Forecasting and communication key elements for low-cost fluvial flooding early warning system in urban areas

Fluvial flooding occurs when a river overspills its banks due to excessive rainfall, and it is the most common flood event. In urban areas, the increment of urbanization makes communities more susceptible to fluvial flooding since the excess of impervious surfaces reduced the natural permeable areas...

Full description

Autores:
Acosta-Coll, Melisa
Solano-Escorcia, Andres
Ortega-Gonzalez, Lilia
Zamora-Musa, Ronald
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8439
Acceso en línea:
https://hdl.handle.net/11323/8439
http://doi.org/10.11591/ijece.v11i5.pp4143-4156
https://repositorio.cuc.edu.co/
Palabra clave:
Disemination
Early warning system
Fluvial flooding
Forecasting
LoRaWAN
Zigbee
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id RCUC2_f42c6a96c4979350b0d95b83bcbe067f
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8439
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Forecasting and communication key elements for low-cost fluvial flooding early warning system in urban areas
title Forecasting and communication key elements for low-cost fluvial flooding early warning system in urban areas
spellingShingle Forecasting and communication key elements for low-cost fluvial flooding early warning system in urban areas
Disemination
Early warning system
Fluvial flooding
Forecasting
LoRaWAN
Zigbee
title_short Forecasting and communication key elements for low-cost fluvial flooding early warning system in urban areas
title_full Forecasting and communication key elements for low-cost fluvial flooding early warning system in urban areas
title_fullStr Forecasting and communication key elements for low-cost fluvial flooding early warning system in urban areas
title_full_unstemmed Forecasting and communication key elements for low-cost fluvial flooding early warning system in urban areas
title_sort Forecasting and communication key elements for low-cost fluvial flooding early warning system in urban areas
dc.creator.fl_str_mv Acosta-Coll, Melisa
Solano-Escorcia, Andres
Ortega-Gonzalez, Lilia
Zamora-Musa, Ronald
dc.contributor.author.spa.fl_str_mv Acosta-Coll, Melisa
Solano-Escorcia, Andres
Ortega-Gonzalez, Lilia
Zamora-Musa, Ronald
dc.subject.spa.fl_str_mv Disemination
Early warning system
Fluvial flooding
Forecasting
LoRaWAN
Zigbee
topic Disemination
Early warning system
Fluvial flooding
Forecasting
LoRaWAN
Zigbee
description Fluvial flooding occurs when a river overspills its banks due to excessive rainfall, and it is the most common flood event. In urban areas, the increment of urbanization makes communities more susceptible to fluvial flooding since the excess of impervious surfaces reduced the natural permeable areas. As flood prevention strategies, early warning systems (EWS) are used to reduce damage and protect people, but key elements need to be selected. This manuscript proposes the monitoring instruments, communication protocols, and media to forecast and disseminate EWS alerts efficiently during fluvial floods in urban areas. First, we conducted a systematic review of different EWS architectures for fluvial floods in urban areas and identified that not all projects monitor the most important variables related to the formation of fluvial floods and most use communication protocols with high-energy consumption.ZigBee and LoRaWAN are the communication protocols with lower power consumption from the review, and to determine which technology has better performance in urban areas, two wireless sensor networks were deployed and simulated in two urban areas susceptible to fluvial floods using Radio Mobile software. The results showed that although Zigbee technology has better-received signal strength, the difference with LoRAWAN is lower than 2dBm, but LoRaWAN has a better signal-to-noise ratio, power consumption, coverage, and deployment cost.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-06-29T21:42:37Z
dc.date.available.none.fl_str_mv 2021-06-29T21:42:37Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8439
dc.identifier.doi.spa.fl_str_mv http://doi.org/10.11591/ijece.v11i5.pp4143-4156
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/8439
http://doi.org/10.11591/ijece.v11i5.pp4143-4156
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv CRED and UNISDR, “The Human Cost of Weather Related Disasters 1995-2015,” 2015.[Online]. Available: https://www.unisdr.org/files/46796_cop21weatherdisastersreport2015.pdf.
International Strategy for Disaster Reduction (ISDR), “Emerging Challenges for Early Warning Systems in context of Climate Change and Urbanization,” Switzerland, 2010. [Online]. Available: http://www.preventionweb.net/ files/15689_ewsincontextofccandurbanization.pdf.
J. D. Miller and M. Hutchins, “The impacts of urbanisation and climate change on urban flooding and urban water quality: A review of the evidence concerning the United Kingdom,” J. Hydrol. Reg. Stud., vol. 12, pp. 345–362, 2017, doi: 10.1016/j.ejrh.2017.06.006.
H. Apel, O. M. Trepat, N. N. Hung, D. T. Chinh, B. Merz, and N. V. Dung, “Combined fluvial and pluvial urban flood hazard analysis: Concept development and application to Can Tho city, Mekong Delta, Vietnam,” Natural Hazards and Earth System Sciences.,vol. 16, no. 4, pp. 941–961, 2016, doi: 10.5194/nhess-16-941-2016.
World Resources Institute (WRI), “World’s 15 Countries with the Most People Exposed to River Floods,” 2015. [Online]. Available: https://www.wri.org/blog/2015/03/world-s-15-countries-most-people-exposed-river-floods.
CRED, “Natural Disasters,” 2015. [Online]. Available: https://www.emdat.be/.
S. Bae and H. Chang, “Urbanization and floods in the Seoul Metropolitan area of South Korea: What old maps tell us,” Int. J. Disaster Risk Reduct., vol. 37, Jul.,2019, Art. No. 101186, doi: 10.1016/j.ijdrr.2019.101186.
J. Du, L. Cheng, Q. Zhang, Y. Yang, and W. Xu, “Different Flooding Behaviors Due to Varied Urbanization Levels within River Basin: A Case Study from the Xiang River Basin, China,” Int. J. Disaster Risk Sci, vol. 10, pp. 89–102, 2019, doi: 10.1007/s13753-018-0195-4.
Y. Anker et al., “Effect of rapid urbanization on Mediterranean karstic mountainous drainage basins,” Sustain. Cities Soc., vol. 51, Nov. 2019, Art. No. 101704, doi: 10.1016/j.scs.2019.101704.
UNDESA, “World Population Prospects. The 2017 Revision. Key Findings and Advance Tables,” United Nations Department of Economic and Social Affairs, New York, ESA/P/WP/248, 2017. [Online]. Available: https://population.un.org/wpp/Publications/Files/WPP2017_KeyFindings.pdf.
S. J. McGrane, “Impacts of urbanisation on hydrological and water quality dynamics, and urban water management: a review,” Hydrol. Sci. J., vol. 61, no. 13, pp. 2295–2311, 2016, doi: 10.1080/02626667.2015.1128084.
World Meteorological Organization, “Guidelines on Early Warning Systems and Application of Nowcasting and Warning Operations,” 2010. [Online]. Available: https://library.wmo.int/doc_num.php?explnum_id=9456.
M. Acosta-Coll, F. Ballester-Merelo, and M. Martinez-Peiro, “Early warning system for detection of urban pluvial flooding hazard levels in an ungauged basin,” Nat. Hazards, vol. 92, pp. 1237–1265, 2018, doi: 10.1007/s11069-018-3249-4.
M. Acosta-Coll, F. Ballester-Merelo, M. Martinez-Peiro, and E. de la Hoz-Franco, “Real-Time Early Warning System Design for Pluvial Flash Floods—A Review,” Sensors, vol. 18, no. 7, 2018, Art. No. 2255, doi: 10.3390/s18072255.
S. E. Shumate, “Longley-Rice and ITU-P.1546 Combined: A New International Terrain-Specific Propagation Model,” 2010 IEEE 72nd Vehicular Technology Conference,Ottawa, Canada, 2010, pp. 1–5, doi: 10.1109/VETECF.2010.5594342.
Gobernación del Atlántico, “Plan de Desarrollo 2020-2023,” Gobernación del Atlántico, Colombia, 2020. [Online]. Available:https://www.atlantico.gov.co/images/stories/plan_desarrollo/PlanDesarrollo_2020-2023-Definitivo-A1.pdf.
F. C. C. Garcia, A. E. Retamar, and J. C. Javier, “Development of a predictive model for on-demandremote river level nowcasting: Case study in Cagayan River Basin, Philippines,” 2016 IEEE Region 10 Conference (TENCON), Singapore, 2016, pp. 3275–3279, doi: 10.1109/TENCON.2016.7848657.
V. Balaji, A. Akshaya, N. Jayashree, and T. Karthika, “Design of ZigBee based wireless sensor network for early flood monitoring and warning system,” in 2017 IEEE Technological Innovations in ICT for Agriculture and Rural Development (TIAR), Chennai, 2017, pp. 236–240, doi: 10.1109/TIAR.2017.8273723.
H. N. Do, M. Vo, V. Tran, P. V. Tan, and C. V. Trinh, “An early flood detection system using mobile networks,” in 2015 International Conference on Advanced Technologies for Communications (ATC), Ho Chi Minh, Vietnam, 2015, pp. 599–603, doi: 10.1109/ATC.2015.7388400.
A. Dersingh, “Design and development of a flood warning system via mobile and computer networks,” in 2016 International Conference on Electronics, Information, and Communications (ICEIC), Danang, Vietnam, 2016, pp. 1–4, doi: 10.1109/ELINFOCOM.2016.7563023.
V. Vunabandi, R. Matsunaga, S. Markon, and N. Willy, “Flood sensing framework by Arduino and Wireless Sensor Network in Rural-Rwanda,” in 2015 IEEE/ACIS 16th International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD), Takamatsu, 2015, pp. 1–6, doi: 10.1109/SNPD.2015.7176210.
M. A. Islam, T. Islam, M. A. Syrus, and N. Ahmed, “Implementation of flash flood monitoring system based on wireless sensor network in Bangladesh,” in 2014 International Conference on Informatics, Electronics & Vision (ICIEV), Dhaka, Bangladesh, 2014, pp. 1–6, doi: 10.1109/ICIEV.2014.6850752.
F. Khan, S. Memon, I. A. Jokhio, and S. H. Jokhio, “Wireless sensor network based flood/drought forecasting system,” in 2015 IEEE SENSORS, Busan, 2015, pp. 1–4, doi: 10.1109/ICSENS.2015.7370354.
E. Leon, C. Alberoni, M. Wister, and J. A. Hernandez-Nolasco, “Flood Early Warning System by Twitter Using LoRa,” Proceedings, vol. 2, no. 19,2018, Art. No. 1213, doi: 10.3390/proceedings2191213.
J. D. Guillot, C. A. Robles, and J. D. Callejas, “Adquisición de Señales Ambientales para un Sistema de Alerta Temprana,” Inf. Tecnológica, vol. 28, no. 5, pp. 45–54, 2017, doi: 10.4067/S0718-07642017000500007.
R. Castillo and J. C. Espitia, “Caracterización de zonas de riesgo por crecientes de ríos de bajo caudal, para la implementación de un sistema de alertas tempranas (SAT) con tecnología LoRa y LoRaWAN,” Inf. Tecnológica, vol. 31, no. 2, pp. 47–54, 2020, doi: 10.4067/S0718-07642020000200047.
L. Kolobe, B. Sigweni, and C. K. Lebekwe, “Systematic literature survey: applications of LoRa communication,” International Journal of Electrical and Computer Engineering(IJECE),vol. 10, no. 3, pp. 3176–3183, 2020, doi: 10.11591/ijece.v10i3.pp3176-3183
E. Ramirez-Cerpa, M. Acosta-Coll, and J. Velez-Zapata, “Análisis de condiciones climatológicas de precipitaciones de corto plazo en zonas urbanas: caso de estudio Barranquilla, Colombia,” Rev. IDESIA, vol. 35, no. 2, pp. 87–94, 2017, doi: 10.4067/S0718-34292017005000023.
R. Lam et al., “Urban disaster preparedness of Hong Kong residents: A territory-wide survey,” Int J Disaster Risk Reduct, vol. 23, pp. 62–69, 2017, doi: 10.1016/j.ijdrr.2017.04.008.
dc.rights.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.source.spa.fl_str_mv International Journal of Electrical and Computer Engineering
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv http://ijece.iaescore.com/index.php/IJECE/article/view/25405
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstream/11323/8439/1/Forecasting%20and%20communication%20key%20elements%20for%20low-cost%20fluvial%20flooding%20early%20warning%20system%20in%20urban%20areas.pdf
https://repositorio.cuc.edu.co/bitstream/11323/8439/2/license_rdf
https://repositorio.cuc.edu.co/bitstream/11323/8439/3/license.txt
https://repositorio.cuc.edu.co/bitstream/11323/8439/4/Forecasting%20and%20communication%20key%20elements%20for%20low-cost%20fluvial%20flooding%20early%20warning%20system%20in%20urban%20areas.pdf.jpg
https://repositorio.cuc.edu.co/bitstream/11323/8439/5/Forecasting%20and%20communication%20key%20elements%20for%20low-cost%20fluvial%20flooding%20early%20warning%20system%20in%20urban%20areas.pdf.txt
bitstream.checksum.fl_str_mv 22b139789caf0ae7d3579f410e3a631a
4460e5956bc1d1639be9ae6146a50347
e30e9215131d99561d40d6b0abbe9bad
74db9fb19b2dec681b92be00ceed47f5
32f3263a7fc7df8edfb65bd8616cc799
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de La Costa
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808400235163025408
spelling Acosta-Coll, Melisa2d3f71f9a5df5bbb04417bc9f0a62e97Solano-Escorcia, Andres5e38c730e8c8621b0bae1c946ccfee07Ortega-Gonzalez, Lilia7bb466c7e2bd1130d0f7700779c9a286Zamora-Musa, Ronald555bf306ab5e4c15af82a7146021ef522021-06-29T21:42:37Z2021-06-29T21:42:37Z2021https://hdl.handle.net/11323/8439http://doi.org/10.11591/ijece.v11i5.pp4143-4156Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Fluvial flooding occurs when a river overspills its banks due to excessive rainfall, and it is the most common flood event. In urban areas, the increment of urbanization makes communities more susceptible to fluvial flooding since the excess of impervious surfaces reduced the natural permeable areas. As flood prevention strategies, early warning systems (EWS) are used to reduce damage and protect people, but key elements need to be selected. This manuscript proposes the monitoring instruments, communication protocols, and media to forecast and disseminate EWS alerts efficiently during fluvial floods in urban areas. First, we conducted a systematic review of different EWS architectures for fluvial floods in urban areas and identified that not all projects monitor the most important variables related to the formation of fluvial floods and most use communication protocols with high-energy consumption.ZigBee and LoRaWAN are the communication protocols with lower power consumption from the review, and to determine which technology has better performance in urban areas, two wireless sensor networks were deployed and simulated in two urban areas susceptible to fluvial floods using Radio Mobile software. The results showed that although Zigbee technology has better-received signal strength, the difference with LoRAWAN is lower than 2dBm, but LoRaWAN has a better signal-to-noise ratio, power consumption, coverage, and deployment cost.application/pdfengAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2International Journal of Electrical and Computer Engineeringhttp://ijece.iaescore.com/index.php/IJECE/article/view/25405DiseminationEarly warning systemFluvial floodingForecastingLoRaWANZigbeeForecasting and communication key elements for low-cost fluvial flooding early warning system in urban areasArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionCRED and UNISDR, “The Human Cost of Weather Related Disasters 1995-2015,” 2015.[Online]. Available: https://www.unisdr.org/files/46796_cop21weatherdisastersreport2015.pdf.International Strategy for Disaster Reduction (ISDR), “Emerging Challenges for Early Warning Systems in context of Climate Change and Urbanization,” Switzerland, 2010. [Online]. Available: http://www.preventionweb.net/ files/15689_ewsincontextofccandurbanization.pdf.J. D. Miller and M. Hutchins, “The impacts of urbanisation and climate change on urban flooding and urban water quality: A review of the evidence concerning the United Kingdom,” J. Hydrol. Reg. Stud., vol. 12, pp. 345–362, 2017, doi: 10.1016/j.ejrh.2017.06.006.H. Apel, O. M. Trepat, N. N. Hung, D. T. Chinh, B. Merz, and N. V. Dung, “Combined fluvial and pluvial urban flood hazard analysis: Concept development and application to Can Tho city, Mekong Delta, Vietnam,” Natural Hazards and Earth System Sciences.,vol. 16, no. 4, pp. 941–961, 2016, doi: 10.5194/nhess-16-941-2016.World Resources Institute (WRI), “World’s 15 Countries with the Most People Exposed to River Floods,” 2015. [Online]. Available: https://www.wri.org/blog/2015/03/world-s-15-countries-most-people-exposed-river-floods.CRED, “Natural Disasters,” 2015. [Online]. Available: https://www.emdat.be/.S. Bae and H. Chang, “Urbanization and floods in the Seoul Metropolitan area of South Korea: What old maps tell us,” Int. J. Disaster Risk Reduct., vol. 37, Jul.,2019, Art. No. 101186, doi: 10.1016/j.ijdrr.2019.101186.J. Du, L. Cheng, Q. Zhang, Y. Yang, and W. Xu, “Different Flooding Behaviors Due to Varied Urbanization Levels within River Basin: A Case Study from the Xiang River Basin, China,” Int. J. Disaster Risk Sci, vol. 10, pp. 89–102, 2019, doi: 10.1007/s13753-018-0195-4.Y. Anker et al., “Effect of rapid urbanization on Mediterranean karstic mountainous drainage basins,” Sustain. Cities Soc., vol. 51, Nov. 2019, Art. No. 101704, doi: 10.1016/j.scs.2019.101704.UNDESA, “World Population Prospects. The 2017 Revision. Key Findings and Advance Tables,” United Nations Department of Economic and Social Affairs, New York, ESA/P/WP/248, 2017. [Online]. Available: https://population.un.org/wpp/Publications/Files/WPP2017_KeyFindings.pdf.S. J. McGrane, “Impacts of urbanisation on hydrological and water quality dynamics, and urban water management: a review,” Hydrol. Sci. J., vol. 61, no. 13, pp. 2295–2311, 2016, doi: 10.1080/02626667.2015.1128084.World Meteorological Organization, “Guidelines on Early Warning Systems and Application of Nowcasting and Warning Operations,” 2010. [Online]. Available: https://library.wmo.int/doc_num.php?explnum_id=9456.M. Acosta-Coll, F. Ballester-Merelo, and M. Martinez-Peiro, “Early warning system for detection of urban pluvial flooding hazard levels in an ungauged basin,” Nat. Hazards, vol. 92, pp. 1237–1265, 2018, doi: 10.1007/s11069-018-3249-4.M. Acosta-Coll, F. Ballester-Merelo, M. Martinez-Peiro, and E. de la Hoz-Franco, “Real-Time Early Warning System Design for Pluvial Flash Floods—A Review,” Sensors, vol. 18, no. 7, 2018, Art. No. 2255, doi: 10.3390/s18072255.S. E. Shumate, “Longley-Rice and ITU-P.1546 Combined: A New International Terrain-Specific Propagation Model,” 2010 IEEE 72nd Vehicular Technology Conference,Ottawa, Canada, 2010, pp. 1–5, doi: 10.1109/VETECF.2010.5594342.Gobernación del Atlántico, “Plan de Desarrollo 2020-2023,” Gobernación del Atlántico, Colombia, 2020. [Online]. Available:https://www.atlantico.gov.co/images/stories/plan_desarrollo/PlanDesarrollo_2020-2023-Definitivo-A1.pdf.F. C. C. Garcia, A. E. Retamar, and J. C. Javier, “Development of a predictive model for on-demandremote river level nowcasting: Case study in Cagayan River Basin, Philippines,” 2016 IEEE Region 10 Conference (TENCON), Singapore, 2016, pp. 3275–3279, doi: 10.1109/TENCON.2016.7848657.V. Balaji, A. Akshaya, N. Jayashree, and T. Karthika, “Design of ZigBee based wireless sensor network for early flood monitoring and warning system,” in 2017 IEEE Technological Innovations in ICT for Agriculture and Rural Development (TIAR), Chennai, 2017, pp. 236–240, doi: 10.1109/TIAR.2017.8273723.H. N. Do, M. Vo, V. Tran, P. V. Tan, and C. V. Trinh, “An early flood detection system using mobile networks,” in 2015 International Conference on Advanced Technologies for Communications (ATC), Ho Chi Minh, Vietnam, 2015, pp. 599–603, doi: 10.1109/ATC.2015.7388400.A. Dersingh, “Design and development of a flood warning system via mobile and computer networks,” in 2016 International Conference on Electronics, Information, and Communications (ICEIC), Danang, Vietnam, 2016, pp. 1–4, doi: 10.1109/ELINFOCOM.2016.7563023.V. Vunabandi, R. Matsunaga, S. Markon, and N. Willy, “Flood sensing framework by Arduino and Wireless Sensor Network in Rural-Rwanda,” in 2015 IEEE/ACIS 16th International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD), Takamatsu, 2015, pp. 1–6, doi: 10.1109/SNPD.2015.7176210.M. A. Islam, T. Islam, M. A. Syrus, and N. Ahmed, “Implementation of flash flood monitoring system based on wireless sensor network in Bangladesh,” in 2014 International Conference on Informatics, Electronics & Vision (ICIEV), Dhaka, Bangladesh, 2014, pp. 1–6, doi: 10.1109/ICIEV.2014.6850752.F. Khan, S. Memon, I. A. Jokhio, and S. H. Jokhio, “Wireless sensor network based flood/drought forecasting system,” in 2015 IEEE SENSORS, Busan, 2015, pp. 1–4, doi: 10.1109/ICSENS.2015.7370354.E. Leon, C. Alberoni, M. Wister, and J. A. Hernandez-Nolasco, “Flood Early Warning System by Twitter Using LoRa,” Proceedings, vol. 2, no. 19,2018, Art. No. 1213, doi: 10.3390/proceedings2191213.J. D. Guillot, C. A. Robles, and J. D. Callejas, “Adquisición de Señales Ambientales para un Sistema de Alerta Temprana,” Inf. Tecnológica, vol. 28, no. 5, pp. 45–54, 2017, doi: 10.4067/S0718-07642017000500007.R. Castillo and J. C. Espitia, “Caracterización de zonas de riesgo por crecientes de ríos de bajo caudal, para la implementación de un sistema de alertas tempranas (SAT) con tecnología LoRa y LoRaWAN,” Inf. Tecnológica, vol. 31, no. 2, pp. 47–54, 2020, doi: 10.4067/S0718-07642020000200047.L. Kolobe, B. Sigweni, and C. K. Lebekwe, “Systematic literature survey: applications of LoRa communication,” International Journal of Electrical and Computer Engineering(IJECE),vol. 10, no. 3, pp. 3176–3183, 2020, doi: 10.11591/ijece.v10i3.pp3176-3183E. Ramirez-Cerpa, M. Acosta-Coll, and J. Velez-Zapata, “Análisis de condiciones climatológicas de precipitaciones de corto plazo en zonas urbanas: caso de estudio Barranquilla, Colombia,” Rev. IDESIA, vol. 35, no. 2, pp. 87–94, 2017, doi: 10.4067/S0718-34292017005000023.R. Lam et al., “Urban disaster preparedness of Hong Kong residents: A territory-wide survey,” Int J Disaster Risk Reduct, vol. 23, pp. 62–69, 2017, doi: 10.1016/j.ijdrr.2017.04.008.ORIGINALForecasting and communication key elements for low-cost fluvial flooding early warning system in urban areas.pdfForecasting and communication key elements for low-cost fluvial flooding early warning system in urban areas.pdfapplication/pdf1021777https://repositorio.cuc.edu.co/bitstream/11323/8439/1/Forecasting%20and%20communication%20key%20elements%20for%20low-cost%20fluvial%20flooding%20early%20warning%20system%20in%20urban%20areas.pdf22b139789caf0ae7d3579f410e3a631aMD51open accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstream/11323/8439/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstream/11323/8439/3/license.txte30e9215131d99561d40d6b0abbe9badMD53open accessTHUMBNAILForecasting and communication key elements for low-cost fluvial flooding early warning system in urban areas.pdf.jpgForecasting and communication key elements for low-cost fluvial flooding early warning system in urban areas.pdf.jpgimage/jpeg64491https://repositorio.cuc.edu.co/bitstream/11323/8439/4/Forecasting%20and%20communication%20key%20elements%20for%20low-cost%20fluvial%20flooding%20early%20warning%20system%20in%20urban%20areas.pdf.jpg74db9fb19b2dec681b92be00ceed47f5MD54open accessTEXTForecasting and communication key elements for low-cost fluvial flooding early warning system in urban areas.pdf.txtForecasting and communication key elements for low-cost fluvial flooding early warning system in urban areas.pdf.txttext/plain43888https://repositorio.cuc.edu.co/bitstream/11323/8439/5/Forecasting%20and%20communication%20key%20elements%20for%20low-cost%20fluvial%20flooding%20early%20warning%20system%20in%20urban%20areas.pdf.txt32f3263a7fc7df8edfb65bd8616cc799MD55open access11323/8439oai:repositorio.cuc.edu.co:11323/84392023-12-14 17:13:33.642Attribution-NonCommercial-NoDerivatives 4.0 International|||http://creativecommons.org/licenses/by-nc-nd/4.0/open accessRepositorio Universidad de La Costabdigital@metabiblioteca.comQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==