CaeAl, NieAl and ZneAl LDH powders as efficient materials to treat synthetic effluents containing o-nitrophenol

Powdered layered double hydroxides (LDH) based on calcium-aluminum (Ca–Al), nickel-aluminum (Ni–Al), and zinc-aluminum (Zn–Al) were synthesized with the purpose to evaluate the removal of o-nitrophenol from synthetic effluents by adsorption. It was verified that Ca–Al, Ni–Al, and Zn–Al LDHs presente...

Full description

Autores:
Marques, Bianca S.
Dalmagro, Keterli
Moreira, Kelly S.
Oliveira, Marcos L.S.
Jahn, Sergio L.
De Lima Burgo, Thiago A.
Dotto, Guilherme L.
Tipo de recurso:
http://purl.org/coar/resource_type/c_816b
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/6300
Acceso en línea:
https://hdl.handle.net/11323/6300
https://doi.org/10.1016/j.jallcom.2020.155628
https://repositorio.cuc.edu.co/
Palabra clave:
Adsorption
General order
Layered structure
Nitrophenol
Simulated effluent
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_f491703c360b65b12e68c280bd8ce3b3
oai_identifier_str oai:repositorio.cuc.edu.co:11323/6300
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv CaeAl, NieAl and ZneAl LDH powders as efficient materials to treat synthetic effluents containing o-nitrophenol
title CaeAl, NieAl and ZneAl LDH powders as efficient materials to treat synthetic effluents containing o-nitrophenol
spellingShingle CaeAl, NieAl and ZneAl LDH powders as efficient materials to treat synthetic effluents containing o-nitrophenol
Adsorption
General order
Layered structure
Nitrophenol
Simulated effluent
title_short CaeAl, NieAl and ZneAl LDH powders as efficient materials to treat synthetic effluents containing o-nitrophenol
title_full CaeAl, NieAl and ZneAl LDH powders as efficient materials to treat synthetic effluents containing o-nitrophenol
title_fullStr CaeAl, NieAl and ZneAl LDH powders as efficient materials to treat synthetic effluents containing o-nitrophenol
title_full_unstemmed CaeAl, NieAl and ZneAl LDH powders as efficient materials to treat synthetic effluents containing o-nitrophenol
title_sort CaeAl, NieAl and ZneAl LDH powders as efficient materials to treat synthetic effluents containing o-nitrophenol
dc.creator.fl_str_mv Marques, Bianca S.
Dalmagro, Keterli
Moreira, Kelly S.
Oliveira, Marcos L.S.
Jahn, Sergio L.
De Lima Burgo, Thiago A.
Dotto, Guilherme L.
dc.contributor.author.spa.fl_str_mv Marques, Bianca S.
Dalmagro, Keterli
Moreira, Kelly S.
Oliveira, Marcos L.S.
Jahn, Sergio L.
De Lima Burgo, Thiago A.
Dotto, Guilherme L.
dc.subject.spa.fl_str_mv Adsorption
General order
Layered structure
Nitrophenol
Simulated effluent
topic Adsorption
General order
Layered structure
Nitrophenol
Simulated effluent
description Powdered layered double hydroxides (LDH) based on calcium-aluminum (Ca–Al), nickel-aluminum (Ni–Al), and zinc-aluminum (Zn–Al) were synthesized with the purpose to evaluate the removal of o-nitrophenol from synthetic effluents by adsorption. It was verified that Ca–Al, Ni–Al, and Zn–Al LDHs presented a typical layered structure confirming the successful synthesis. o-nitrophenol adsorption on the LDH powders was favored at a pH of 5.0, being attained removal percentages from 70 to 90%, depending on the material. Kinetic experimental data obeyed the general order model, while, Sips represented the experimental equilibrium behavior of the three materials adequately. The maximum adsorption capacities were 135.1 mg g−1,122.1 mg g−1 and 130.3 mg g−1 for Ca–Al, Ni–Al, and Zn–Al LDHs, respectively. For simulated effluent, it was attained a removal of up to 60.3% using Ni–Al LDH. In a general way, the layered double hydroxides based on Ca–Al, Ni–Al, and Zn–Al exhibited an interesting potential as adsorbent materials for the treatment of simulated effluents containing o-nitrophenol. Ni–Al is preferred due to its better performance in the treatment of simulated effluents and higher regeneration potential.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-05-28T16:05:05Z
dc.date.available.none.fl_str_mv 2020-05-28T16:05:05Z
dc.date.issued.none.fl_str_mv 2020-05-13
dc.type.spa.fl_str_mv Pre-Publicación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_816b
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/preprint
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTOTR
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_816b
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/6300
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1016/j.jallcom.2020.155628
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/6300
https://doi.org/10.1016/j.jallcom.2020.155628
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] R. Arasteh, M. Masoumi, A.M. Rashidi, L. Moradi, V. Samimi, S. Mostafavi, Adsorption of 2-nitrophenol by multi-wall carbon nanotubes from aqueous solutions, Appl. Surf. Sci. 256 (2010) 4447e4455, https://doi.org/10.1016/ j.apsusc.2010.01.057.
[2] United States Environmental Protection Agency, Ambient water quality criteria for nitrophenols, in: In Canadian Cataloging in Publication Data 2, 1980. Issue October.
[3] S. Hamidouche, O. Bouras, F. Zermane, B. Cheknane, M. Houari, J. Debord, M. Harel, J.C. Bollinger, M. Baudu, Simultaneous sorption of 4-nitrophenol and 2-nitrophenol on a hybrid geocomposite based on surfactant-modified pillared-clay and activated carbon, Chem. Eng. J. 279 (2015) 964e972, https:// doi.org/10.1016/j.cej.2015.05.012.
[4] B. Kordi c, B. Jovi c, J. Trickovi c, M. Kovacevi c, Adsorption of selected nitrophenols on activated carbon in the presence of nicotinamide, J. Mol. Liq. 259 (2018) 7e15, https://doi.org/10.1016/j.molliq.2018.02.109.
[5] M.E. Mahmoud, G.M. Nabil, Nano zirconium silicate-coated manganese dioxide nanoparticles: microwave-assisted synthesis, process optimization, adsorption isotherm, kinetic study and thermodynamic parameters for removal of 4-nitrophenol, J. Mol. Liq. 240 (2017) 280e290, https://doi.org/ 10.1016/j.molliq.2017.05.075.
[6] A.J.K. Kupeta, E.B. Naidoo, A.E. Ofomaja, Kinetics, and equilibrium study of 2- nitrophenol adsorption onto polyurethane cross-linked pine cone biomass, J. Clean. Prod. 179 (2018) 191e209, https://doi.org/10.1016/ j.jclepro.2018.01.034.
[7] Y. Zhang, M. Mei, X. Huang, D. Yuan, Extraction of trace nitrophenols in environmental water samples using boronate affinity sorbent, Anal. Chim. Acta 899 (2015) 75e84, https://doi.org/10.1016/j.aca.2015.10.004.
[8] F. Deng, Q. Zhang, L. Yang, X. Luo, A. Wang, S. Luo, D.D. Dionysiou, Visiblelight-responsive graphene-functionalized Bi-bridge Z-scheme black BiOCl/ Bi2O3 heterojunction with oxygen vacancy and multiple charge transfer channels for efficient photocatalytic degradation of 2-nitrophenol and industrial wastewater treatment, Appl. Catal. B Environ. 238 (2018) 61e69, https://doi.org/10.1016/j.apcatb.2018.05.004.
[9] F.R. Zaggout, N. Abu Ghalwa, Removal of o-nitrophenol from water by electrochemical degradation using a lead oxide/titanium modified electrode, J. Environ. Manag. 86 (2008) 291e296, https://doi.org/10.1016/ j.jenvman.2006.12.033.
[10] A. Bonilla-Petriciolet, D.I. Mendoza-Castillo, H.E. Reynel-Avila (Eds.), Adsorp- tion Processes for Water Treatment and Purification, Springer International Publishing, New York, 2017, pp. 19e51, https://doi.org/10.1007/978-3-319- 58136-1_2.
[11] R.S. Ribeiro, A.M.T. Silva, J.L. Figueiredo, J.L. Faria, H.T. Gomes, Removal of 2- nitrophenol by catalytic wet peroxide oxidation using carbon materials with different morphological and chemical properties, Appl. Catal. B Environ. 140e141 (2013) 356e362, https://doi.org/10.1016/j.apcatb.2013.04.031.
[12] J. Chen, X. Sun, L. Lin, X. Dong, Y. He, Adsorption removal of o-nitrophenol and p-nitrophenol from wastewater by metal-organic framework Cr-BDC, Chin. J. Chem. Eng. 25 (2017) 775e781, https://doi.org/10.1016/j.cjche.2016.10.014.
[13] L. Shao, J. Huang, Controllable synthesis of N-vinyl imidazole-modified hypercross-linked resins and their efficient adsorption of p-nitrophenol and onitrophenol, J. Colloid Interface Sci. 507 (2017) 42e50, https://doi.org/ 10.1016/j.jcis.2017.07.112.
[14] E.R. Abaide, G.L. Dotto, M.V. Tres, G.L. Zabot, M.A. Mazutti, Adsorption of 2- nitrophenol using rice straw and rice husks hydrolyzed by subcritical water, Bioresour. Technol. 284 (2019) 25e35, https://doi.org/10.1016/ j.biortech.2019.03.110.
[15] G. Mishra, B. Dash, S. Pandey, Layered double hydroxides: a brief review from fundamentals to application as evolving biomaterials, Appl. Clay Sci. 153 (2017) 172e186, https://doi.org/10.1016/j.clay.2017.12.021.
[16] C. Barriga, M. Gait an, I. Pavlovic, M.A. Ulibarri, M.C. Hermos~ õn, J. Cornejo, Hydrotalcites as sorbent for 2,4,6-trinitrophenol: influence of the layer composition and interlayer anion, J. Mater. Chem. 12 (2002) 1027e1034, https://doi.org/10.1039/b107979b.
[17] A. Halajnia, S. Oustan, N. Najafi, A.R. Khataee, A. Lakzian, Adsorptiondesorption characteristics of nitrate, phosphate and sulfate on Mg-Al layered double hydroxide, Appl. Clay Sci. 80e81 (2013) 305e312, https://doi.org/ 10.1016/j.clay.2013.05.002.
[18] H. Hatami, A. Fotovat, A. Halajnia, Comparison of adsorption and desorption of phosphate on synthesized Zn-Al LDH by two methods in a simulated soil solution, Appl. Clay Sci. 152 (2017) 333e341, https://doi.org/10.1016/ j.clay.2017.11.032.
[19] E.M. Seftel, R.G. Ciocarlan, B. Michielsen, V. Meynen, S. Mullens, P. Cool, Insights into phosphate adsorption behavior on structurally modified ZnAl layered double hydroxides, Appl. Clay Sci. 165 (2018) 234e246, https:// doi.org/10.1016/j.clay.2018.08.018.
[20] A. Elhalil, M. Farnane, A. Machrouhi, F.Z. Mahjoubi, R. Elmoubarki, H. Tounsadi, M. Abdennouri, N. Barka, Effects of molar ratio and calcination temperature on the adsorption performance of Zn/Al layered double hydroxide nanoparticles in the removal of pharmaceutical pollutants, J. Sci. Adv. Mater. Dev. 3 (2018) 188e195, https://doi.org/10.1016/j.jsamd.2018.03.005.
[21] E.H. Mourid, M. Lakraimi, L. Benaziz, E.H. Elkhattabi, A. Legrouri, Wastewater treatment test by removal of the sulfamethoxazole antibiotic by a calcined layered double hydroxide, Appl. Clay Sci. 168 (2018) 87e95, https://doi.org/ 10.1016/j.clay.2018.11.005
[22] T. Xiong, X. Yuan, X. Wang, Z. Wu, L. Jiang, L. Leng, K. Xi, X. Cao, G. Zeng, Highly efficient removal of diclofenac sodium from medical wastewater by Mg/Al layered double hydroxide-poly(m-phenylenediamine) composite, Chem. Eng. J. 366 (2019) 83e91, https://doi.org/10.1016/j.cej.2019.02.069.
[23] I.M. Ahmed, M.S. Gasser, Adsorption study of anionic reactive dye from aqueous solution to Mg-Fe-CO3 layered double hydroxide (LDH), Appl. Surf. Sci. 259 (2012) 650e656, https://doi.org/10.1016/j.apsusc.2012.07.092.
[24] F.P. De Sa, B.N. Cunha, L.M. Nunes, Effect of pH on the adsorption of Sunset Yellow FCF food dye into a layered double hydroxide (CaAl-LDH-NO3), Chem. Eng. J. 215e216 (2013) 122e127, https://doi.org/10.1016/j.cej.2012.11.024.
[25] F. Mohamed, M.R. Abukhadra, M. Shaban, M, Removal of safranin dye from water using polypyrrole nanofiber/Zn-Fe layered double hydroxide nanocomposite (Ppy NF/Zn-Fe LDH) of enhanced adsorption and photocatalytic properties, Sci. Total Environ. 640e641 (2018) 352e363, https://doi.org/ 10.1016/j.scitotenv.2018.05.316.
[26] L. Cao, J. Guo, J. Tian, Y. Xu, M. Hu, M. Wang, J. Fan, Preparation of Ca/AlLayered Double Hydroxide and the influence of their structure on early strength of cement, Construct. Build. Mater. 184 (2018) 203e214, https:// doi.org/10.1016/j.conbuildmat.2018.06.186.
[27] B. Li, J. He, D.G. Evans, X. Duan, Morphology, and size control of Ni-Al layered double hydroxides using chitosan as a template, J. Phys. Chem. Solid. 67 (2006) 1067e1070, https://doi.org/10.1016/j.jpcs.2006.01.027.
[28] L. Cocheci, L. Lupa, M. Gheju, A. Golban, R. Lazau, R. Pode, Zn-Al-CO 3 layered double hydroxides prepared from a waste of hot-dip galvanizing process, B.S. Marques et al. / Journal of Alloys and Compounds 838 (2020) 155628 11 Clean Technol, Environ. Pol. 20 (2018) 1105e1112, https://doi.org/10.1007/ s10098-018-1533-3.
[29] M. Khormaei, B. Nasernejad, M. Edrisi, T. Eslamzadeh, Copper biosorption from aqueous solutions by sour orange residue, J. Hazard Mater. 149 (2007) 269e274, https://doi.org/10.1016/j.jhazmat.2007.03.074.
[30] G.L. Dotto, N.P.G. Salau, J.S. Piccin, T.R.S. Cadaval, L.A.A. Pinto, Adsorption kinetics in liquid phase: modeling for discontinuous and continuous systems, in: A. Bonilla-Petriciolet, D.I. Mendoza-Castillo, H.E. Reynel-Avila (Eds.), Adsorption Processes for Water Treatment and Purification, Springer International Publishing, New York, 2017, pp. 53e76, https://doi.org/10.1007/978- 3-319-58136-1_3.
[31] J.S. Piccin, T.R.S. Cadaval, L.A.A. Pinto, G.L. Dotto, Adsorption isotherms in liquid phase: experimental, modeling, and interpretations, in: A. BonillaPetriciolet, D.I. Mendoza-Castillo, H.E. Reynel-Avila (Eds.), Adsorption Pro- cesses for Water Treatment and Purification, Springer International Publishing, New York, 2017, pp. 19e51, https://doi.org/10.1007/978-3-319-58136-1_ 2.
[32] A. Bonilla-Petriciolet, D. Mendoza-Castillo, G.L. Dotto, J.C. Duran-Valle, Adsorption in water treatment, in: Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, Elsevier, Amsterdam, 2019, pp. 1e21, https://doi.org/10.1016/B978-0-12-409547-2.14390-2.
[33] P.S. Thue, M.A. Adebayo, E.C. Lima, J.M. Sieliechi, F.M. Machado, G.L. Dotto, J.C.P. Vaghetti, S.L.P. Dias, Preparation, characterization, and application of microwave-assisted activated carbons from wood chips for removal of phenol from aqueous solution, J. Mol. Liq. 223 (2016) 1067e1080, https://doi.org/ 10.1016/j.molliq.2016.09.032.
[34] C.H. Wu, Y.P. Chang, S.Y. Chen, D.M. Liu, C.T. Yu, B.L. Pen, Characterization and structure evolution of Ca-Al-CO3 hydrotalcite film for high-temperature CO2 adsorption, J. Nanosci. Nanotechnol. 10 (2010) 4716e4720, https://doi.org/ 10.1166/jnn.2010.1708.
[35] J. Olanrewaju, B.L. Newalkar, C. Mancino, S. Komarneni, Simplified synthesis of nitrate form of layered double hydroxide, Mater. Lett. 45 (2000) 307e310, https://doi.org/10.1016/S0167-577X(00)00123-3.
[36] A.A.E. Sakr, T. Zaki, O. Saber, S.A. Hassan, A.K. Aboul-Gheit, S. Faramawy, Synthesis of Zn-Al LDHs intercalated with urea derived anions for capturing carbon dioxide from natural gas, J. Taiwan Inst. Chem. Eng. 44 (2013) 957e962, https://doi.org/10.1016/j.jtice.2013.02.003
[37] M.V. Bukhtiyarova, A review on the effect of synthesis conditions on the formation of layered double hydroxides, J. Solid State Chem. 269 (2018) 494e506, https://doi.org/10.1016/j.jssc.2018.10.018.
[38] H. Lu, J. Chen, Q. Tian, Wearable high-performance supercapacitors based on Ni-coated cotton textile with low-crystalline Ni-Al layered double hydroxide nanoparticles, J. Colloid Interface Sci. 513 (2018) 342e348, https://doi.org/ 10.1016/j.jcis.2017.11.046.
[39] M. Hu, X. Yan, X. Hu, R. Feng, M. Zhou, High-capacity adsorption of benzotriazole from aqueous solution by calcined Zn-Al layered double hydroxides, Colloid, Surf. A: Physicochem. Eng. Asp. 540 (2018) 207e214, https://doi.org/ 10.1016/j.colsurfa.2018.01.009.
[40] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87 (2015) 1051e1069, https://doi.org/10.1515/pac-2014- 1117
[41] N. Baig, S.M. Ihsanullah, T.A. Saleh, Graphene-based adsorbents for the removal of toxic organic pollutants: a review, J. Environ. Manag. 244 (2018) 370e382, https://doi.org/10.1016/j.jenvman.2019.05.047.
[42] A. Tor, Y. Cengeloglu, M.E. Aydin, M. Ersoz, Removal of phenol from aqueous phase by using neutralized red mud, J. Colloid Interface Sci. 300 (2006) 498e503, https://doi.org/10.1016/j.jcis.2006.04.054.
[43] K.H. Goh, T.T. Lim, Z. Dong, Application of layered double hydroxides for removal of oxyanions: a review, Water Res. 42 (2008) 1343e1368, https:// doi.org/10.1016/j.watres.2007.10.043.
[44] C.H. Giles, D. Smith, A. Huitson, A general treatment and classification of the solute adsorption isotherm, J. Colloid Interface Sci. 47 (1973), https://doi.org/ 10.1007/s41193-016-0111-5, 775-765.
[45] E.L. Kochany, Degradation of nitrobenzene and nitrophenols by means of advanced oxidation processes in a homogeneous phase: photolysis in the presence of hydrogen peroxide versus the Fenton reaction, Chemosphere 24 (1992) 1369e1380, https://doi.org/10.1016/0045-6535(92)90060-5.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstream/11323/6300/1/CaeAl%2c%20NieAl%20and%20ZneAl%20LDH%20powders%20as%20efficient%20materials%20to%20treat.html
https://repositorio.cuc.edu.co/bitstream/11323/6300/2/license_rdf
https://repositorio.cuc.edu.co/bitstream/11323/6300/3/license.txt
https://repositorio.cuc.edu.co/bitstream/11323/6300/4/CaeAl%2c%20NieAl%20and%20ZneAl%20LDH%20powders%20as%20efficient%20materials%20to%20treat.html.txt
https://repositorio.cuc.edu.co/bitstream/11323/6300/4/CaeAl%2c%20NieAl%20and%20ZneAl%20LDH%20powders%20as%20efficient%20materials%20to%20treat.html.txt
bitstream.checksum.fl_str_mv e575731eb6aac221aaf904b32e6ddcbf
42fd4ad1e89814f5e4a476b409eb708c
8a4605be74aa9ea9d79846c1fba20a33
751e6b39c164be93a6daf004187216bf
751e6b39c164be93a6daf004187216bf
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de La Costa
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808400223208210432
spelling Marques, Bianca S.438081b74cda2241b32642c9f345a1c3Dalmagro, Keterli41388cc2a1f198533e5704de97964adaMoreira, Kelly S.c97a5e75d42ff426a95efc4f8fd1df1eOliveira, Marcos L.S.6b16a4068c414ea46c2588691b7c4b54Jahn, Sergio L.73cd2ae90ce9cd771c95c2a0f966f938De Lima Burgo, Thiago A.234985d693a86873189597a2dba13614Dotto, Guilherme L.c0e5bf3f141757792fd1a91aaeb9fc0c2020-05-28T16:05:05Z2020-05-28T16:05:05Z2020-05-13https://hdl.handle.net/11323/6300https://doi.org/10.1016/j.jallcom.2020.155628Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Powdered layered double hydroxides (LDH) based on calcium-aluminum (Ca–Al), nickel-aluminum (Ni–Al), and zinc-aluminum (Zn–Al) were synthesized with the purpose to evaluate the removal of o-nitrophenol from synthetic effluents by adsorption. It was verified that Ca–Al, Ni–Al, and Zn–Al LDHs presented a typical layered structure confirming the successful synthesis. o-nitrophenol adsorption on the LDH powders was favored at a pH of 5.0, being attained removal percentages from 70 to 90%, depending on the material. Kinetic experimental data obeyed the general order model, while, Sips represented the experimental equilibrium behavior of the three materials adequately. The maximum adsorption capacities were 135.1 mg g−1,122.1 mg g−1 and 130.3 mg g−1 for Ca–Al, Ni–Al, and Zn–Al LDHs, respectively. For simulated effluent, it was attained a removal of up to 60.3% using Ni–Al LDH. In a general way, the layered double hydroxides based on Ca–Al, Ni–Al, and Zn–Al exhibited an interesting potential as adsorbent materials for the treatment of simulated effluents containing o-nitrophenol. Ni–Al is preferred due to its better performance in the treatment of simulated effluents and higher regeneration potential.engCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2AdsorptionGeneral orderLayered structureNitrophenolSimulated effluentCaeAl, NieAl and ZneAl LDH powders as efficient materials to treat synthetic effluents containing o-nitrophenolPre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersion[1] R. Arasteh, M. Masoumi, A.M. Rashidi, L. Moradi, V. Samimi, S. Mostafavi, Adsorption of 2-nitrophenol by multi-wall carbon nanotubes from aqueous solutions, Appl. Surf. Sci. 256 (2010) 4447e4455, https://doi.org/10.1016/ j.apsusc.2010.01.057.[2] United States Environmental Protection Agency, Ambient water quality criteria for nitrophenols, in: In Canadian Cataloging in Publication Data 2, 1980. Issue October.[3] S. Hamidouche, O. Bouras, F. Zermane, B. Cheknane, M. Houari, J. Debord, M. Harel, J.C. Bollinger, M. Baudu, Simultaneous sorption of 4-nitrophenol and 2-nitrophenol on a hybrid geocomposite based on surfactant-modified pillared-clay and activated carbon, Chem. Eng. J. 279 (2015) 964e972, https:// doi.org/10.1016/j.cej.2015.05.012.[4] B. Kordi c, B. Jovi c, J. Trickovi c, M. Kovacevi c, Adsorption of selected nitrophenols on activated carbon in the presence of nicotinamide, J. Mol. Liq. 259 (2018) 7e15, https://doi.org/10.1016/j.molliq.2018.02.109.[5] M.E. Mahmoud, G.M. Nabil, Nano zirconium silicate-coated manganese dioxide nanoparticles: microwave-assisted synthesis, process optimization, adsorption isotherm, kinetic study and thermodynamic parameters for removal of 4-nitrophenol, J. Mol. Liq. 240 (2017) 280e290, https://doi.org/ 10.1016/j.molliq.2017.05.075.[6] A.J.K. Kupeta, E.B. Naidoo, A.E. Ofomaja, Kinetics, and equilibrium study of 2- nitrophenol adsorption onto polyurethane cross-linked pine cone biomass, J. Clean. Prod. 179 (2018) 191e209, https://doi.org/10.1016/ j.jclepro.2018.01.034.[7] Y. Zhang, M. Mei, X. Huang, D. Yuan, Extraction of trace nitrophenols in environmental water samples using boronate affinity sorbent, Anal. Chim. Acta 899 (2015) 75e84, https://doi.org/10.1016/j.aca.2015.10.004.[8] F. Deng, Q. Zhang, L. Yang, X. Luo, A. Wang, S. Luo, D.D. Dionysiou, Visiblelight-responsive graphene-functionalized Bi-bridge Z-scheme black BiOCl/ Bi2O3 heterojunction with oxygen vacancy and multiple charge transfer channels for efficient photocatalytic degradation of 2-nitrophenol and industrial wastewater treatment, Appl. Catal. B Environ. 238 (2018) 61e69, https://doi.org/10.1016/j.apcatb.2018.05.004.[9] F.R. Zaggout, N. Abu Ghalwa, Removal of o-nitrophenol from water by electrochemical degradation using a lead oxide/titanium modified electrode, J. Environ. Manag. 86 (2008) 291e296, https://doi.org/10.1016/ j.jenvman.2006.12.033.[10] A. Bonilla-Petriciolet, D.I. Mendoza-Castillo, H.E. Reynel-Avila (Eds.), Adsorp- tion Processes for Water Treatment and Purification, Springer International Publishing, New York, 2017, pp. 19e51, https://doi.org/10.1007/978-3-319- 58136-1_2.[11] R.S. Ribeiro, A.M.T. Silva, J.L. Figueiredo, J.L. Faria, H.T. Gomes, Removal of 2- nitrophenol by catalytic wet peroxide oxidation using carbon materials with different morphological and chemical properties, Appl. Catal. B Environ. 140e141 (2013) 356e362, https://doi.org/10.1016/j.apcatb.2013.04.031.[12] J. Chen, X. Sun, L. Lin, X. Dong, Y. He, Adsorption removal of o-nitrophenol and p-nitrophenol from wastewater by metal-organic framework Cr-BDC, Chin. J. Chem. Eng. 25 (2017) 775e781, https://doi.org/10.1016/j.cjche.2016.10.014.[13] L. Shao, J. Huang, Controllable synthesis of N-vinyl imidazole-modified hypercross-linked resins and their efficient adsorption of p-nitrophenol and onitrophenol, J. Colloid Interface Sci. 507 (2017) 42e50, https://doi.org/ 10.1016/j.jcis.2017.07.112.[14] E.R. Abaide, G.L. Dotto, M.V. Tres, G.L. Zabot, M.A. Mazutti, Adsorption of 2- nitrophenol using rice straw and rice husks hydrolyzed by subcritical water, Bioresour. Technol. 284 (2019) 25e35, https://doi.org/10.1016/ j.biortech.2019.03.110.[15] G. Mishra, B. Dash, S. Pandey, Layered double hydroxides: a brief review from fundamentals to application as evolving biomaterials, Appl. Clay Sci. 153 (2017) 172e186, https://doi.org/10.1016/j.clay.2017.12.021.[16] C. Barriga, M. Gait an, I. Pavlovic, M.A. Ulibarri, M.C. Hermos~ õn, J. Cornejo, Hydrotalcites as sorbent for 2,4,6-trinitrophenol: influence of the layer composition and interlayer anion, J. Mater. Chem. 12 (2002) 1027e1034, https://doi.org/10.1039/b107979b.[17] A. Halajnia, S. Oustan, N. Najafi, A.R. Khataee, A. Lakzian, Adsorptiondesorption characteristics of nitrate, phosphate and sulfate on Mg-Al layered double hydroxide, Appl. Clay Sci. 80e81 (2013) 305e312, https://doi.org/ 10.1016/j.clay.2013.05.002.[18] H. Hatami, A. Fotovat, A. Halajnia, Comparison of adsorption and desorption of phosphate on synthesized Zn-Al LDH by two methods in a simulated soil solution, Appl. Clay Sci. 152 (2017) 333e341, https://doi.org/10.1016/ j.clay.2017.11.032.[19] E.M. Seftel, R.G. Ciocarlan, B. Michielsen, V. Meynen, S. Mullens, P. Cool, Insights into phosphate adsorption behavior on structurally modified ZnAl layered double hydroxides, Appl. Clay Sci. 165 (2018) 234e246, https:// doi.org/10.1016/j.clay.2018.08.018.[20] A. Elhalil, M. Farnane, A. Machrouhi, F.Z. Mahjoubi, R. Elmoubarki, H. Tounsadi, M. Abdennouri, N. Barka, Effects of molar ratio and calcination temperature on the adsorption performance of Zn/Al layered double hydroxide nanoparticles in the removal of pharmaceutical pollutants, J. Sci. Adv. Mater. Dev. 3 (2018) 188e195, https://doi.org/10.1016/j.jsamd.2018.03.005.[21] E.H. Mourid, M. Lakraimi, L. Benaziz, E.H. Elkhattabi, A. Legrouri, Wastewater treatment test by removal of the sulfamethoxazole antibiotic by a calcined layered double hydroxide, Appl. Clay Sci. 168 (2018) 87e95, https://doi.org/ 10.1016/j.clay.2018.11.005[22] T. Xiong, X. Yuan, X. Wang, Z. Wu, L. Jiang, L. Leng, K. Xi, X. Cao, G. Zeng, Highly efficient removal of diclofenac sodium from medical wastewater by Mg/Al layered double hydroxide-poly(m-phenylenediamine) composite, Chem. Eng. J. 366 (2019) 83e91, https://doi.org/10.1016/j.cej.2019.02.069.[23] I.M. Ahmed, M.S. Gasser, Adsorption study of anionic reactive dye from aqueous solution to Mg-Fe-CO3 layered double hydroxide (LDH), Appl. Surf. Sci. 259 (2012) 650e656, https://doi.org/10.1016/j.apsusc.2012.07.092.[24] F.P. De Sa, B.N. Cunha, L.M. Nunes, Effect of pH on the adsorption of Sunset Yellow FCF food dye into a layered double hydroxide (CaAl-LDH-NO3), Chem. Eng. J. 215e216 (2013) 122e127, https://doi.org/10.1016/j.cej.2012.11.024.[25] F. Mohamed, M.R. Abukhadra, M. Shaban, M, Removal of safranin dye from water using polypyrrole nanofiber/Zn-Fe layered double hydroxide nanocomposite (Ppy NF/Zn-Fe LDH) of enhanced adsorption and photocatalytic properties, Sci. Total Environ. 640e641 (2018) 352e363, https://doi.org/ 10.1016/j.scitotenv.2018.05.316.[26] L. Cao, J. Guo, J. Tian, Y. Xu, M. Hu, M. Wang, J. Fan, Preparation of Ca/AlLayered Double Hydroxide and the influence of their structure on early strength of cement, Construct. Build. Mater. 184 (2018) 203e214, https:// doi.org/10.1016/j.conbuildmat.2018.06.186.[27] B. Li, J. He, D.G. Evans, X. Duan, Morphology, and size control of Ni-Al layered double hydroxides using chitosan as a template, J. Phys. Chem. Solid. 67 (2006) 1067e1070, https://doi.org/10.1016/j.jpcs.2006.01.027.[28] L. Cocheci, L. Lupa, M. Gheju, A. Golban, R. Lazau, R. Pode, Zn-Al-CO 3 layered double hydroxides prepared from a waste of hot-dip galvanizing process, B.S. Marques et al. / Journal of Alloys and Compounds 838 (2020) 155628 11 Clean Technol, Environ. Pol. 20 (2018) 1105e1112, https://doi.org/10.1007/ s10098-018-1533-3.[29] M. Khormaei, B. Nasernejad, M. Edrisi, T. Eslamzadeh, Copper biosorption from aqueous solutions by sour orange residue, J. Hazard Mater. 149 (2007) 269e274, https://doi.org/10.1016/j.jhazmat.2007.03.074.[30] G.L. Dotto, N.P.G. Salau, J.S. Piccin, T.R.S. Cadaval, L.A.A. Pinto, Adsorption kinetics in liquid phase: modeling for discontinuous and continuous systems, in: A. Bonilla-Petriciolet, D.I. Mendoza-Castillo, H.E. Reynel-Avila (Eds.), Adsorption Processes for Water Treatment and Purification, Springer International Publishing, New York, 2017, pp. 53e76, https://doi.org/10.1007/978- 3-319-58136-1_3.[31] J.S. Piccin, T.R.S. Cadaval, L.A.A. Pinto, G.L. Dotto, Adsorption isotherms in liquid phase: experimental, modeling, and interpretations, in: A. BonillaPetriciolet, D.I. Mendoza-Castillo, H.E. Reynel-Avila (Eds.), Adsorption Pro- cesses for Water Treatment and Purification, Springer International Publishing, New York, 2017, pp. 19e51, https://doi.org/10.1007/978-3-319-58136-1_ 2.[32] A. Bonilla-Petriciolet, D. Mendoza-Castillo, G.L. Dotto, J.C. Duran-Valle, Adsorption in water treatment, in: Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, Elsevier, Amsterdam, 2019, pp. 1e21, https://doi.org/10.1016/B978-0-12-409547-2.14390-2.[33] P.S. Thue, M.A. Adebayo, E.C. Lima, J.M. Sieliechi, F.M. Machado, G.L. Dotto, J.C.P. Vaghetti, S.L.P. Dias, Preparation, characterization, and application of microwave-assisted activated carbons from wood chips for removal of phenol from aqueous solution, J. Mol. Liq. 223 (2016) 1067e1080, https://doi.org/ 10.1016/j.molliq.2016.09.032.[34] C.H. Wu, Y.P. Chang, S.Y. Chen, D.M. Liu, C.T. Yu, B.L. Pen, Characterization and structure evolution of Ca-Al-CO3 hydrotalcite film for high-temperature CO2 adsorption, J. Nanosci. Nanotechnol. 10 (2010) 4716e4720, https://doi.org/ 10.1166/jnn.2010.1708.[35] J. Olanrewaju, B.L. Newalkar, C. Mancino, S. Komarneni, Simplified synthesis of nitrate form of layered double hydroxide, Mater. Lett. 45 (2000) 307e310, https://doi.org/10.1016/S0167-577X(00)00123-3.[36] A.A.E. Sakr, T. Zaki, O. Saber, S.A. Hassan, A.K. Aboul-Gheit, S. Faramawy, Synthesis of Zn-Al LDHs intercalated with urea derived anions for capturing carbon dioxide from natural gas, J. Taiwan Inst. Chem. Eng. 44 (2013) 957e962, https://doi.org/10.1016/j.jtice.2013.02.003[37] M.V. Bukhtiyarova, A review on the effect of synthesis conditions on the formation of layered double hydroxides, J. Solid State Chem. 269 (2018) 494e506, https://doi.org/10.1016/j.jssc.2018.10.018.[38] H. Lu, J. Chen, Q. Tian, Wearable high-performance supercapacitors based on Ni-coated cotton textile with low-crystalline Ni-Al layered double hydroxide nanoparticles, J. Colloid Interface Sci. 513 (2018) 342e348, https://doi.org/ 10.1016/j.jcis.2017.11.046.[39] M. Hu, X. Yan, X. Hu, R. Feng, M. Zhou, High-capacity adsorption of benzotriazole from aqueous solution by calcined Zn-Al layered double hydroxides, Colloid, Surf. A: Physicochem. Eng. Asp. 540 (2018) 207e214, https://doi.org/ 10.1016/j.colsurfa.2018.01.009.[40] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87 (2015) 1051e1069, https://doi.org/10.1515/pac-2014- 1117[41] N. Baig, S.M. Ihsanullah, T.A. Saleh, Graphene-based adsorbents for the removal of toxic organic pollutants: a review, J. Environ. Manag. 244 (2018) 370e382, https://doi.org/10.1016/j.jenvman.2019.05.047.[42] A. Tor, Y. Cengeloglu, M.E. Aydin, M. Ersoz, Removal of phenol from aqueous phase by using neutralized red mud, J. Colloid Interface Sci. 300 (2006) 498e503, https://doi.org/10.1016/j.jcis.2006.04.054.[43] K.H. Goh, T.T. Lim, Z. Dong, Application of layered double hydroxides for removal of oxyanions: a review, Water Res. 42 (2008) 1343e1368, https:// doi.org/10.1016/j.watres.2007.10.043.[44] C.H. Giles, D. Smith, A. Huitson, A general treatment and classification of the solute adsorption isotherm, J. Colloid Interface Sci. 47 (1973), https://doi.org/ 10.1007/s41193-016-0111-5, 775-765.[45] E.L. Kochany, Degradation of nitrobenzene and nitrophenols by means of advanced oxidation processes in a homogeneous phase: photolysis in the presence of hydrogen peroxide versus the Fenton reaction, Chemosphere 24 (1992) 1369e1380, https://doi.org/10.1016/0045-6535(92)90060-5.ORIGINALCaeAl, NieAl and ZneAl LDH powders as efficient materials to treat.htmlCaeAl, NieAl and ZneAl LDH powders as efficient materials to treat.htmltext/html76290https://repositorio.cuc.edu.co/bitstream/11323/6300/1/CaeAl%2c%20NieAl%20and%20ZneAl%20LDH%20powders%20as%20efficient%20materials%20to%20treat.htmle575731eb6aac221aaf904b32e6ddcbfMD51open accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstream/11323/6300/2/license_rdf42fd4ad1e89814f5e4a476b409eb708cMD52open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstream/11323/6300/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53open accessTEXTCaeAl, NieAl and ZneAl LDH powders as efficient materials to treat.html.txtCaeAl, NieAl and ZneAl LDH powders as efficient materials to treat.html.txttext/plain3567https://repositorio.cuc.edu.co/bitstream/11323/6300/4/CaeAl%2c%20NieAl%20and%20ZneAl%20LDH%20powders%20as%20efficient%20materials%20to%20treat.html.txt751e6b39c164be93a6daf004187216bfMD54open accessTEXTCaeAl, NieAl and ZneAl LDH powders as efficient materials to treat.html.txtCaeAl, NieAl and ZneAl LDH powders as efficient materials to treat.html.txttext/plain3567https://repositorio.cuc.edu.co/bitstream/11323/6300/4/CaeAl%2c%20NieAl%20and%20ZneAl%20LDH%20powders%20as%20efficient%20materials%20to%20treat.html.txt751e6b39c164be93a6daf004187216bfMD54open access11323/6300oai:repositorio.cuc.edu.co:11323/63002023-12-14 17:06:48.839CC0 1.0 Universal|||http://creativecommons.org/publicdomain/zero/1.0/open accessRepositorio Universidad de La Costabdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=