioxins on porous carbons: the influence of adsorbate structure and surface functional groups on surface interactions and adsorption kinetics. J Phys Chem C 115:2776–2789. https://doi.org/10.1021/jp1099893
CerrahoğluKaçakgil E, Çetintaş S (2021) Preparation and characterization of a novel functionalized agricultural waste-based adsorbent for Cu2+ removal: Evaluation of adsorption performance using response surface methodology. Sustain Chem Pharm 22:100468. https://doi.org/10.1016/j.scp.2021.100468
Dhaouadi F, Sellaoui L, Badawi M, Reynel-Ávila HE, Mendoza-Castillo DI, Jaime-Leal JE, Bonilla-Petriciolet A, Lamine AB (2020a) Statistical physics interpretation of the adsorption mechanism of Pb2+, Cd2+ and Ni2+ on chicken feathers. J Mol Liq 319:114168. https://doi.org/10.1016/j.molliq.2020.114168
Dhaouadi F, Sellaoui L, Chávez-González B, Elizabeth Reynel-Ávila H, Diaz-Muñoz LL, Mendoza-Castillo DI, Bonilla-Petriciolet A, Lima EC, Tapia-Picazo JC, Lamine AB (2020b) Application of a heterogeneous physical model for the adsorption of Cd2+, Ni2+, Zn2+ and Cu2+ ions on flamboyant pods functionalized with citric acid. Chem Eng J 417:127975. https://doi.org/10.1016/j.cej.2020.127975
Dhaouadi F, Sellaoui L, Dotto GL, Bonilla-Petriciolet A, Erto A, Lamine AB (2020c) Adsorption of methylene blue on comminuted raw avocado seeds: interpretation of the effect of salts via physical monolayer model. J Mol Liq 305:112815. https://doi.org/10.1016/j.molliq.2020.112815
Dhaouadi F, Sellaoui L, Reynel-Ávila HE, Landín-Sandoval V, Mendoza-Castillo DI, Jaime-Leal JE, Lima EC, Bonilla-Petriciolet A, Lamine AB (2021) Adsorption mechanism of Zn 2+, Ni 2+, Cd 2+, and Cu 2+ ions by carbon-based adsorbents: interpretation of the adsorption isotherms via physical modelling. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-12832-x
Dotto GL, Vieira MLG, Gonçalves JO, de Pinto LA, A, (2011) Removal of acid blue 9, food yellow 3 and FD&C yellow no 5 dyes from aqueous solutions using activated carbon, activated earth, diatomaceous earth, chitin and chitosan: equilibrium studies and thermodynamic. Quim Nova 34:1193–1199
Dou J, Gan D, Huang Q, Chen J, Deng F, Zhu X, Wen Y, Zhang X, Wei Y (2019) Functionalization of carbon nanotubes with chitosan based on MALI multicomponent reaction for Cu2+ removal. Int J Biol Macromol 136:476–485. https://doi.org/10.1016/j.ijbiomac.2019.06.112
Godiya CB, Cheng X, Li D, Chen Z, Lu X (2019) Carboxymethyl cellulose/polyacrylamide composite hydrogel for cascaded treatment/reuse of heavy metal ions in wastewater. J Hazard Mater 364:28–38. https://doi.org/10.1016/j.jhazmat.2018.09.076
Gu S-Y, Hsieh C-T, Gandomi YA, Yang ZF, Li L, Fu CC, Juang RS (2019) Functionalization of activated carbons with magnetic Iron oxide nanoparticles for removal of copper ions from aqueous solution. J Mol Liq 277:499–505. https://doi.org/10.1016/j.molliq.2018.12.018
Katiyar R, Patel AK, Nguyen T-B, Singhania RR, Chen CW, Dong CD (2021) Adsorption of copper (II) in aqueous solution using biochars derived from Ascophyllum nodosum seaweed. Biores Technol 328:124829. https://doi.org/10.1016/j.biortech.2021.124829
Kayalvizhi K, Alhaji NMI, Saravanakkumar D, Mohamed SB, Kaviyarasu K, Ayeshamariam A, Al-Mohaimeed AM, Abdel Gawwad MR, Elshikh MS (2022) Adsorption of copper and nickel by using sawdust chitosan nanocomposite beads – a kinetic and thermodynamic study. Environ Res 203:111814. https://doi.org/10.1016/j.envres.2021.111814
Khan J, Lin S, Nizeyimana JC, Wu Y, Wang Q, Liu X (2021) Removal of copper ions from wastewater via adsorption on modified hematite (α-Fe2O3) iron oxide coated sand. J Clean Prod 319:128687. https://doi.org/10.1016/j.jclepro.2021.128687
Lam SS, Liew RK, Lim XY, Ani FN, Jusoha A (2016) Fruit waste as feedstock for recovery by pyrolysis technique. Int Biodeterior Biodegradation 113:325–333. https://doi.org/10.1016/j.ibiod.2016.02.021
Lam SS, Liew RK, Cheng CK, Rasit N, Ooi CK, Ma NL, Ng JH, Lam WH, Chong CT, Chase HA (2018) Pyrolysis production of fruit peel biochar for potential use in treatment of palm oil mill effluent. J Environ Manage 213:400–408. https://doi.org/10.1016/j.jenvman.2018.02.092
Lemes LFR, Tarley CRT (2021) Combination of supramolecular solvent-based microextraction and ultrasound-assisted extraction for cadmium determination in flaxseed flour by thermospray flame furnace atomic absorption spectrometry. Food Chem 357:129695. https://doi.org/10.1016/j.foodchem.2021.129695
Li S-Z, Wu P-X (2010) Characterization of sodium dodecyl sulfate modified iron pillared montmorillonite and its application for the removal of aqueous Cu(II) and Co(II). J Hazard Mater 173:62–70. https://doi.org/10.1016/j.jhazmat.2009.08.047
Mariana M, Khalil H.P.S. A, Mistar EM, Yahya EB, Alfatah T, Danish M, Amayreh M (2021) Recent advances in activated carbon modification techniques for enhanced heavy metal adsorption. J Water Process Eng 43:102221. https://doi.org/10.1016/j.jwpe.2021.102221
Nyström F, Nordqvist K, Herrmann I, Nordqvist K, Herrmann I, Hedström A, Viklander M (2020) Removal of metals and hydrocarbons from stormwater using coagulation and flocculation. Water Res 182:115919. https://doi.org/10.1016/j.watres.2020.115919
Pan J, Gao Y, Gao B, Guo K, Xu X, Yue Q (2019) One-step synthesis of easily-recoverable carboxylated biogas residues for efficient removal of heavy metal ions from synthetic wastewater. J Clean Prod 240:118264. https://doi.org/10.1016/j.jclepro.2019.118264
Perondi D, Poletto P, Restelatto D, Manera C, Silva JP, Junges J, Collazzo GC, Dettmer A, Godinho M, Vilela ACF (2017) Steam gasification of poultry litter biochar for bio-syngas production. Process Saf Environ Prot 109:478–488. https://doi.org/10.1016/j.psep.2017.04.029
Rukayat OO, Usman MF, Elizabeth OM, Abosede OO, Faith IU (2021) Kinetic adsorption of heavy metal (copper) on rubber (Hevea Brasiliensis) leaf powder. S Afr J Chem Eng 37:74–80. https://doi.org/10.1016/j.sajce.2021.04.004
Sellaoui L, Soetaredjo FE, Ismadji S, Benguerba Y, Dotto GL, Bonilla-Petriciolet A, Rodrigues AE, Ben Lamine A, Erto A (2018) Equilibrium study of single and binary adsorption of lead and mercury on bentonite-alginate composite: experiments and application of two theoretical approaches. J Mol Liq 253:160–168. https://doi.org/10.1016/j.molliq.2018.01.056
Sun H, Ji Z, He Y, Wang L, Zhan J, Chen L, Zhao Y (2022) Preparation of PAMAM modified PVDF membrane and its adsorption performance for copper ions. Environ Res 204:111943. https://doi.org/10.1016/j.envres.2021.111943
Vocciante M, Trofa M, Rodríguez-Estupiñán P, Giraldo L, D’Auria T, Moreno-Piraján JC, Erto A (2014) A rigorous procedure for the design of adsorption units for the removal of cadmium and nickel from process wastewaters. J Clean Prod 77:35–46. https://doi.org/10.1016/j.jclepro.2013.12.001
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.rights.spa.fl_str_mv © 2022 Springer Nature Switzerland AG. Part of Springer Nature.
Atribución 4.0 Internacional (CC BY 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv © 2022 Springer Nature Switzerland AG. Part of Springer Nature.
Atribución 4.0 Internacional (CC BY 4.0)
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.extent.spa.fl_str_mv 1 página
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Springer Science + Business Media
dc.publisher.place.spa.fl_str_mv Germany
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://link.springer.com/article/10.1007/s11356-022-19795-7
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/2df0cd2a-6174-4efd-b59e-dfc5dad5b72e/download
https://repositorio.cuc.edu.co/bitstreams/31b375ad-a174-4f96-a226-72848d7f2bc5/download
https://repositorio.cuc.edu.co/bitstreams/04f61a7d-d916-46d4-a01c-6d19aa13dba6/download
https://repositorio.cuc.edu.co/bitstreams/89a1c8fc-aace-4389-a1e6-63cf7a95a691/download
bitstream.checksum.fl_str_mv 5fa1f803c08b382b2481f3f7c4c83e58
e30e9215131d99561d40d6b0abbe9bad
dcc9b7d7e81b6bae78f70b1512aa68f5
cffa8d8d1ae8debba024a4a3e9e1057c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760762320846848
spelling Sellaoui, LotfiDhaouadi, Fatmasonia, taamalliLouis, FlorentAbderrahman, El BakaliBadawi, MichaelBonilla-Petriciolet, AdrianSilva Oliveira, Luis Felipeda Boit Martinello, KátiaDotto, Guilherme LuizBen Lamine, Abdemottaleb2022-05-16T13:46:39Z2022-05-16T13:46:39Z2022Sellaoui, L., Dhaouadi, F., Taamalli, S. et al. Understanding the Cu2+ adsorption mechanism on activated carbon using advanced statistical physics modelling. Environ Sci Pollut Res (2022). https://doi.org/10.1007/s11356-022-19795-70944-1344https://hdl.handle.net/11323/9168https://doi.org/10.1007/s11356-022-19795-710.1007/s11356-022-19795-71614-7499Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Adsorption modeling via statistical physics theory allows to understand the adsorption mechanism of heavy metal ions. Therefore, this paper reports the analysis of the mechanism of copper ion (Cu2+) adsorption on four activated carbons using statistical physics models. These models contain parameters that were utilized to provide new insights into the possible adsorption mechanism at the molecular scale. In particular, a monolayer adsorption model was the best alternative to correlate the Cu2+ adsorption data at 25–55 °C and pH 5.5. Furthermore, the application of this model for copper adsorption data analysis showed that the removal of this heavy metal ion was a multi-cationic process. This theoretical finding indicated that Cu2+ ions interacted via one functional group of activated carbon surface during adsorption. In this direction, the adsorption energy was calculated thus showing that Cu2+ removal was endothermic and associated with physical interaction forces. Furthermore, these activated carbons showed saturation adsorption capacities from 54.6 to 87.0 mg/g for Cu2+ removal, and their performances outperformed other adsorbents available in the literature. Overall, these results provide new insights of the adsorption mechanism of this water pollutant using activated carbons.1 páginaapplication/pdfengSpringer Science + Business MediaGermany© 2022 Springer Nature Switzerland AG. Part of Springer Nature.Atribución 4.0 Internacional (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfUnderstanding the Cu2+ adsorption mechanism on activated carbon using advanced statistical physics modellingArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_b1a7d7d4d402bccehttps://link.springer.com/article/10.1007/s11356-022-19795-7Environmental Science and Pollution ResearchAnbazhagan S, Thiruvengadam V, Sukeri A (2021) An Amberlite IRA-400 Cl− ion-exchange resin modified with Prosopis juliflora seeds as an efficient Pb2+ adsorbent: adsorption, kinetics, thermodynamics, and computational modeling studies by density functional theory. RSC Adv 11:4478–4488. https://doi.org/10.1039/D0RA10128ABell JG, Zhao X, Uygur Y, Thomas KM (2011) Adsorption of chloroaromatic models for dioxins on porous carbons: the influence of adsorbate structure and surface functional groups on surface interactions and adsorption kinetics. J Phys Chem C 115:2776–2789. https://doi.org/10.1021/jp1099893CerrahoğluKaçakgil E, Çetintaş S (2021) Preparation and characterization of a novel functionalized agricultural waste-based adsorbent for Cu2+ removal: Evaluation of adsorption performance using response surface methodology. Sustain Chem Pharm 22:100468. https://doi.org/10.1016/j.scp.2021.100468Dhaouadi F, Sellaoui L, Badawi M, Reynel-Ávila HE, Mendoza-Castillo DI, Jaime-Leal JE, Bonilla-Petriciolet A, Lamine AB (2020a) Statistical physics interpretation of the adsorption mechanism of Pb2+, Cd2+ and Ni2+ on chicken feathers. J Mol Liq 319:114168. https://doi.org/10.1016/j.molliq.2020.114168Dhaouadi F, Sellaoui L, Chávez-González B, Elizabeth Reynel-Ávila H, Diaz-Muñoz LL, Mendoza-Castillo DI, Bonilla-Petriciolet A, Lima EC, Tapia-Picazo JC, Lamine AB (2020b) Application of a heterogeneous physical model for the adsorption of Cd2+, Ni2+, Zn2+ and Cu2+ ions on flamboyant pods functionalized with citric acid. Chem Eng J 417:127975. https://doi.org/10.1016/j.cej.2020.127975Dhaouadi F, Sellaoui L, Dotto GL, Bonilla-Petriciolet A, Erto A, Lamine AB (2020c) Adsorption of methylene blue on comminuted raw avocado seeds: interpretation of the effect of salts via physical monolayer model. J Mol Liq 305:112815. https://doi.org/10.1016/j.molliq.2020.112815Dhaouadi F, Sellaoui L, Reynel-Ávila HE, Landín-Sandoval V, Mendoza-Castillo DI, Jaime-Leal JE, Lima EC, Bonilla-Petriciolet A, Lamine AB (2021) Adsorption mechanism of Zn 2+, Ni 2+, Cd 2+, and Cu 2+ ions by carbon-based adsorbents: interpretation of the adsorption isotherms via physical modelling. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-12832-xDotto GL, Vieira MLG, Gonçalves JO, de Pinto LA, A, (2011) Removal of acid blue 9, food yellow 3 and FD&C yellow no 5 dyes from aqueous solutions using activated carbon, activated earth, diatomaceous earth, chitin and chitosan: equilibrium studies and thermodynamic. Quim Nova 34:1193–1199Dou J, Gan D, Huang Q, Chen J, Deng F, Zhu X, Wen Y, Zhang X, Wei Y (2019) Functionalization of carbon nanotubes with chitosan based on MALI multicomponent reaction for Cu2+ removal. Int J Biol Macromol 136:476–485. https://doi.org/10.1016/j.ijbiomac.2019.06.112Godiya CB, Cheng X, Li D, Chen Z, Lu X (2019) Carboxymethyl cellulose/polyacrylamide composite hydrogel for cascaded treatment/reuse of heavy metal ions in wastewater. J Hazard Mater 364:28–38. https://doi.org/10.1016/j.jhazmat.2018.09.076Gu S-Y, Hsieh C-T, Gandomi YA, Yang ZF, Li L, Fu CC, Juang RS (2019) Functionalization of activated carbons with magnetic Iron oxide nanoparticles for removal of copper ions from aqueous solution. J Mol Liq 277:499–505. https://doi.org/10.1016/j.molliq.2018.12.018Katiyar R, Patel AK, Nguyen T-B, Singhania RR, Chen CW, Dong CD (2021) Adsorption of copper (II) in aqueous solution using biochars derived from Ascophyllum nodosum seaweed. Biores Technol 328:124829. https://doi.org/10.1016/j.biortech.2021.124829Kayalvizhi K, Alhaji NMI, Saravanakkumar D, Mohamed SB, Kaviyarasu K, Ayeshamariam A, Al-Mohaimeed AM, Abdel Gawwad MR, Elshikh MS (2022) Adsorption of copper and nickel by using sawdust chitosan nanocomposite beads – a kinetic and thermodynamic study. Environ Res 203:111814. https://doi.org/10.1016/j.envres.2021.111814Khan J, Lin S, Nizeyimana JC, Wu Y, Wang Q, Liu X (2021) Removal of copper ions from wastewater via adsorption on modified hematite (α-Fe2O3) iron oxide coated sand. J Clean Prod 319:128687. https://doi.org/10.1016/j.jclepro.2021.128687Lam SS, Liew RK, Lim XY, Ani FN, Jusoha A (2016) Fruit waste as feedstock for recovery by pyrolysis technique. Int Biodeterior Biodegradation 113:325–333. https://doi.org/10.1016/j.ibiod.2016.02.021Lam SS, Liew RK, Cheng CK, Rasit N, Ooi CK, Ma NL, Ng JH, Lam WH, Chong CT, Chase HA (2018) Pyrolysis production of fruit peel biochar for potential use in treatment of palm oil mill effluent. J Environ Manage 213:400–408. https://doi.org/10.1016/j.jenvman.2018.02.092Lemes LFR, Tarley CRT (2021) Combination of supramolecular solvent-based microextraction and ultrasound-assisted extraction for cadmium determination in flaxseed flour by thermospray flame furnace atomic absorption spectrometry. Food Chem 357:129695. https://doi.org/10.1016/j.foodchem.2021.129695Li S-Z, Wu P-X (2010) Characterization of sodium dodecyl sulfate modified iron pillared montmorillonite and its application for the removal of aqueous Cu(II) and Co(II). J Hazard Mater 173:62–70. https://doi.org/10.1016/j.jhazmat.2009.08.047Mariana M, Khalil H.P.S. A, Mistar EM, Yahya EB, Alfatah T, Danish M, Amayreh M (2021) Recent advances in activated carbon modification techniques for enhanced heavy metal adsorption. J Water Process Eng 43:102221. https://doi.org/10.1016/j.jwpe.2021.102221Nyström F, Nordqvist K, Herrmann I, Nordqvist K, Herrmann I, Hedström A, Viklander M (2020) Removal of metals and hydrocarbons from stormwater using coagulation and flocculation. Water Res 182:115919. https://doi.org/10.1016/j.watres.2020.115919Pan J, Gao Y, Gao B, Guo K, Xu X, Yue Q (2019) One-step synthesis of easily-recoverable carboxylated biogas residues for efficient removal of heavy metal ions from synthetic wastewater. J Clean Prod 240:118264. https://doi.org/10.1016/j.jclepro.2019.118264Perondi D, Poletto P, Restelatto D, Manera C, Silva JP, Junges J, Collazzo GC, Dettmer A, Godinho M, Vilela ACF (2017) Steam gasification of poultry litter biochar for bio-syngas production. Process Saf Environ Prot 109:478–488. https://doi.org/10.1016/j.psep.2017.04.029Rukayat OO, Usman MF, Elizabeth OM, Abosede OO, Faith IU (2021) Kinetic adsorption of heavy metal (copper) on rubber (Hevea Brasiliensis) leaf powder. S Afr J Chem Eng 37:74–80. https://doi.org/10.1016/j.sajce.2021.04.004Sellaoui L, Soetaredjo FE, Ismadji S, Benguerba Y, Dotto GL, Bonilla-Petriciolet A, Rodrigues AE, Ben Lamine A, Erto A (2018) Equilibrium study of single and binary adsorption of lead and mercury on bentonite-alginate composite: experiments and application of two theoretical approaches. J Mol Liq 253:160–168. https://doi.org/10.1016/j.molliq.2018.01.056Sun H, Ji Z, He Y, Wang L, Zhan J, Chen L, Zhao Y (2022) Preparation of PAMAM modified PVDF membrane and its adsorption performance for copper ions. Environ Res 204:111943. https://doi.org/10.1016/j.envres.2021.111943Vocciante M, Trofa M, Rodríguez-Estupiñán P, Giraldo L, D’Auria T, Moreno-Piraján JC, Erto A (2014) A rigorous procedure for the design of adsorption units for the removal of cadmium and nickel from process wastewaters. J Clean Prod 77:35–46. https://doi.org/10.1016/j.jclepro.2013.12.0011AdsorptionCooperIsothermsStatistical physicsPublicationORIGINALUnderstanding the Cu2+ adsorption mechanism on activated carbon using advanced statistical physics modelling.pdfUnderstanding the Cu2+ adsorption mechanism on activated carbon using advanced statistical physics modelling.pdfapplication/pdf57275https://repositorio.cuc.edu.co/bitstreams/2df0cd2a-6174-4efd-b59e-dfc5dad5b72e/download5fa1f803c08b382b2481f3f7c4c83e58MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/31b375ad-a174-4f96-a226-72848d7f2bc5/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTUnderstanding the Cu2+ adsorption mechanism on activated carbon using advanced statistical physics modelling.pdf.txtUnderstanding the Cu2+ adsorption mechanism on activated carbon using advanced statistical physics modelling.pdf.txttext/plain1730https://repositorio.cuc.edu.co/bitstreams/04f61a7d-d916-46d4-a01c-6d19aa13dba6/downloaddcc9b7d7e81b6bae78f70b1512aa68f5MD53THUMBNAILUnderstanding the Cu2+ adsorption mechanism on activated carbon using advanced statistical physics modelling.pdf.jpgUnderstanding the Cu2+ adsorption mechanism on activated carbon using advanced statistical physics modelling.pdf.jpgimage/jpeg14373https://repositorio.cuc.edu.co/bitstreams/89a1c8fc-aace-4389-a1e6-63cf7a95a691/downloadcffa8d8d1ae8debba024a4a3e9e1057cMD5411323/9168oai:repositorio.cuc.edu.co:11323/91682024-09-17 11:02:11.534https://creativecommons.org/licenses/by/4.0/© 2022 Springer Nature Switzerland AG. Part of Springer Nature.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==