Coupling architecture between INS/GPS for precise navigation on set paths

GPS offers the advantage of providing high long-term position accuracy with residual errors that affect the final positioning solution to a few meters with a sampling frequency of 1 Hz (Marston et al. in Decis Support Syst 51:176–189, 2011 [1]). The signals are also subject to obstruction and interf...

Full description

Autores:
Silva, Jesús
Varela Izquierdo, Noel
Pineda, Omar
Hernández Palma, Hugo
Cueto, Eduardo Nicolas
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7740
Acceso en línea:
https://hdl.handle.net/11323/7740
https://doi.org/10.1007/978-981-15-4875-8_35
https://repositorio.cuc.edu.co/
Palabra clave:
Global positioning system (GPS)
Inertial measurement unit
Coupling system
Sensors
Kalman filter
Madgwick filter
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id RCUC2_f4889fef8f7ce75b8a49c20426b1e260
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7740
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Coupling architecture between INS/GPS for precise navigation on set paths
title Coupling architecture between INS/GPS for precise navigation on set paths
spellingShingle Coupling architecture between INS/GPS for precise navigation on set paths
Global positioning system (GPS)
Inertial measurement unit
Coupling system
Sensors
Kalman filter
Madgwick filter
title_short Coupling architecture between INS/GPS for precise navigation on set paths
title_full Coupling architecture between INS/GPS for precise navigation on set paths
title_fullStr Coupling architecture between INS/GPS for precise navigation on set paths
title_full_unstemmed Coupling architecture between INS/GPS for precise navigation on set paths
title_sort Coupling architecture between INS/GPS for precise navigation on set paths
dc.creator.fl_str_mv Silva, Jesús
Varela Izquierdo, Noel
Pineda, Omar
Hernández Palma, Hugo
Cueto, Eduardo Nicolas
dc.contributor.author.spa.fl_str_mv Silva, Jesús
Varela Izquierdo, Noel
Pineda, Omar
Hernández Palma, Hugo
Cueto, Eduardo Nicolas
dc.subject.spa.fl_str_mv Global positioning system (GPS)
Inertial measurement unit
Coupling system
Sensors
Kalman filter
Madgwick filter
topic Global positioning system (GPS)
Inertial measurement unit
Coupling system
Sensors
Kalman filter
Madgwick filter
description GPS offers the advantage of providing high long-term position accuracy with residual errors that affect the final positioning solution to a few meters with a sampling frequency of 1 Hz (Marston et al. in Decis Support Syst 51:176–189, 2011 [1]). The signals are also subject to obstruction and interference, so GPS receivers cannot be relied upon for a continuous navigation solution. On the contrary, the inertial navigation system has a sampling frequency of at least 50 Hz and exhibits low noise in the short term. In this research, a prototype based on development cards is implemented for the coupling of the inertial navigation system with GPS to improve the precision of navigation on a trajectory.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2021-01-21T13:38:50Z
dc.date.available.none.fl_str_mv 2021-01-21T13:38:50Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7740
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1007/978-981-15-4875-8_35
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/7740
https://doi.org/10.1007/978-981-15-4875-8_35
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv 1. Marston, S., Li, Z., Bandyopadhyay, S., Zhang, J., Ghalsasi, A.: Cloud computing—The business perspective. Decis. Support Syst. 51(1), 176–189 (2011)
2. Bifet, A., De Francisci Morales, G.: Big Data Stream Learning with Samoa (2014). Recuperado de https://www.researchgate.net/publication/282303881_Big_ data_stream_learning_with_SAMOA
3. Lomax, T., Schrank, D., Turner, S., Margiotta, R.: Report for Selecting Travel Reliability Measures. Federal Highway Administration, Washington, D. C. (2003)
4. Pardillo, J., Sánchez, V.: Apuntes de Ingeniería de Tránsito. ETS Ingenieros de Caminos, Canales y Puertos, Madrid, España (2015)
5. Skabardonis, A., Varaiya, P., Petty, K.: Measuring recurrent and non-recurrent traffic congestion. Transp. Res. Rec. J. Transp. Res. Board 1856, 60–68 (2003)
6. U.S. Department of Transportation: Archived Data Management Systems—A Cross-Cutting Study. Publication FHWA- JPO-05-044. FHWA, U.S. Department of Transportation (2004)
7. Yong-chuan, Z., Xiao-qing, Z., Zhen-ting, C: Traffic congestion detection based on GPS floating-car data. Procedia Eng. 15, 5541–5546
8. Viloria, A., Lis-Gutiérrez, J.P., Gaitán-Angulo, M., Godoy, A.R.M., Moreno, G.C., Kamatkar, S.J.: Methodology for the design of a student pattern recognition tool to facilitate the teaching—learning process through knowledge data discovery (Big Data). In: Tan, Y., Shi, Y., Tang, Q. (eds.) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham (2018)
9. Thames, L., Schaefer, D.: Software-defined cloud manufacturing for industry 4.0. Procedia CIRP 52, 12–17 (2016)
10. Viloria, A., Neira-Rodado, D., Pineda Lezama, O.B.: Recovery of Scientific Data Using Intelligent Distributed Data Warehouse. ANT/EDI40 2019, pp 1249–1254
11. Viloria, A., Pineda Lezama, O.B.: Improvements for Determining the Number of Clusters in k-Means for Innovation Databases in SMEs. ANT/EDI40 2019, pp. 1201–1206
12. Alpaydin, E.: Introduction to Machine Learning. The MIT Press, Massachusetts (2004)
13. Álvarez, P., Hadi, M., Zhan, C.: Using Intelligent transportation systems data archives for traffic simulation applications. Transp. Res. Rec. J. Transp. Res. Board 2161, 29–39 (2010)
14. Bizama, J.: Modelación y simulación mediante un microsimulador de la zona de influencia del Puente Llacolén. Universidad del Bio Bio, Memoria de Título (2012)
15. Cortés, C.E., Gibson, J., Gschwender, A., Munizaga, M., Zúñiga, M.: Commercial bus speed diagnosis based on GPS- monitored data. Transp. Res. Part C 19(4), 695–707 (2011)
16. Courage, K.G., Lee, S.: Development of a Central Data Warehouse for Statewide ITS and Transportation Data in Florida: Phase II Proof of Concept. Florida Department of Transportation (2008)
17. Diker, A.C.: Estimation of traffic congestion level via FN-DBSCAN algorithm by using GPA data. In: Problems of Cybernetics and Informatics (PCI), 2012 IV International Conference, Baku, Azerbaijan (2012)
18. Amelec, V.: Increased efficiency in a company of development of technological solutions in the areas commercial and of consultancy. Adv. Sci. Lett. 21(5), 1406–1408 (2015)
19. Viloria, A., Robayo, P.V.: Inventory reduction in the supply chain of finished products for multinational companies. Indian J. Sci. Technol. 8(1) (2016)
dc.rights.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Smart Innovation, Systems and Technologies
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://link.springer.com/chapter/10.1007/978-981-15-4875-8_35
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/f2263e31-d246-4fb6-8416-e9839c13ab84/download
https://repositorio.cuc.edu.co/bitstreams/7d7e0e4f-d707-4457-b2b8-240ea4183a58/download
https://repositorio.cuc.edu.co/bitstreams/f81e17f4-a6c1-4756-a27d-19b459ef2738/download
https://repositorio.cuc.edu.co/bitstreams/3302e39a-2772-476f-aad5-68f1d5151187/download
https://repositorio.cuc.edu.co/bitstreams/a28ca227-3b34-40e7-b2c5-82ed38dd24b9/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
e30e9215131d99561d40d6b0abbe9bad
f868559a6a8c38445e6576a338c056cf
ef778629474ad1f38d2ef3d6b3a0704e
e88214c8c705b925ece812e07ecc748c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760817790517248
spelling Silva, JesúsVarela Izquierdo, NoelPineda, OmarHernández Palma, HugoCueto, Eduardo Nicolas2021-01-21T13:38:50Z2021-01-21T13:38:50Z2020https://hdl.handle.net/11323/7740https://doi.org/10.1007/978-981-15-4875-8_35Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/GPS offers the advantage of providing high long-term position accuracy with residual errors that affect the final positioning solution to a few meters with a sampling frequency of 1 Hz (Marston et al. in Decis Support Syst 51:176–189, 2011 [1]). The signals are also subject to obstruction and interference, so GPS receivers cannot be relied upon for a continuous navigation solution. On the contrary, the inertial navigation system has a sampling frequency of at least 50 Hz and exhibits low noise in the short term. In this research, a prototype based on development cards is implemented for the coupling of the inertial navigation system with GPS to improve the precision of navigation on a trajectory.Silva, JesúsVarela Izquierdo, Noel-will be generated-orcid-0000-0001-7036-4414-600Pineda, Omar-will be generated-orcid-0000-0002-8239-3906-600Hernández Palma, HugoCueto, Eduardo Nicolasapplication/pdfengCorporación Universidad de la CostaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Smart Innovation, Systems and Technologieshttps://link.springer.com/chapter/10.1007/978-981-15-4875-8_35Global positioning system (GPS)Inertial measurement unitCoupling systemSensorsKalman filterMadgwick filterCoupling architecture between INS/GPS for precise navigation on set pathsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion1. Marston, S., Li, Z., Bandyopadhyay, S., Zhang, J., Ghalsasi, A.: Cloud computing—The business perspective. Decis. Support Syst. 51(1), 176–189 (2011)2. Bifet, A., De Francisci Morales, G.: Big Data Stream Learning with Samoa (2014). Recuperado de https://www.researchgate.net/publication/282303881_Big_ data_stream_learning_with_SAMOA3. Lomax, T., Schrank, D., Turner, S., Margiotta, R.: Report for Selecting Travel Reliability Measures. Federal Highway Administration, Washington, D. C. (2003)4. Pardillo, J., Sánchez, V.: Apuntes de Ingeniería de Tránsito. ETS Ingenieros de Caminos, Canales y Puertos, Madrid, España (2015)5. Skabardonis, A., Varaiya, P., Petty, K.: Measuring recurrent and non-recurrent traffic congestion. Transp. Res. Rec. J. Transp. Res. Board 1856, 60–68 (2003)6. U.S. Department of Transportation: Archived Data Management Systems—A Cross-Cutting Study. Publication FHWA- JPO-05-044. FHWA, U.S. Department of Transportation (2004)7. Yong-chuan, Z., Xiao-qing, Z., Zhen-ting, C: Traffic congestion detection based on GPS floating-car data. Procedia Eng. 15, 5541–55468. Viloria, A., Lis-Gutiérrez, J.P., Gaitán-Angulo, M., Godoy, A.R.M., Moreno, G.C., Kamatkar, S.J.: Methodology for the design of a student pattern recognition tool to facilitate the teaching—learning process through knowledge data discovery (Big Data). In: Tan, Y., Shi, Y., Tang, Q. (eds.) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham (2018)9. Thames, L., Schaefer, D.: Software-defined cloud manufacturing for industry 4.0. Procedia CIRP 52, 12–17 (2016)10. Viloria, A., Neira-Rodado, D., Pineda Lezama, O.B.: Recovery of Scientific Data Using Intelligent Distributed Data Warehouse. ANT/EDI40 2019, pp 1249–125411. Viloria, A., Pineda Lezama, O.B.: Improvements for Determining the Number of Clusters in k-Means for Innovation Databases in SMEs. ANT/EDI40 2019, pp. 1201–120612. Alpaydin, E.: Introduction to Machine Learning. The MIT Press, Massachusetts (2004)13. Álvarez, P., Hadi, M., Zhan, C.: Using Intelligent transportation systems data archives for traffic simulation applications. Transp. Res. Rec. J. Transp. Res. Board 2161, 29–39 (2010)14. Bizama, J.: Modelación y simulación mediante un microsimulador de la zona de influencia del Puente Llacolén. Universidad del Bio Bio, Memoria de Título (2012)15. Cortés, C.E., Gibson, J., Gschwender, A., Munizaga, M., Zúñiga, M.: Commercial bus speed diagnosis based on GPS- monitored data. Transp. Res. Part C 19(4), 695–707 (2011)16. Courage, K.G., Lee, S.: Development of a Central Data Warehouse for Statewide ITS and Transportation Data in Florida: Phase II Proof of Concept. Florida Department of Transportation (2008)17. Diker, A.C.: Estimation of traffic congestion level via FN-DBSCAN algorithm by using GPA data. In: Problems of Cybernetics and Informatics (PCI), 2012 IV International Conference, Baku, Azerbaijan (2012)18. Amelec, V.: Increased efficiency in a company of development of technological solutions in the areas commercial and of consultancy. Adv. Sci. Lett. 21(5), 1406–1408 (2015)19. Viloria, A., Robayo, P.V.: Inventory reduction in the supply chain of finished products for multinational companies. Indian J. Sci. Technol. 8(1) (2016)PublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/f2263e31-d246-4fb6-8416-e9839c13ab84/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/7d7e0e4f-d707-4457-b2b8-240ea4183a58/downloade30e9215131d99561d40d6b0abbe9badMD53ORIGINALCoupling architecture between INS GPS for precise navigation on set paths.pdfCoupling architecture between INS GPS for precise navigation on set paths.pdfapplication/pdf104677https://repositorio.cuc.edu.co/bitstreams/f81e17f4-a6c1-4756-a27d-19b459ef2738/downloadf868559a6a8c38445e6576a338c056cfMD51THUMBNAILCoupling architecture between INS GPS for precise navigation on set paths.pdf.jpgCoupling architecture between INS GPS for precise navigation on set paths.pdf.jpgimage/jpeg28747https://repositorio.cuc.edu.co/bitstreams/3302e39a-2772-476f-aad5-68f1d5151187/downloadef778629474ad1f38d2ef3d6b3a0704eMD54TEXTCoupling architecture between INS GPS for precise navigation on set paths.pdf.txtCoupling architecture between INS GPS for precise navigation on set paths.pdf.txttext/plain1056https://repositorio.cuc.edu.co/bitstreams/a28ca227-3b34-40e7-b2c5-82ed38dd24b9/downloade88214c8c705b925ece812e07ecc748cMD5511323/7740oai:repositorio.cuc.edu.co:11323/77402024-09-17 12:49:42.102http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==