Estudio experimental del desempeño termodinámico y ambiental en motores diésel operando con mezclas de diésel y biodiésel verde de palma/girasol

Introducción— En la actualidad, el consumo de recursos fósiles cada vez es mayor debido a los procesos industriales y el crecimiento económico. Esto ha provocado graves problemas ambientales y un riesgo de agotamiento de estos recursos. Objetivos— En este estudio se evalúa la influencia de diferente...

Full description

Autores:
Orjuela Abril, Martha
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
spa
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/12279
Acceso en línea:
https://hdl.handle.net/11323/12279
https://doi.org/10.17981/ingecuc.16.2.2020.11
Palabra clave:
diesel engine
polluting emissions
biodiesel blends
combustion process
motor diésel
emisiones contaminantes
mezclas de biodiesel
proceso de combustión
Rights
openAccess
License
INGE CUC - 2020
id RCUC2_f4f3d1766d8ae39124656e096a3b1620
oai_identifier_str oai:repositorio.cuc.edu.co:11323/12279
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Estudio experimental del desempeño termodinámico y ambiental en motores diésel operando con mezclas de diésel y biodiésel verde de palma/girasol
dc.title.translated.eng.fl_str_mv Experimental study of thermodynamic and environmental performance in diesel engines operating with diesel-palm/sunflower green biodiesel blends
title Estudio experimental del desempeño termodinámico y ambiental en motores diésel operando con mezclas de diésel y biodiésel verde de palma/girasol
spellingShingle Estudio experimental del desempeño termodinámico y ambiental en motores diésel operando con mezclas de diésel y biodiésel verde de palma/girasol
diesel engine
polluting emissions
biodiesel blends
combustion process
motor diésel
emisiones contaminantes
mezclas de biodiesel
proceso de combustión
title_short Estudio experimental del desempeño termodinámico y ambiental en motores diésel operando con mezclas de diésel y biodiésel verde de palma/girasol
title_full Estudio experimental del desempeño termodinámico y ambiental en motores diésel operando con mezclas de diésel y biodiésel verde de palma/girasol
title_fullStr Estudio experimental del desempeño termodinámico y ambiental en motores diésel operando con mezclas de diésel y biodiésel verde de palma/girasol
title_full_unstemmed Estudio experimental del desempeño termodinámico y ambiental en motores diésel operando con mezclas de diésel y biodiésel verde de palma/girasol
title_sort Estudio experimental del desempeño termodinámico y ambiental en motores diésel operando con mezclas de diésel y biodiésel verde de palma/girasol
dc.creator.fl_str_mv Orjuela Abril, Martha
dc.contributor.author.spa.fl_str_mv Orjuela Abril, Martha
dc.subject.eng.fl_str_mv diesel engine
polluting emissions
biodiesel blends
combustion process
topic diesel engine
polluting emissions
biodiesel blends
combustion process
motor diésel
emisiones contaminantes
mezclas de biodiesel
proceso de combustión
dc.subject.spa.fl_str_mv motor diésel
emisiones contaminantes
mezclas de biodiesel
proceso de combustión
description Introducción— En la actualidad, el consumo de recursos fósiles cada vez es mayor debido a los procesos industriales y el crecimiento económico. Esto ha provocado graves problemas ambientales y un riesgo de agotamiento de estos recursos. Objetivos— En este estudio se evalúa la influencia de diferentes mezclas de biodiesel producidas a partir de los residuos de aceite de girasol y los residuos líquidos industriales de aceite de palma, en las características del proceso de combustión, rendimiento y emisiones contaminantes de CO2, HC, NOx y opacidad de humo. Metodología— Se desarrollaron pruebas experimentales en un motor diesel monocilíndrico. En el cual, se probaron dos mezclas de biodiesel PB2SB4 y PB4SB4. El motor funcionó en cuatro modos diferentes. Además, se realizó un modelo de diagnóstico para monitorear el efecto del biodiesel en la presión del proceso de combustión y en las tasas de liberación de calor. Resultados— Las curvas de presión en el cilindro disminuyen a medida que aumenta el porcentaje de biodiesel en el combustible. Del mismo modo, los resultados mostraron una disminución en la tasa de liberación de calor para las mezclas de biodiesel. Este efecto se puede apreciar al considerar la eficiencia de freno, en el cual las mezclas PB2SB4 y PB2SB4 muestran una reducción de 3.8% y 5.4% en comparación con diésel. El análisis de las emisiones contaminantes mostró que el biodiesel procedente de los residuos de aceite de palma y girasol permite una disminución en las emisiones de CO2, HC y opacidad de humo en un 21%, 18.5% y 10% al compararlo con el diésel comercial, respectivamente. Sin embargo, se observó un incremento en las emisiones de NOx. Conclusiones— Las mezclas de biodiesel procedentes de los residuos de aceite de palma y aceite de girasol no producen un cambio significativo en el proceso de combustión, consumo, y en el rendimiento del motor, siempre que el porcentaje de sustitución se mantenga en un nivel inferior al 8%. Adicionalmente, este tipo de biodiesel permite reducciones en las emisiones de CO2, HC y opacidad de humo.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-04-30 00:00:00
2024-04-09T20:17:54Z
dc.date.available.none.fl_str_mv 2020-04-30 00:00:00
2024-04-09T20:17:54Z
dc.date.issued.none.fl_str_mv 2020-04-30
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.local.eng.fl_str_mv Journal article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0122-6517
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/12279
dc.identifier.url.none.fl_str_mv https://doi.org/10.17981/ingecuc.16.2.2020.11
dc.identifier.doi.none.fl_str_mv 10.17981/ingecuc.16.2.2020.11
dc.identifier.eissn.none.fl_str_mv 2382-4700
identifier_str_mv 0122-6517
10.17981/ingecuc.16.2.2020.11
2382-4700
url https://hdl.handle.net/11323/12279
https://doi.org/10.17981/ingecuc.16.2.2020.11
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartofjournal.spa.fl_str_mv Inge Cuc
dc.relation.references.spa.fl_str_mv H. Yoo, B. Y. Park, H. Cho, & J. Park, “Performance Optimization of a Diesel Engine with a Two-Stage Turbocharging System and Dual-Loop EGR Using Multi-Objective Pareto Optimization Based on Diesel Cycle Simulation,” Energies, vol. 12, no. 22, pp. 1–26, Nov. 2019. https://doi.org/10.3390/en12224223
H. Tian, J. Cui, T. Yang, Y. Fu, J. Tian, & W. Long, “Experimental Research on Controllability and Emissions of Jet-Controlled Compression Ignition Engine,” Energies. vol. 12, no. 15, pp. 1–14, Jul. 2019. https://doi.org/10.3390/en12152936
A. Dhar & A. K. Agarwal, “Effect of Karanja biodiesel blend on engine wear in a diesel engine,” Fuel, vol. 134, no. 1, pp. 81–89, Oct. 2014. https://doi.org/10.1016/j.fuel.2014.05.039
 F. S. Hirner, J. Hwang, C. Bae, C. Patel, T. Gupta, & A. K. Agarwal, “Performance and emission evaluation of a small-bore biodiesel compressionignition engine,” Energy, vol. 183, no. 1, pp. 971–982, Sep. 2019. https://doi.org/10.1016/j.energy.2019.07.015
 A. Mejía, M. Leiva, A. Rincón, A. Gonzalez-Quiroga, & J. Duarte-Forero, “Experimental assessment of emissions maps of a single-cylinder compression ignition engine powered by diesel and palm oil biodiesel-diesel fuel blends,” Case Stud Therm Eng, vol. 19, no. 1, pp. 1–13, Jun. 2020. https://doi.org/10.1016/j.csite.2020.100613
 G. Valencia, C. Acevedo, & J. Duarte, “Combustion and Performance Study of Low-Displacement Compression Ignition Engines Operating with Diesel–Biodiesel Blends,” Applied Sciences, vol. 10, no. 3, pp. 1–19, Jan. 2020. https://doi.org/10.3390/app10030907
 S. Bari & S. N. Hossain, “Performance and emission analysis of a diesel engine running on palm oil diesel (POD),” Energy Procedia, vol. 160, no. 1, pp. 92–99, Feb. 2019. https://doi.org/10.1016/j.egypro.2019.02.123
 B. Sajjadi, A. A. A. Raman, & H. Arandiyan, “A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: Composition, specifications and prediction models,” Renew Sustain Energy Rev, vol. 63, no. C, pp. 62–92, Sep. 2016. https://doi.org/10.1016/j.rser.2016.05.035
 H. J. Berchmans & S. Hirata, “Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids,” Bioresour Technol, vol. 99, no. 6, pp. 1716–1721, Apr. 2008. https://doi.org/10.1016/j.biortech.2007.03.051
 P. G. I. Thushari & S. Babel, “Biodiesel Production From Waste Palm Oil Using Palm Empty Fruit Bunch-Derived Novel Carbon Acid Catalyst,” J Energy Resour Technol, vol. 140, no. 3, pp. 1–10, Mar. 2018. https://doi.org/10.1115/1.4038380
 S. Sumathi, S. P. Chai, & A. R. Mohamed, “Utilization of oil palm as a source of renewable energy in Malaysia,” Renew Sustain Energy Rev, vol. 12, no. 9, pp. 2404–2421, Dec. 2008. https://doi.org/10.1016/j.rser.2007.06.006
 J. C. Kurnia, S. V. Jangam, S. Akhtar, A. P. Sasmito, & A. S. Mujumdar, “Advances in biofuel production from oil palm and palm oil processing wastes: A review,” Biofuel Res J, vol. 3, no. 1, pp. 332–346, Mar. 2016. https://doi.org/10.18331/BRJ2016.3.1.3
 S. A. Sulaiman & F. F. F. Taha, “Drying of Oil Palm Fronds Using Concentrated Solar Thermal Power,” Appl Mech Mater, vol. 699, no. 1, pp. 449–454, Nov. 2014. https://doi.org/10.4028/www.scientific.net/AMM.699.449
 S. S. Lam, Y. F. Tsang, P. N. Yuh Yek, R. K. Liew, M. S. Osman, W. Peng, W. H. Lee & Y.-K. Park, “Co-processing of oil palm waste and waste oil via microwave co-torrefaction: A waste reduction approach for producing solid fuel product with improved properties,” Process Saf Environ, vol. 128, no. 1, pp. 30–35, Aug. 2019. https://doi.org/10.1016/j.psep.2019.05.034
 H. J. Cho, J.-K. Kim, H.-J. Cho, & Y.-K. Yeo, “Techno-Economic Study of a Biodiesel Production from Palm Fatty Acid Distillate,” Ind Eng Chem Res, vol. 52, no. 1, pp. 462–468, 2013. https://doi.org/10.1021/ie301651b
 W. Liew, K. Muda, M. Azraai, A. Affam, and S. Loh, “Agro-industrial waste sustainable management – a potential source of economic benefits to palm oil mills in Malaysia,” J Urban Environ Eng, vol. 11, no. 1, pp. 108–118, May. 2017. https://doi.org/10.4090/juee.2017.v11n1.108118
 M. A. Ahmad Farid et al., “Production of methyl esters from waste cooking oil using a heterogeneous biomass-based catalyst,” Renew Energy, vol. 114, part. B, pp. 638–643, Dec. 2017. https://doi.org/10.1016/j.renene.2017.07.064
 M. R. Anuar & A. Z. Abdullah, “Ultrasound-assisted biodiesel production from waste cooking oil using hydrotalcite prepared by combustion method as catalyst,” Appl Catal A Gen, vol. 514, pp. 214–223, Mar. 2016. https://doi.org/10.1016/j.apcata.2016.01.023
 I. K. Hong, H. Jeon, H. Kim, & S. B. Lee, “Preparation of waste cooking oil based biodiesel using microwave irradiation energy,” J. Ind Eng Chem, vol. 42, pp. 107–112, Oct. 2016. https://doi.org/10.1016/j.jiec.2016.07.035
 A. Saydut, A. B. Kafadar, Y. Tonbul, C. Kaya, F. Aydin, & C. Hamamci, “Comparison of the Biodiesel Quality Produced from Refined Sunflower (Helianthus Annuus L) Oil and Waste Cooking Oil,” Energy Explor Exploit, vol. 28, no. 6, pp. 499–512, Dec. 2010. https://doi.org/10.1260/0144-5987.28.6.499
 M. Saifuddin and A. N. Boyce, “Biodiesel production from waste cooking sunflower oil and environmental impact analysis,” Kuwait J Sci, vol. 43, no. 3, pp. 110–117, 2016. Available: https://journalskuwait.org/kjs/index.php/KJS/article/view/1723
 M. Elkelawy, H. A.-E. Bastawissi, K. K. Esmaeil, A. M. Radwan, H. Panchal, K. K. Sadasivuni, D. Ponnamma & R. Walvecar, “Experimental studies on the biodiesel production parameters optimization of sunflower and soybean oil mixture and DI engine combustion, performance, and emission analysis fueled with diesel/biodiesel blends,” Fuel, vol. 255, no. 1, pp. 1–12, Nov. 2019. https://doi.org/10.1016/j.fuel.2019.115791
 J. Gupta, M. Agarwal, & A. K. Dalai, “Optimization of biodiesel production from mixture of edible and nonedible vegetable oils,” Biocatal. Agric. Biotechnol, vol. 8, no. 1, pp. 112–120, Oct. 2016. https://doi.org/10.1016/j.bcab.2016.08.014
 V. F. de Almeida, P. J. García-Moreno, A. Guadix, & E. M. Guadix, “Biodiesel production from mixtures of waste fish oil, palm oil and waste frying oil: Optimization of fuel properties,” Fuel Process Technol, vol. 133, no. 1, pp. 152–160, May. 2015. https://doi.org/10.1016/j.fuproc.2015.01.041
 J. F. Costa, M. F. Almeida, M. C. M. Alvim-Ferraz, & J. M. Dias, “Biodiesel production using oil from fish canning industry wastes,” Energy Convers Manag, vol. 74, no. 1, pp. 17–23, Oct. 2013. https://doi.org/10.1016/j.enconman.2013.04.032
 J. Heywood, Internal combustion engine fundamentals. NY, USA: McGraw-Hill Education, 1988. https://doi.org/10.5860/CHOICE.26-0943
 M. F. J. Brunt, H. Rai, & A. L. Emtage, “The Calculation of Heat Release Energy from Engine Cylinder Pressure Data,” presented at SAE Technical Paper 981052, Inter. Con. & Exp., Bhm., En., pp. 1596–1609, Feb. 1998. https://doi.org/10.4271/981052
 M. A. Asokan, S. Senthur Prabu, P. K. K. Bade, V. M. Nekkanti, & S. S. G. Gutta, “Performance, combustion and emission characteristics of juliflora biodiesel fuelled DI diesel engine,” Energy, vol. 173, no. 1, pp. 883–892, Apr. 2019. https://doi.org/10.1016/j.energy.2019.02.075
 M. M. Musthafa, T. A. Kumar, T. Mohanraj, & R. Chandramouli, “A comparative study on performance, combustion and emission characteristics of diesel engine fuelled by biodiesel blends with and without an additive,” Fuel, vol. 225, no 1, pp. 343–348, Aug. 1, 2018. https://doi.org/10.1016/j.fuel.2018.03.147
 Y. Du, X. Yu, J. Wang, H. Wu, W. Dong, & J. Gu, “Research on combustion and emission characteristics of a lean burn gasoline engine with hydrogen direct-injection,” Int J Hydrogen Energy, vol. 41, no. 4, pp. 3240–3248, Jan. 30, 2016. https://doi.org/10.1016/j.ijhydene.2015.12.025
 Ö. Can, “Combustion characteristics, performance and exhaust emissions of a diesel engine fueled with a waste cooking oil biodiesel mixture,” Energy Convers Manag, vol. 87, no. 1, pp. 676–686, Nov. 2014. https://doi.org/10.1016/j.enconman.2014.07.066
 M. Canakci, “Combustion characteristics of a turbocharged DI compression ignition engine fueled with petroleum diesel fuels and biodiesel,” Bioresour Technol, vol. 98, no. 6, pp. 1167–1175, Apr., 2007. https://doi.org/10.1016/j.biortech.2006.05.024
 S. Murillo, J. L. Míguez, J. Porteiro, E. Granada, & J. C. Morán, “Performance and exhaust emissions in the use of biodiesel in outboard diesel engines,” Fuel,vol. 86, no. 12–13, pp. 1765–1771, Aug. 2007. https://doi.org/10.1016/j.fuel.2006.11.031
H. C. Ong, H. H. Masjuki, T. M. I. Mahlia, A. S. Silitonga, W. T. Chong, & T. Yusaf, “Engine performance and emissions using Jatropha curcas, Ceiba pentandra and Calophyllum inophyllum biodiesel in a CI diesel engine,” Energy, vol. 69, no. 1, pp. 427–445, May. 1, 2014. https://doi.org/10.1016/j.energy.2014.03.035
dc.relation.citationendpage.none.fl_str_mv 162
dc.relation.citationstartpage.none.fl_str_mv 151
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationvolume.spa.fl_str_mv 16
dc.relation.bitstream.none.fl_str_mv https://revistascientificas.cuc.edu.co/ingecuc/article/download/2966/2975
https://revistascientificas.cuc.edu.co/ingecuc/article/download/2966/3536
https://revistascientificas.cuc.edu.co/ingecuc/article/download/2966/3566
dc.relation.citationedition.spa.fl_str_mv Núm. 2 , Año 2020 : (Julio-Diciembre)
dc.rights.spa.fl_str_mv INGE CUC - 2020
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv INGE CUC - 2020
http://creativecommons.org/licenses/by-nc-nd/4.0
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
text/html
application/xml
dc.publisher.spa.fl_str_mv Universidad de la Costa
dc.source.spa.fl_str_mv https://revistascientificas.cuc.edu.co/ingecuc/article/view/2966
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/f724592b-4683-46d3-8b79-8cd4b179b640/download
bitstream.checksum.fl_str_mv 3bb065dea1a3ab7a9c3a01b268b1bdf9
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760800187023360
spelling Orjuela Abril, Martha2020-04-30 00:00:002024-04-09T20:17:54Z2020-04-30 00:00:002024-04-09T20:17:54Z2020-04-300122-6517https://hdl.handle.net/11323/12279https://doi.org/10.17981/ingecuc.16.2.2020.1110.17981/ingecuc.16.2.2020.112382-4700Introducción— En la actualidad, el consumo de recursos fósiles cada vez es mayor debido a los procesos industriales y el crecimiento económico. Esto ha provocado graves problemas ambientales y un riesgo de agotamiento de estos recursos. Objetivos— En este estudio se evalúa la influencia de diferentes mezclas de biodiesel producidas a partir de los residuos de aceite de girasol y los residuos líquidos industriales de aceite de palma, en las características del proceso de combustión, rendimiento y emisiones contaminantes de CO2, HC, NOx y opacidad de humo. Metodología— Se desarrollaron pruebas experimentales en un motor diesel monocilíndrico. En el cual, se probaron dos mezclas de biodiesel PB2SB4 y PB4SB4. El motor funcionó en cuatro modos diferentes. Además, se realizó un modelo de diagnóstico para monitorear el efecto del biodiesel en la presión del proceso de combustión y en las tasas de liberación de calor. Resultados— Las curvas de presión en el cilindro disminuyen a medida que aumenta el porcentaje de biodiesel en el combustible. Del mismo modo, los resultados mostraron una disminución en la tasa de liberación de calor para las mezclas de biodiesel. Este efecto se puede apreciar al considerar la eficiencia de freno, en el cual las mezclas PB2SB4 y PB2SB4 muestran una reducción de 3.8% y 5.4% en comparación con diésel. El análisis de las emisiones contaminantes mostró que el biodiesel procedente de los residuos de aceite de palma y girasol permite una disminución en las emisiones de CO2, HC y opacidad de humo en un 21%, 18.5% y 10% al compararlo con el diésel comercial, respectivamente. Sin embargo, se observó un incremento en las emisiones de NOx. Conclusiones— Las mezclas de biodiesel procedentes de los residuos de aceite de palma y aceite de girasol no producen un cambio significativo en el proceso de combustión, consumo, y en el rendimiento del motor, siempre que el porcentaje de sustitución se mantenga en un nivel inferior al 8%. Adicionalmente, este tipo de biodiesel permite reducciones en las emisiones de CO2, HC y opacidad de humo.Introduction— Currently, the consumption of fossil resources is increasing due to industrial processes and economic growth. This has caused severe environmental problems and accelerated the depletion of these resources. Objective— This study evaluates the influence of different biodiesel blends produced from sunflower oil residues and industrial liquid palm oil residues on the characteristics of the combustion process, performance, and polluting emissions of CO2, HC, NOx, and opacity of smoke. Methodology— Experimental tests were carried out on a single-cylinder diesel engine. In which, two biodiesel blends PB2SB4 and PB4SB4 were tested. Four different operational modes were measured. Additionally, a diagnostic model was developed to monitor the effect of biodiesel on the pressure and heat transfer rates of the combustion process. Results— The in-cylinder pressure decreases as the percentage of biodiesel in the fuel increases. Similarly, the results show a reduced rate of heat transfer for biodiesel blends. This effect was observed considering the brake efficiency, that reduced in3.8% and 5.4% for PB2SB4 and PB2SB4 as compared to diesel. The analysis of polluting emissions shows that the use of biodiesel from palm and sunflower oil residues reduces the emissions of CO2, HC, and the smoke opacity by 21%, 18.5%, and 10% as compared to the emissions of diesel. However, increased emissions of NOx were observed. Conclusions— Biodiesel blends from palm oil and sunflower oil residues under 8% of biodiesel, have limited effects on the combustion process, fuel consumption, and engine performance. These biodiesel blends reduce the emissions of CO2, HC emissions, and smoke opacity.application/pdftext/htmlapplication/xmlspaUniversidad de la CostaINGE CUC - 2020http://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.http://purl.org/coar/access_right/c_abf2https://revistascientificas.cuc.edu.co/ingecuc/article/view/2966diesel enginepolluting emissionsbiodiesel blendscombustion processmotor diéselemisiones contaminantesmezclas de biodieselproceso de combustiónEstudio experimental del desempeño termodinámico y ambiental en motores diésel operando con mezclas de diésel y biodiésel verde de palma/girasolExperimental study of thermodynamic and environmental performance in diesel engines operating with diesel-palm/sunflower green biodiesel blendsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articleJournal articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Inge CucH. Yoo, B. Y. Park, H. Cho, & J. Park, “Performance Optimization of a Diesel Engine with a Two-Stage Turbocharging System and Dual-Loop EGR Using Multi-Objective Pareto Optimization Based on Diesel Cycle Simulation,” Energies, vol. 12, no. 22, pp. 1–26, Nov. 2019. https://doi.org/10.3390/en12224223H. Tian, J. Cui, T. Yang, Y. Fu, J. Tian, & W. Long, “Experimental Research on Controllability and Emissions of Jet-Controlled Compression Ignition Engine,” Energies. vol. 12, no. 15, pp. 1–14, Jul. 2019. https://doi.org/10.3390/en12152936A. Dhar & A. K. Agarwal, “Effect of Karanja biodiesel blend on engine wear in a diesel engine,” Fuel, vol. 134, no. 1, pp. 81–89, Oct. 2014. https://doi.org/10.1016/j.fuel.2014.05.039 F. S. Hirner, J. Hwang, C. Bae, C. Patel, T. Gupta, & A. K. Agarwal, “Performance and emission evaluation of a small-bore biodiesel compressionignition engine,” Energy, vol. 183, no. 1, pp. 971–982, Sep. 2019. https://doi.org/10.1016/j.energy.2019.07.015 A. Mejía, M. Leiva, A. Rincón, A. Gonzalez-Quiroga, & J. Duarte-Forero, “Experimental assessment of emissions maps of a single-cylinder compression ignition engine powered by diesel and palm oil biodiesel-diesel fuel blends,” Case Stud Therm Eng, vol. 19, no. 1, pp. 1–13, Jun. 2020. https://doi.org/10.1016/j.csite.2020.100613 G. Valencia, C. Acevedo, & J. Duarte, “Combustion and Performance Study of Low-Displacement Compression Ignition Engines Operating with Diesel–Biodiesel Blends,” Applied Sciences, vol. 10, no. 3, pp. 1–19, Jan. 2020. https://doi.org/10.3390/app10030907 S. Bari & S. N. Hossain, “Performance and emission analysis of a diesel engine running on palm oil diesel (POD),” Energy Procedia, vol. 160, no. 1, pp. 92–99, Feb. 2019. https://doi.org/10.1016/j.egypro.2019.02.123 B. Sajjadi, A. A. A. Raman, & H. Arandiyan, “A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: Composition, specifications and prediction models,” Renew Sustain Energy Rev, vol. 63, no. C, pp. 62–92, Sep. 2016. https://doi.org/10.1016/j.rser.2016.05.035 H. J. Berchmans & S. Hirata, “Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids,” Bioresour Technol, vol. 99, no. 6, pp. 1716–1721, Apr. 2008. https://doi.org/10.1016/j.biortech.2007.03.051 P. G. I. Thushari & S. Babel, “Biodiesel Production From Waste Palm Oil Using Palm Empty Fruit Bunch-Derived Novel Carbon Acid Catalyst,” J Energy Resour Technol, vol. 140, no. 3, pp. 1–10, Mar. 2018. https://doi.org/10.1115/1.4038380 S. Sumathi, S. P. Chai, & A. R. Mohamed, “Utilization of oil palm as a source of renewable energy in Malaysia,” Renew Sustain Energy Rev, vol. 12, no. 9, pp. 2404–2421, Dec. 2008. https://doi.org/10.1016/j.rser.2007.06.006 J. C. Kurnia, S. V. Jangam, S. Akhtar, A. P. Sasmito, & A. S. Mujumdar, “Advances in biofuel production from oil palm and palm oil processing wastes: A review,” Biofuel Res J, vol. 3, no. 1, pp. 332–346, Mar. 2016. https://doi.org/10.18331/BRJ2016.3.1.3 S. A. Sulaiman & F. F. F. Taha, “Drying of Oil Palm Fronds Using Concentrated Solar Thermal Power,” Appl Mech Mater, vol. 699, no. 1, pp. 449–454, Nov. 2014. https://doi.org/10.4028/www.scientific.net/AMM.699.449 S. S. Lam, Y. F. Tsang, P. N. Yuh Yek, R. K. Liew, M. S. Osman, W. Peng, W. H. Lee & Y.-K. Park, “Co-processing of oil palm waste and waste oil via microwave co-torrefaction: A waste reduction approach for producing solid fuel product with improved properties,” Process Saf Environ, vol. 128, no. 1, pp. 30–35, Aug. 2019. https://doi.org/10.1016/j.psep.2019.05.034 H. J. Cho, J.-K. Kim, H.-J. Cho, & Y.-K. Yeo, “Techno-Economic Study of a Biodiesel Production from Palm Fatty Acid Distillate,” Ind Eng Chem Res, vol. 52, no. 1, pp. 462–468, 2013. https://doi.org/10.1021/ie301651b W. Liew, K. Muda, M. Azraai, A. Affam, and S. Loh, “Agro-industrial waste sustainable management – a potential source of economic benefits to palm oil mills in Malaysia,” J Urban Environ Eng, vol. 11, no. 1, pp. 108–118, May. 2017. https://doi.org/10.4090/juee.2017.v11n1.108118 M. A. Ahmad Farid et al., “Production of methyl esters from waste cooking oil using a heterogeneous biomass-based catalyst,” Renew Energy, vol. 114, part. B, pp. 638–643, Dec. 2017. https://doi.org/10.1016/j.renene.2017.07.064 M. R. Anuar & A. Z. Abdullah, “Ultrasound-assisted biodiesel production from waste cooking oil using hydrotalcite prepared by combustion method as catalyst,” Appl Catal A Gen, vol. 514, pp. 214–223, Mar. 2016. https://doi.org/10.1016/j.apcata.2016.01.023 I. K. Hong, H. Jeon, H. Kim, & S. B. Lee, “Preparation of waste cooking oil based biodiesel using microwave irradiation energy,” J. Ind Eng Chem, vol. 42, pp. 107–112, Oct. 2016. https://doi.org/10.1016/j.jiec.2016.07.035 A. Saydut, A. B. Kafadar, Y. Tonbul, C. Kaya, F. Aydin, & C. Hamamci, “Comparison of the Biodiesel Quality Produced from Refined Sunflower (Helianthus Annuus L) Oil and Waste Cooking Oil,” Energy Explor Exploit, vol. 28, no. 6, pp. 499–512, Dec. 2010. https://doi.org/10.1260/0144-5987.28.6.499 M. Saifuddin and A. N. Boyce, “Biodiesel production from waste cooking sunflower oil and environmental impact analysis,” Kuwait J Sci, vol. 43, no. 3, pp. 110–117, 2016. Available: https://journalskuwait.org/kjs/index.php/KJS/article/view/1723 M. Elkelawy, H. A.-E. Bastawissi, K. K. Esmaeil, A. M. Radwan, H. Panchal, K. K. Sadasivuni, D. Ponnamma & R. Walvecar, “Experimental studies on the biodiesel production parameters optimization of sunflower and soybean oil mixture and DI engine combustion, performance, and emission analysis fueled with diesel/biodiesel blends,” Fuel, vol. 255, no. 1, pp. 1–12, Nov. 2019. https://doi.org/10.1016/j.fuel.2019.115791 J. Gupta, M. Agarwal, & A. K. Dalai, “Optimization of biodiesel production from mixture of edible and nonedible vegetable oils,” Biocatal. Agric. Biotechnol, vol. 8, no. 1, pp. 112–120, Oct. 2016. https://doi.org/10.1016/j.bcab.2016.08.014 V. F. de Almeida, P. J. García-Moreno, A. Guadix, & E. M. Guadix, “Biodiesel production from mixtures of waste fish oil, palm oil and waste frying oil: Optimization of fuel properties,” Fuel Process Technol, vol. 133, no. 1, pp. 152–160, May. 2015. https://doi.org/10.1016/j.fuproc.2015.01.041 J. F. Costa, M. F. Almeida, M. C. M. Alvim-Ferraz, & J. M. Dias, “Biodiesel production using oil from fish canning industry wastes,” Energy Convers Manag, vol. 74, no. 1, pp. 17–23, Oct. 2013. https://doi.org/10.1016/j.enconman.2013.04.032 J. Heywood, Internal combustion engine fundamentals. NY, USA: McGraw-Hill Education, 1988. https://doi.org/10.5860/CHOICE.26-0943 M. F. J. Brunt, H. Rai, & A. L. Emtage, “The Calculation of Heat Release Energy from Engine Cylinder Pressure Data,” presented at SAE Technical Paper 981052, Inter. Con. & Exp., Bhm., En., pp. 1596–1609, Feb. 1998. https://doi.org/10.4271/981052 M. A. Asokan, S. Senthur Prabu, P. K. K. Bade, V. M. Nekkanti, & S. S. G. Gutta, “Performance, combustion and emission characteristics of juliflora biodiesel fuelled DI diesel engine,” Energy, vol. 173, no. 1, pp. 883–892, Apr. 2019. https://doi.org/10.1016/j.energy.2019.02.075 M. M. Musthafa, T. A. Kumar, T. Mohanraj, & R. Chandramouli, “A comparative study on performance, combustion and emission characteristics of diesel engine fuelled by biodiesel blends with and without an additive,” Fuel, vol. 225, no 1, pp. 343–348, Aug. 1, 2018. https://doi.org/10.1016/j.fuel.2018.03.147 Y. Du, X. Yu, J. Wang, H. Wu, W. Dong, & J. Gu, “Research on combustion and emission characteristics of a lean burn gasoline engine with hydrogen direct-injection,” Int J Hydrogen Energy, vol. 41, no. 4, pp. 3240–3248, Jan. 30, 2016. https://doi.org/10.1016/j.ijhydene.2015.12.025 Ö. Can, “Combustion characteristics, performance and exhaust emissions of a diesel engine fueled with a waste cooking oil biodiesel mixture,” Energy Convers Manag, vol. 87, no. 1, pp. 676–686, Nov. 2014. https://doi.org/10.1016/j.enconman.2014.07.066 M. Canakci, “Combustion characteristics of a turbocharged DI compression ignition engine fueled with petroleum diesel fuels and biodiesel,” Bioresour Technol, vol. 98, no. 6, pp. 1167–1175, Apr., 2007. https://doi.org/10.1016/j.biortech.2006.05.024 S. Murillo, J. L. Míguez, J. Porteiro, E. Granada, & J. C. Morán, “Performance and exhaust emissions in the use of biodiesel in outboard diesel engines,” Fuel,vol. 86, no. 12–13, pp. 1765–1771, Aug. 2007. https://doi.org/10.1016/j.fuel.2006.11.031H. C. Ong, H. H. Masjuki, T. M. I. Mahlia, A. S. Silitonga, W. T. Chong, & T. Yusaf, “Engine performance and emissions using Jatropha curcas, Ceiba pentandra and Calophyllum inophyllum biodiesel in a CI diesel engine,” Energy, vol. 69, no. 1, pp. 427–445, May. 1, 2014. https://doi.org/10.1016/j.energy.2014.03.035162151216https://revistascientificas.cuc.edu.co/ingecuc/article/download/2966/2975https://revistascientificas.cuc.edu.co/ingecuc/article/download/2966/3536https://revistascientificas.cuc.edu.co/ingecuc/article/download/2966/3566Núm. 2 , Año 2020 : (Julio-Diciembre)PublicationOREORE.xmltext/xml2668https://repositorio.cuc.edu.co/bitstreams/f724592b-4683-46d3-8b79-8cd4b179b640/download3bb065dea1a3ab7a9c3a01b268b1bdf9MD5111323/12279oai:repositorio.cuc.edu.co:11323/122792024-09-17 12:45:46.194http://creativecommons.org/licenses/by-nc-nd/4.0INGE CUC - 2020metadata.onlyhttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.co