Heuristic hardware for square root operation using taylor series and modified newton method

This paper gives a heuristic equipment execution to registering square root activity for positive genuine numbers through Taylor arrangement and Newton's technique. Comparable methodology can be utilized for planning other root activities, for example, 3D shape roots, fifth roots, etc. Two uniq...

Full description

Autores:
Gonzales Salvador, Gamaniel Domingo
Hernández Allauca, Andrea Damaris
Santiana Espín, Cristian German
Caicedo-Ortiz, José
De-La-Hoz-Valdiris, Ethel
Tipo de recurso:
Article of journal
Fecha de publicación:
2022
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/9324
Acceso en línea:
https://hdl.handle.net/11323/9324
https://repositorio.cuc.edu.co/
Palabra clave:
Taylor expansion
Exponential function
Polynomial computation
Interpolation
Newton optimization
Look-up table
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id RCUC2_f4f5e58e1a83a8e6af937e31cd011657
oai_identifier_str oai:repositorio.cuc.edu.co:11323/9324
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Heuristic hardware for square root operation using taylor series and modified newton method
title Heuristic hardware for square root operation using taylor series and modified newton method
spellingShingle Heuristic hardware for square root operation using taylor series and modified newton method
Taylor expansion
Exponential function
Polynomial computation
Interpolation
Newton optimization
Look-up table
title_short Heuristic hardware for square root operation using taylor series and modified newton method
title_full Heuristic hardware for square root operation using taylor series and modified newton method
title_fullStr Heuristic hardware for square root operation using taylor series and modified newton method
title_full_unstemmed Heuristic hardware for square root operation using taylor series and modified newton method
title_sort Heuristic hardware for square root operation using taylor series and modified newton method
dc.creator.fl_str_mv Gonzales Salvador, Gamaniel Domingo
Hernández Allauca, Andrea Damaris
Santiana Espín, Cristian German
Caicedo-Ortiz, José
De-La-Hoz-Valdiris, Ethel
dc.contributor.author.spa.fl_str_mv Gonzales Salvador, Gamaniel Domingo
Hernández Allauca, Andrea Damaris
Santiana Espín, Cristian German
Caicedo-Ortiz, José
De-La-Hoz-Valdiris, Ethel
dc.subject.proposal.eng.fl_str_mv Taylor expansion
Exponential function
Polynomial computation
Interpolation
Newton optimization
Look-up table
topic Taylor expansion
Exponential function
Polynomial computation
Interpolation
Newton optimization
Look-up table
description This paper gives a heuristic equipment execution to registering square root activity for positive genuine numbers through Taylor arrangement and Newton's technique. Comparable methodology can be utilized for planning other root activities, for example, 3D shape roots, fifth roots, etc. Two unique structures are examined, one, combinational, straight forward, got from Taylor arrangement development and one consecutive, got from Newton's enhancement condition. The results are better, lower region, and lower power utilization for the subsequent engineering contrasted with the first.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-07-01T20:47:45Z
dc.date.available.none.fl_str_mv 2022-07-01T20:47:45Z
dc.date.issued.none.fl_str_mv 2022
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
dc.identifier.issn.spa.fl_str_mv 2717-7564
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/9324
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 2717-7564
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/9324
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Journal of Positive School Psychology
dc.relation.references.spa.fl_str_mv [1] J. E. Volder, The CORDIC Trigonometric Computing Technique, IRE Transactions on Electronic Computers, vol. EC-8, no. 3, 1959.
[2] P.T.P. Tang, “Table-lookup algorithms for elementary functions and their error analysis,” Proc. of the 10th IEEE Symposium on Computer Arithmetic, pp. 232–236, ISBN: 0- 8186-9151-4, Grenoble, France, June 1991
[3] E. Hertz, and P. Nilsson, “Parabolic Synthesis Methodology Implemented on the Sine Function,” in Proc. of the 2009, International Symposium on Circuits and Systems (ISCAS 09), Taipei, Taiwan, May 24-27, 2009
[4] Chun-Mei Li and Shu-Qian Shen, “Newton’s Method for the Matrix Non-singular Square Root,” Journal of Applied Mathematics, vol. 2014, Article ID 267042, 7 pages, 2014. https://doi.org/10.1155/2014/267042.
[5] Nilsson, Peter & Shaik, Ateeq & Gangarajaiah, Rakesh & Hertz, Erik. (2015).Hardware implementation of the exponential function using Taylor series. NORCHIP 2014 - 32nd NORCHIP conference: The Nordic Microelectronics Event. 10.1109/NORCHIP.2014.7004740.
dc.relation.citationendpage.spa.fl_str_mv 2593
dc.relation.citationstartpage.spa.fl_str_mv 2588
dc.relation.citationissue.spa.fl_str_mv 5
dc.relation.citationvolume.spa.fl_str_mv 6
dc.rights.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 6 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Gokmen Arslan
dc.publisher.place.spa.fl_str_mv Turkey
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.journalppw.com/index.php/jpsp/article/view/6426
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/e7f6dd79-daaa-4c40-aba5-57c1b8d80000/download
https://repositorio.cuc.edu.co/bitstreams/6bca6b55-9a6d-4ea6-a17c-884cde6e42cf/download
https://repositorio.cuc.edu.co/bitstreams/6d77f7a8-657a-46b0-a0f6-95d4c8db9a7c/download
https://repositorio.cuc.edu.co/bitstreams/c0a18bff-2aeb-4d97-9c53-a6f0bcb22c49/download
bitstream.checksum.fl_str_mv 8d5beab4ba85964268a6a35dec5976fa
e30e9215131d99561d40d6b0abbe9bad
1e87a911959e62bf1282eed7f1ca6397
e8cb7dabe55c8a45209a8cc657b968fa
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760856875139072
spelling Gonzales Salvador, Gamaniel DomingoHernández Allauca, Andrea DamarisSantiana Espín, Cristian GermanCaicedo-Ortiz, JoséDe-La-Hoz-Valdiris, Ethel2022-07-01T20:47:45Z2022-07-01T20:47:45Z20222717-7564https://hdl.handle.net/11323/9324Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This paper gives a heuristic equipment execution to registering square root activity for positive genuine numbers through Taylor arrangement and Newton's technique. Comparable methodology can be utilized for planning other root activities, for example, 3D shape roots, fifth roots, etc. Two unique structures are examined, one, combinational, straight forward, got from Taylor arrangement development and one consecutive, got from Newton's enhancement condition. The results are better, lower region, and lower power utilization for the subsequent engineering contrasted with the first.6 páginasapplication/pdfengGokmen ArslanTurkeyAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Heuristic hardware for square root operation using taylor series and modified newton methodArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85https://www.journalppw.com/index.php/jpsp/article/view/6426Journal of Positive School Psychology[1] J. E. Volder, The CORDIC Trigonometric Computing Technique, IRE Transactions on Electronic Computers, vol. EC-8, no. 3, 1959.[2] P.T.P. Tang, “Table-lookup algorithms for elementary functions and their error analysis,” Proc. of the 10th IEEE Symposium on Computer Arithmetic, pp. 232–236, ISBN: 0- 8186-9151-4, Grenoble, France, June 1991[3] E. Hertz, and P. Nilsson, “Parabolic Synthesis Methodology Implemented on the Sine Function,” in Proc. of the 2009, International Symposium on Circuits and Systems (ISCAS 09), Taipei, Taiwan, May 24-27, 2009[4] Chun-Mei Li and Shu-Qian Shen, “Newton’s Method for the Matrix Non-singular Square Root,” Journal of Applied Mathematics, vol. 2014, Article ID 267042, 7 pages, 2014. https://doi.org/10.1155/2014/267042.[5] Nilsson, Peter & Shaik, Ateeq & Gangarajaiah, Rakesh & Hertz, Erik. (2015).Hardware implementation of the exponential function using Taylor series. NORCHIP 2014 - 32nd NORCHIP conference: The Nordic Microelectronics Event. 10.1109/NORCHIP.2014.7004740.2593258856Taylor expansionExponential functionPolynomial computationInterpolationNewton optimizationLook-up tablePublicationORIGINALHeuristic Hardware For Square Root Operation Using Taylor Series And Modified Newton Method.pdfHeuristic Hardware For Square Root Operation Using Taylor Series And Modified Newton Method.pdfapplication/pdf415448https://repositorio.cuc.edu.co/bitstreams/e7f6dd79-daaa-4c40-aba5-57c1b8d80000/download8d5beab4ba85964268a6a35dec5976faMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/6bca6b55-9a6d-4ea6-a17c-884cde6e42cf/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTHeuristic Hardware For Square Root Operation Using Taylor Series And Modified Newton Method.pdf.txtHeuristic Hardware For Square Root Operation Using Taylor Series And Modified Newton Method.pdf.txttext/plain8556https://repositorio.cuc.edu.co/bitstreams/6d77f7a8-657a-46b0-a0f6-95d4c8db9a7c/download1e87a911959e62bf1282eed7f1ca6397MD53THUMBNAILHeuristic Hardware For Square Root Operation Using Taylor Series And Modified Newton Method.pdf.jpgHeuristic Hardware For Square Root Operation Using Taylor Series And Modified Newton Method.pdf.jpgimage/jpeg14476https://repositorio.cuc.edu.co/bitstreams/c0a18bff-2aeb-4d97-9c53-a6f0bcb22c49/downloade8cb7dabe55c8a45209a8cc657b968faMD5411323/9324oai:repositorio.cuc.edu.co:11323/93242024-09-17 14:11:57.448https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==