Heuristic hardware for square root operation using taylor series and modified newton method
This paper gives a heuristic equipment execution to registering square root activity for positive genuine numbers through Taylor arrangement and Newton's technique. Comparable methodology can be utilized for planning other root activities, for example, 3D shape roots, fifth roots, etc. Two uniq...
- Autores:
-
Gonzales Salvador, Gamaniel Domingo
Hernández Allauca, Andrea Damaris
Santiana Espín, Cristian German
Caicedo-Ortiz, José
De-La-Hoz-Valdiris, Ethel
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2022
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/9324
- Acceso en línea:
- https://hdl.handle.net/11323/9324
https://repositorio.cuc.edu.co/
- Palabra clave:
- Taylor expansion
Exponential function
Polynomial computation
Interpolation
Newton optimization
Look-up table
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id |
RCUC2_f4f5e58e1a83a8e6af937e31cd011657 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/9324 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Heuristic hardware for square root operation using taylor series and modified newton method |
title |
Heuristic hardware for square root operation using taylor series and modified newton method |
spellingShingle |
Heuristic hardware for square root operation using taylor series and modified newton method Taylor expansion Exponential function Polynomial computation Interpolation Newton optimization Look-up table |
title_short |
Heuristic hardware for square root operation using taylor series and modified newton method |
title_full |
Heuristic hardware for square root operation using taylor series and modified newton method |
title_fullStr |
Heuristic hardware for square root operation using taylor series and modified newton method |
title_full_unstemmed |
Heuristic hardware for square root operation using taylor series and modified newton method |
title_sort |
Heuristic hardware for square root operation using taylor series and modified newton method |
dc.creator.fl_str_mv |
Gonzales Salvador, Gamaniel Domingo Hernández Allauca, Andrea Damaris Santiana Espín, Cristian German Caicedo-Ortiz, José De-La-Hoz-Valdiris, Ethel |
dc.contributor.author.spa.fl_str_mv |
Gonzales Salvador, Gamaniel Domingo Hernández Allauca, Andrea Damaris Santiana Espín, Cristian German Caicedo-Ortiz, José De-La-Hoz-Valdiris, Ethel |
dc.subject.proposal.eng.fl_str_mv |
Taylor expansion Exponential function Polynomial computation Interpolation Newton optimization Look-up table |
topic |
Taylor expansion Exponential function Polynomial computation Interpolation Newton optimization Look-up table |
description |
This paper gives a heuristic equipment execution to registering square root activity for positive genuine numbers through Taylor arrangement and Newton's technique. Comparable methodology can be utilized for planning other root activities, for example, 3D shape roots, fifth roots, etc. Two unique structures are examined, one, combinational, straight forward, got from Taylor arrangement development and one consecutive, got from Newton's enhancement condition. The results are better, lower region, and lower power utilization for the subsequent engineering contrasted with the first. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-07-01T20:47:45Z |
dc.date.available.none.fl_str_mv |
2022-07-01T20:47:45Z |
dc.date.issued.none.fl_str_mv |
2022 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.issn.spa.fl_str_mv |
2717-7564 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/9324 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
2717-7564 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/9324 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Journal of Positive School Psychology |
dc.relation.references.spa.fl_str_mv |
[1] J. E. Volder, The CORDIC Trigonometric Computing Technique, IRE Transactions on Electronic Computers, vol. EC-8, no. 3, 1959. [2] P.T.P. Tang, “Table-lookup algorithms for elementary functions and their error analysis,” Proc. of the 10th IEEE Symposium on Computer Arithmetic, pp. 232–236, ISBN: 0- 8186-9151-4, Grenoble, France, June 1991 [3] E. Hertz, and P. Nilsson, “Parabolic Synthesis Methodology Implemented on the Sine Function,” in Proc. of the 2009, International Symposium on Circuits and Systems (ISCAS 09), Taipei, Taiwan, May 24-27, 2009 [4] Chun-Mei Li and Shu-Qian Shen, “Newton’s Method for the Matrix Non-singular Square Root,” Journal of Applied Mathematics, vol. 2014, Article ID 267042, 7 pages, 2014. https://doi.org/10.1155/2014/267042. [5] Nilsson, Peter & Shaik, Ateeq & Gangarajaiah, Rakesh & Hertz, Erik. (2015).Hardware implementation of the exponential function using Taylor series. NORCHIP 2014 - 32nd NORCHIP conference: The Nordic Microelectronics Event. 10.1109/NORCHIP.2014.7004740. |
dc.relation.citationendpage.spa.fl_str_mv |
2593 |
dc.relation.citationstartpage.spa.fl_str_mv |
2588 |
dc.relation.citationissue.spa.fl_str_mv |
5 |
dc.relation.citationvolume.spa.fl_str_mv |
6 |
dc.rights.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
6 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Gokmen Arslan |
dc.publisher.place.spa.fl_str_mv |
Turkey |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.journalppw.com/index.php/jpsp/article/view/6426 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/e7f6dd79-daaa-4c40-aba5-57c1b8d80000/download https://repositorio.cuc.edu.co/bitstreams/6bca6b55-9a6d-4ea6-a17c-884cde6e42cf/download https://repositorio.cuc.edu.co/bitstreams/6d77f7a8-657a-46b0-a0f6-95d4c8db9a7c/download https://repositorio.cuc.edu.co/bitstreams/c0a18bff-2aeb-4d97-9c53-a6f0bcb22c49/download |
bitstream.checksum.fl_str_mv |
8d5beab4ba85964268a6a35dec5976fa e30e9215131d99561d40d6b0abbe9bad 1e87a911959e62bf1282eed7f1ca6397 e8cb7dabe55c8a45209a8cc657b968fa |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760856875139072 |
spelling |
Gonzales Salvador, Gamaniel DomingoHernández Allauca, Andrea DamarisSantiana Espín, Cristian GermanCaicedo-Ortiz, JoséDe-La-Hoz-Valdiris, Ethel2022-07-01T20:47:45Z2022-07-01T20:47:45Z20222717-7564https://hdl.handle.net/11323/9324Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This paper gives a heuristic equipment execution to registering square root activity for positive genuine numbers through Taylor arrangement and Newton's technique. Comparable methodology can be utilized for planning other root activities, for example, 3D shape roots, fifth roots, etc. Two unique structures are examined, one, combinational, straight forward, got from Taylor arrangement development and one consecutive, got from Newton's enhancement condition. The results are better, lower region, and lower power utilization for the subsequent engineering contrasted with the first.6 páginasapplication/pdfengGokmen ArslanTurkeyAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Heuristic hardware for square root operation using taylor series and modified newton methodArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85https://www.journalppw.com/index.php/jpsp/article/view/6426Journal of Positive School Psychology[1] J. E. Volder, The CORDIC Trigonometric Computing Technique, IRE Transactions on Electronic Computers, vol. EC-8, no. 3, 1959.[2] P.T.P. Tang, “Table-lookup algorithms for elementary functions and their error analysis,” Proc. of the 10th IEEE Symposium on Computer Arithmetic, pp. 232–236, ISBN: 0- 8186-9151-4, Grenoble, France, June 1991[3] E. Hertz, and P. Nilsson, “Parabolic Synthesis Methodology Implemented on the Sine Function,” in Proc. of the 2009, International Symposium on Circuits and Systems (ISCAS 09), Taipei, Taiwan, May 24-27, 2009[4] Chun-Mei Li and Shu-Qian Shen, “Newton’s Method for the Matrix Non-singular Square Root,” Journal of Applied Mathematics, vol. 2014, Article ID 267042, 7 pages, 2014. https://doi.org/10.1155/2014/267042.[5] Nilsson, Peter & Shaik, Ateeq & Gangarajaiah, Rakesh & Hertz, Erik. (2015).Hardware implementation of the exponential function using Taylor series. NORCHIP 2014 - 32nd NORCHIP conference: The Nordic Microelectronics Event. 10.1109/NORCHIP.2014.7004740.2593258856Taylor expansionExponential functionPolynomial computationInterpolationNewton optimizationLook-up tablePublicationORIGINALHeuristic Hardware For Square Root Operation Using Taylor Series And Modified Newton Method.pdfHeuristic Hardware For Square Root Operation Using Taylor Series And Modified Newton Method.pdfapplication/pdf415448https://repositorio.cuc.edu.co/bitstreams/e7f6dd79-daaa-4c40-aba5-57c1b8d80000/download8d5beab4ba85964268a6a35dec5976faMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/6bca6b55-9a6d-4ea6-a17c-884cde6e42cf/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTHeuristic Hardware For Square Root Operation Using Taylor Series And Modified Newton Method.pdf.txtHeuristic Hardware For Square Root Operation Using Taylor Series And Modified Newton Method.pdf.txttext/plain8556https://repositorio.cuc.edu.co/bitstreams/6d77f7a8-657a-46b0-a0f6-95d4c8db9a7c/download1e87a911959e62bf1282eed7f1ca6397MD53THUMBNAILHeuristic Hardware For Square Root Operation Using Taylor Series And Modified Newton Method.pdf.jpgHeuristic Hardware For Square Root Operation Using Taylor Series And Modified Newton Method.pdf.jpgimage/jpeg14476https://repositorio.cuc.edu.co/bitstreams/c0a18bff-2aeb-4d97-9c53-a6f0bcb22c49/downloade8cb7dabe55c8a45209a8cc657b968faMD5411323/9324oai:repositorio.cuc.edu.co:11323/93242024-09-17 14:11:57.448https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |