Residual peel of pitaya fruit (Hylocereus undatus) as a precursor to obtaining an efficient carbon-based adsorbent for the removal of metanil yellow dye from water

The pitaya peel (Hylocereus undatus) was carbonized in the presence of ZnCl2 to obtain a carbon-based adsorbent to remove the Metanil Yellow dye (MY) from colored waters. The characterization techniques confirmed that the material had morphological changes with the appearance of new irregularities a...

Full description

Autores:
georgin, jordana
DA BOIT MARTINELLO, KATIA
Dison S.P., Franco
Netto, Matias S.
Piccilli, Daniel G.A.
Yilmaz, Murat
Tipo de recurso:
Article of journal
Fecha de publicación:
2022
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/9206
Acceso en línea:
https://hdl.handle.net/11323/9206
https://repositorio.cuc.edu.co/
Palabra clave:
Metanil yellow
Hylocereus undatus
Peel
Dye adsorption
HSDM model
Rights
embargoedAccess
License
© 2021 Elsevier Ltd. All rights reserved.
id RCUC2_f429bfa2cc7ee1fe66168e01e3c9f4af
oai_identifier_str oai:repositorio.cuc.edu.co:11323/9206
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Residual peel of pitaya fruit (Hylocereus undatus) as a precursor to obtaining an efficient carbon-based adsorbent for the removal of metanil yellow dye from water
title Residual peel of pitaya fruit (Hylocereus undatus) as a precursor to obtaining an efficient carbon-based adsorbent for the removal of metanil yellow dye from water
spellingShingle Residual peel of pitaya fruit (Hylocereus undatus) as a precursor to obtaining an efficient carbon-based adsorbent for the removal of metanil yellow dye from water
Metanil yellow
Hylocereus undatus
Peel
Dye adsorption
HSDM model
title_short Residual peel of pitaya fruit (Hylocereus undatus) as a precursor to obtaining an efficient carbon-based adsorbent for the removal of metanil yellow dye from water
title_full Residual peel of pitaya fruit (Hylocereus undatus) as a precursor to obtaining an efficient carbon-based adsorbent for the removal of metanil yellow dye from water
title_fullStr Residual peel of pitaya fruit (Hylocereus undatus) as a precursor to obtaining an efficient carbon-based adsorbent for the removal of metanil yellow dye from water
title_full_unstemmed Residual peel of pitaya fruit (Hylocereus undatus) as a precursor to obtaining an efficient carbon-based adsorbent for the removal of metanil yellow dye from water
title_sort Residual peel of pitaya fruit (Hylocereus undatus) as a precursor to obtaining an efficient carbon-based adsorbent for the removal of metanil yellow dye from water
dc.creator.fl_str_mv georgin, jordana
DA BOIT MARTINELLO, KATIA
Dison S.P., Franco
Netto, Matias S.
Piccilli, Daniel G.A.
Yilmaz, Murat
dc.contributor.author.spa.fl_str_mv georgin, jordana
DA BOIT MARTINELLO, KATIA
Dison S.P., Franco
Netto, Matias S.
Piccilli, Daniel G.A.
Yilmaz, Murat
dc.subject.proposal.eng.fl_str_mv Metanil yellow
Hylocereus undatus
Peel
Dye adsorption
HSDM model
topic Metanil yellow
Hylocereus undatus
Peel
Dye adsorption
HSDM model
description The pitaya peel (Hylocereus undatus) was carbonized in the presence of ZnCl2 to obtain a carbon-based adsorbent to remove the Metanil Yellow dye (MY) from colored waters. The characterization techniques confirmed that the material had morphological changes with the appearance of new irregularities and cavities. Besides, the alternative adsorbent was formed mainly by carbon and functional groups characteristic of lignin and cellulose. Isothermal and kinetic studies were carried out at the natural pH of the solution at a dosage of 0.4 g L−1. The Langmuir model demonstrated the best adjustment of the equilibrium isotherms of the system, reaching the maximum adsorption capacity of 144.07 mg g−1 at 298 K. The thermodynamic behavior indicated that it is a spontaneous and favorable process of an exothermic nature (ΔH0=−34.02 kJ mol−1), consistent with a mechanism involving electrostatic interactions. The MY concentration influenced the kinetic. The homogeneous surface diffusion model (HSDM) showed good statistical adjustment to the kinetic values, showing a slight increase in the diffusivity coefficient from 2.4 × 10−9 to 4.5 × 10−9 cm2 s−1 with the increased MY concentration. The material application in a mixture containing several dyes and salts in the circumstances close to the real ones showed removal of 82.5%. The adsorbent could be regenerated and used 12 times. Therefore, it can be concluded that the pitaya fruit residual biomass can be used as a precursor for preparing carbon-based adsorbents. The adsorbent, in turn, is a promising alternative in the treatment of MY dye and mixtures of organic molecules.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-06-01T22:34:13Z
dc.date.available.none.fl_str_mv 2022-06-01T22:34:13Z
2024
dc.date.issued.none.fl_str_mv 2022
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 2213-3437
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/9206
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 2213-3437
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/9206
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Journal of Environmental Chemical Engineering
dc.relation.references.spa.fl_str_mv T. Robinson, G. McMullan, R. Marchant, P. Nigam Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative Bioresour. Technol., 77 (2001), pp. 247-255, 10.1016/S0960-8524(00)00080-8
K. Ravikumar, K. Pakshirajan, T. Swaminathan, K. Balu Optimization of batch process parameters using response surface methodology for dye removal by a novel adsorbent Chem. Eng. J., 105 (2005), pp. 131-138, 10.1016/j.cej.2004.10.008
N. Riaz, F.K. Chong, B.K. Dutta, Z.B. Man, M.S. Khan, E. Nurlaela Photodegradation of Orange II under visible light using Cu–Ni/TiO2: effect of calcination temperature Chem. Eng. J., 185–186 (2012), pp. 108-119, 10.1016/j.cej.2012.01.052
B. Sarkar, Y. Xi, M. Megharaj, R. Naidu Orange II adsorption on palygorskites modified with alkyl trimethylammonium and dialkyl dimethylammonium bromide — an isothermal and kinetic study Appl. Clay Sci., 51 (2011), pp. 370-374, 10.1016/j.clay.2010.11.032
A. Mittal, V.K. Gupta, A. Malviya, J. Mittal Process development for the batch and bulk removal and recovery of a hazardous, water-soluble azo dye (Metanil Yellow) by adsorption over waste materials (Bottom Ash and De-Oiled Soya) J. Hazard. Mater., 151 (2008), pp. 821-832, 10.1016/j.jhazmat.2007.06.059
E.J. Ruiz, C. Arias, E. Brillas, A. Hernández-Ramírez, J.M. Peralta-Hernández Mineralization of Acid Yellow 36azo dye by electro-Fenton and solar photoelectro-Fenton processes with a boron-doped diamond anode Chemosphere, 82 (2011), pp. 495-501, 10.1016/j.chemosphere.2010.11.013
B. Heibati, S. Rodriguez-Couto, A. Amrane, M. Rafatullah, A. Hawari, M.A. Al-Ghouti Uptake of Reactive Black 5 by pumice and walnut activated carbon: chemistry and adsorption mechanisms J. Ind. Eng. Chem., 20 (2014), pp. 2939-2947, 10.1016/j.jiec.2013.10.063
P.K. Malik Use of activated carbons prepared from sawdust and rice-husk for adsoprtion of acid dyes: a case study of acid yellow 36 Dye. Pigment., 56 (2003), pp. 239-249, 10.1016/S0143-7208(02)00159-6
P.F. de Sales, Z.M. Magriotis, M.A.L.S. Rossi, R.F. Resende, C.A. Nunes Comparative analysis of tropaeolin adsorption onto raw and acid-treated kaolinite: optimization by response surface methodology J. Environ. Manag., 151 (2015), pp. 144-152, 10.1016/j.jenvman.2014.12.008
D. Garg, S. Kumar, K. Sharma, C.B. Majumder Application of waste peanut shells to form activated carbon and its utilization for the removal of Acid Yellow 36 from wastewater Groundwater Sustain. Dev., 8 (2019), pp. 512-519, 10.1016/j.gsd.2019.01.010
S. Karakuş, N. Taşaltın, C. Taşaltın, A. Kilislioğlu Comparative study on ultrasonic assisted adsorption of Basic Blue 3, Basic Yellow 28 and Acid Red 336 dyes onto hydromagnesite stromatolite: kinetic, isotherm and error analysis Surf. Interfaces, 20 (2020), Article 100528, 10.1016/j.surfin.2020.100528
S.Y. Sawant, R.R. Pawar, S. Senthilkumar, R.S. Somani, M.H. Cho, H.C. Bajaj Pilot-scale produced super activated carbon with a nanoporous texture as an excellent adsorbent for the efficient removal of metanil yellow Powder Technol., 333 (2018), pp. 243-251, 10.1016/j.powtec.2018.04.024
A. Thirunavukkarasu, K. Muthukumaran, R. Nithya Adsorption of acid yellow 36 onto green nanoceria and amine functionalized green nanoceria: comparative studies on kinetics, isotherm, thermodynamics, and diffusion analysis J. Taiwan Inst. Chem. Eng., 93 (2018), pp. 211-225, 10.1016/j.jtice.2018.07.006
G.L. Dotto, G. McKay Current scenario and challenges in adsorption for water treatment J. Environ. Chem. Eng., 8 (2020), Article 103988, 10.1016/j.jece.2020.103988
L.F. Cusioli, H.B. Quesada, A.L. de Brito Portela Castro, R.G. Gomes, R. Bergamasco Development of a new low-cost adsorbent functionalized with iron nanoparticles for removal of metformin from contaminated water Chemosphere, 247 (2020), Article 125852, 10.1016/j.chemosphere.2020.125852
J. Qu, Y. Wang, X. Tian, Z. Jiang, F. Deng, Y. Tao, Q. Jiang, L. Wang, Y. Zhang KOH-activated porous biochar with high specific surface area for adsorptive removal of chromium (VI) and naphthalene from water: affecting factors, mechanisms and reusability exploration J. Hazard. Mater., 401 (2021), Article 123292, 10.1016/j.jhazmat.2020.123292
R.S. Bueno, J.B. Ressutte, N.N.Y. Hata, F.C. Henrique-Bana, K.B. Guergoletto, A.G. de Oliveira, W.A. Spinosa Quality and shelf life assessment of a new beverage produced from water kefir grains and red pitaya Lwt, 140 (2021), Article 110770, 10.1016/j.lwt.2020.110770
H.Y. Leong, C.W. Ooi, C.L. Law, A.L. Julkifle, G.T. Pan, P.L. Show Investigation of betacyanins stability from peel and flesh of red-purple pitaya with food additives supplementation and pH treatments Lwt, 98 (2018), pp. 546-558, 10.1016/j.lwt.2018.09.021
Q. Wu, Y. Zhou, Z. Zhang, T. Li, Y. Jiang, H. Gao, Z. Yun Effect of blue light on primary metabolite and volatile compound profiling in the peel of red pitaya Postharvest Biol. Technol., 160 (2020), Article 111059, 10.1016/j.postharvbio.2019.111059
D.S. Magalhães, J.D. Ramos, L.A.S. Pio, E.V. de, B. Vilas Boas, M. Pasqual, F.A. Rodrigues, J.C.M. Rufini, V.A. dos Santos Physical and physicochemical modifications of white-fleshed pitaya throughout its development Sci. Hortic., 243 (2019), pp. 537-543, 10.1016/j.scienta.2018.08.029
Q. Hua, C. Chen, N. Tel Zur, H. Wang, J. Wu, J. Chen, Z. Zhang, J. Zhao, G. Hu, Y. Qin Metabolomic characterization of pitaya fruit from three red-skinned cultivars with different pulp colors Plant Physiol. Biochem., 126 (2018), pp. 117-125, 10.1016/j.plaphy.2018.02.027
F. Fathordoobady, H. Mirhosseini, J. Selamat, M.Y.A. Manap Effect of solvent type and ratio on betacyanins and antioxidant activity of extracts from Hylocereus polyrhizus flesh and peel by supercritical fluid extraction and solvent extraction Food Chem., 202 (2016), pp. 70-80, 10.1016/j.foodchem.2016.01.121
H. Luo, Y. Cai, Z. Peng, T. Liu, S. Yang Chemical composition and in vitroevaluation of the cytotoxic and antioxidant activities of supercritical carbon dioxide extracts of pitaya (dragon fruit) peel Chem. Cent. J., 8 (2014), p. 1, 10.1186/1752-153X-8-1
C.J. Michelle, V.C.O. Joice, R.C.G.N. Maria Nutritional pharmacological and toxicological characteristics of pitaya (Hylocereus undatus): a review of the literature Afr. J. Pharm. Pharmacol., 11 (2017), pp. 300-304, 10.5897/ajpp2016.4582
M.M. Nurmahani, A. Osman, A. Abdul Hamid, F. Mohamad Ghazali, M.S.Pak Dek Short communication antibacterial property of hylocereus polyrhizus and Hylocereus undatus peel extracts Int. Food Res. J., 19 (2012), pp. 77-84
B. Lam, S. Déon, N. Morin-Crini, G. Crini, P. Fievet Polymer-enhanced ultrafiltration for heavy metal removal: Influence of chitosan and carboxymethyl cellulose on filtration performances J. Clean. Prod., 171 (2018), pp. 927-933, 10.1016/j.jclepro.2017.10.090
T.A. Sial, M.N. Khan, Z. Lan, F. Kumbhar, Z. Ying, J. Zhang, D. Sun, X. Li Contrasting effects of banana peels waste and its biochar on greenhouse gas emissions and soil biochemical properties Process Saf. Environ. Prot., 122 (2019), pp. 366-377, 10.1016/j.psep.2018.10.030
X. Hu, X. Zhang, H.H. Ngo, W. Guo, H. Wen, C. Li, Y. Zhang, C. Ma Comparison study on the ammonium adsorption of the biochars derived from different kinds of fruit peel Sci. Total Environ., 707 (2020), Article 135544, 10.1016/j.scitotenv.2019.135544
Y. Feng, H. Sun, L. Han, L. Xue, Y. Chen, L. Yang, B. Xing Fabrication of hydrochar based on food waste (FWHTC) and its application in aqueous solution rare earth ions adsorptive removal: process, mechanisms and disposal methodology J. Clean. Prod., 212 (2019), pp. 1423-1433, 10.1016/j.jclepro.2018.12.094
R. Mallampati, L. Xuanjun, A. Adin, S. Valiyaveettil Fruit peels as efficient renewable adsorbents for removal of dissolved heavy metals and dyes from water ACS Sustain. Chem. Eng., 3 (2015), pp. 1117-1124, 10.1021/acssuschemeng.5b00207
M.A. Ahmad, M.A. Eusoff, K.A. Adegoke, O.S. Bello Sequestration of methylene blue dye from aqueous solution using microwave assisted dragon fruit peel as adsorbent Environ. Technol. Innov., 24 (2021), Article 101917, 10.1016/j.eti.2021.101917
N. Priyantha, L. Lim, M.K. Dahri, L.B.L. Lim Dragon fruit skin as a potential low-cost biosorbent for the removal of manganese(II) ions J. Appl. Sci. Environ. Sanit., 8 (2013), pp. 179-18〈https://www.researchgate.net/publication/261760667〉
D.S.P. Franco, J. Georgin, M.S. Netto, D. Allasia, M.L.S. Oliveira, E.L. Foletto, G.L. Dotto Highly effective adsorption of synthetic phenol effluent by a novel activated carbon prepared from fruit wastes of the Ceiba speciosa forest species J. Environ. Chem. Eng., 9 (2021), Article 105927, 10.1016/j.jece.2021.105927
J. Georgin, Y.L. Yamil, D.S.P. Franco, M.S. Netto, D.G.A. Piccilli, D. Perondi, L.F.O. Silva, E.L. Foletto, G.L. Dotto, Y.L. de, O. Salomón, D.S.P. Franco, M.S. Netto, D.G.A. Piccilli, D. Perondi, L.F.O. Silva, E.L. Foletto, G.L. Dotto Development of highly porous activated carbon from Jacaranda mimosifolia seed pods for remarkable removal of aqueous-phase ketoprofen J. Environ. Chem. Eng., 9 (2021), Article 105676, 10.1016/j.jece.2021.105676
J. Georgin, G.L. Dotto, M.A. Mazutti, E.L. Foletto Preparation of activated carbon from peanut shell by conventional pyrolysis and microwave irradiation-pyrolysis to remove organic dyes from aqueous solutions J. Environ. Chem. Eng., 4 (2016), pp. 266-275, 10.1016/j.jece.2015.11.018
J. Georgin, D.S.P. Franco, M. Schadeck Netto, D. Allasia, E.L. Foletto, L.F.S. Oliveira, G.L. Dotto Transforming shrub waste into a high-efficiency adsorbent: application of Physalis peruvian chalice treated with strong acid to remove the 2,4-dichlorophenoxyacetic acid herbicide J. Environ. Chem. Eng., 9 (2021), Article 104574, 10.1016/j.jece.2020.104574
H. Freundlich Über die Adsorption in Lösungen Z. Phys. Chem., 57U (1907), 10.1515/zpch-1907-5723
M.M. Dubinin, V.A. Astakhov Development of the concepts of volume filling of micropores in the adsorption of gases and vapors by microporous adsorbents Bull. Acad. Sci. USSR Div. Chem. Sci., 20 (1971), pp. 3-7, 10.1007/BF00849307
M. Temkin, V. Pyzhev Kinetics of the synthesis of ammonia on promoted iron catalysts J. Phys. Chem., 13 (1939), pp. 851-867
I. Langmuir The adsorption of gases on plane surfaces of glass, mica and platinum J. Am. Chem. Soc., 40 (1918), pp. 1361-1403, 10.1021/ja02242a004
E.C. Lima, A. Hosseini-Bandegharaei, J.C. Moreno-Piraján, I. Anastopoulos A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption J. Mol. Liq., 273 (2019), pp. 425-434, 10.1016/j.molliq.2018.10.048
L. Largitte, R. Pasquier A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon Chem. Eng. Res. Des., 109 (2016), pp. 495-504, 10.1016/j.cherd.2016.02.006
V.H. Vargas, R.R. Paveglio, P. de, S. Pauletto, N.P.G. Salau, L.G. Dotto Sisal fiber as an alternative and cost-effective adsorbent for the removal of methylene blue and reactive black 5 dyes from aqueous solutions Chem. Eng. Commun., 207 (2020), pp. 523-536, 10.1080/00986445.2019.1605362
D.S.P. Franco, J. Vieillard, N.P.G. Salau, G.L. Dotto Interpretations on the mechanism of In(III) adsorption onto chitosan and chitin: a mass transfer model approach J. Mol. Liq., 304 (2020), Article 112758, 10.1016/j.molliq.2020.112758
O. Üner, Ü. Geçgel, Y. Bayrak Preparation and characterization of mesoporous activated carbons from waste watermelon rind by using the chemical activation method with zinc chloride Arab. J. Chem., 12 (2019), pp. 3621-3627, 10.1016/j.arabjc.2015.12.004
X. Zhou, Z. Jia, A. Feng, K. Wang, X. Liu, L. Chen, H. Cao, G. Wu Dependency of tunable electromagnetic wave absorption performance on morphology-controlled 3D porous carbon fabricated by biomass Compos. Commun., 21 (2020), Article 100404, 10.1016/j.coco.2020.100404
Y.L.D.O. Salomón, J. Georgin, D.S.P. Franco, M.S. Netto, D.G.A. Piccilli, E.L. Foletto, L.F.S. Oliveira, G.L. Dotto High-performance removal of 2,4-dichlorophenoxyacetic acid herbicide in water using activated carbon derived from Queen palm fruit endocarp (Syagrus romanzoffiana) J. Environ. Chem. Eng., 9 (2021), Article 104911, 10.1016/j.jece.2020.104911
H.M. Mozammel, O. Masahiro, S.C. Bhattacharya Activated charcoal from coconut shell using ZnCl2 activation Biomass. Bioenergy, 22 (2002), pp. 397-400, 10.1016/S0961-9534(02)00015-6
A.L. Cazetta, A.M.M. Vargas, E.M. Nogami, M.H. Kunita, M.R. Guilherme, A.C. Martins, T.L. Silva, J.C.G. Moraes, V.C. Almeida NaOH-activated carbon of high surface area produced from coconut shell: kinetics and equilibrium studies from the methylene blue adsorption Chem. Eng. J., 174 (2011), pp. 117-125, 10.1016/j.cej.2011.08.058
V.E. Efeovbokhan, E.E. Alagbe, B. Odika, R. Babalola, T.E. Oladimeji, O.G. Abatan, E.O. Yusuf Preparation and characterization of activated carbon from plantain peel and coconut shell using biological activators J. Phys. Conf. Ser., 1378 (2019), Article 032035, 10.1088/1742-6596/1378/3/032035
X. Du, W. Zhao, S. Ma, M. Ma, T. Qi, Y. Wang, C. Hua Effect of ZnCl2 impregnation concentration on the microstructure and electrical performance of ramie-based activated carbon hollow fiber Ionics, 22 (2016), pp. 545-553, 10.1007/s11581-015-1571-3
C.M. Kerkhoff, K. da Boit Martinello, D.S.P. Franco, M.S. Netto, J. Georgin, E.L. Foletto, D.G.A. Piccilli, L.F.O. Silva, G.L. Dotto Adsorption of ketoprofen and paracetamol and treatment of a synthetic mixture by novel porous carbon derived from Butia capitata endocarp J. Mol. Liq., 339 (2021), Article 117184, 10.1016/j.molliq.2021.117184
K.S.W. Sing Reporting physisorption data for gas / solid systems with special reference to the determination of S Pure Appl. Chem., 54 (1982), pp. 2201-2218, 10.1515/iupac.57.0007
H. Wang, Z. Li, S. Yahyaoui, H. Hanafy, M.K. Seliem, A. Bonilla-Petriciolet, G. Luiz Dotto, L. Sellaoui, Q. Li Effective adsorption of dyes on an activated carbon prepared from carboxymethyl cellulose: experiments, characterization and advanced modelling Chem. Eng. J. (2020), Article 128116, 10.1016/j.cej.2020.128116
M. Paredes-Laverde, M. Salamanca, J.D. Diaz-Corrales, E. Flórez, J. Silva-Agredo, R.A. Torres-Palma Understanding the removal of an anionic dye in textile wastewaters by adsorption on ZnCl2activated carbons from rice and coffee husk wastes: a combined experimental and theoretical study J. Environ. Chem. Eng., 9 (2021), Article 105685, 10.1016/j.jece.2021.105685
A.F.M.M. Streit, G.C. Collazzo, S.P. Druzian, R.S. Verdi, E.L. Foletto, L.F.S.S. Oliveira, G.L. Dotto, F.M. Streit, G.C. Collazzo, S.P. Druzian, R.S. Verdi, E.L. Foletto, L.F.S.S. Oliveira, G.L. Dotto Adsorption of ibuprofen, ketoprofen, and paracetamol onto activated carbon prepared from effluent treatment plant sludge of the beverage industry Chemosphere, 262 (2021), Article 128322, 10.1016/j.chemosphere.2020.128322
B. Vishnupriya, G.R.E. Nandhini, G. Anbarasi Biosynthesis of zinc oxide nanoparticles using Hylocereus undatus fruit peel extract against clinical pathogens Mater. Today Proc. (2020), 10.1016/j.matpr.2020.05.474
G.J.F. Cruz, M. Pirilä, L. Matějová, K. Ainassaari, J.L. Solis, R. Fajgar, O. Šolcová, R.L. Keiski Two unconventional precursors to produce ZnCl2-based activated carbon for water treatment applications Chem. Eng. Technol., 41 (2018), pp. 1649-1659, 10.1002/ceat.201800150
M. Danish, T. Ahmad, R. Hashim, N. Said, M.N. Akhtar, J. Mohamad-Saleh, O. Sulaiman Comparison of Surface Properties of Wood Biomass Activated Carbons and Their Application Against Rhodamine B and Methylene Blue Dye Elsevier B.V. (2018), 10.1016/j.surfin.2018.02.001
R. Xu, J. Cui, R. Tang, F. Li, B. Zhang Removal of 2,4,6-trichlorophenol by laccase immobilized on nano-copper incorporated electrospun fibrous membrane-high efficiency, stability and reusability Chem. Eng. J., 326 (2017), pp. 647-655, 10.1016/j.cej.2017.05.083
Y.L. de, O. Salomón, J. Georgin, G.S. dos Reis, É.C. Lima, M.L.S.S. Oliveira, D.S.P.P. Franco, M.S. Netto, D. Allasia, G.L. Dotto, Y.L. Yamil, J. Georgin, G.S. dos Reis, É.C. Lima, M.L.S.S. Oliveira, D.S.P.P. Franco, M.S. Netto, D. Allasia, G.L. Dotto, Y.L. de, O. Salomón, J. Georgin, G.S. dos Reis, É.C. Lima, M.L.S.S. Oliveira, D.S.P.P. Franco, M.S. Netto, D. Allasia, G.L. Dotto Utilization of pacara earpod tree (Enterolobium contortisilquum) and ironwood (Caesalpinia leiostachya) seeds as low-cost biosorbents for removal of basic fuchsin Environ. Sci. Pollut. Res., 27 (2020), pp. 33307-33320, 10.1007/s11356-020-09471-z
K.B. Fontana, E.S. Chaves, J.D.S.S. Sanchez, E.R.L.R.L.R. Watanabe, J.M.T.A.T.A. Pietrobelli, G.G. Lenzi Textile dye removal from aqueous solutions by malt bagasse: isotherm, kinetic and thermodynamic studies Ecotoxicol. Environ. Saf., 124 (2016), pp. 329-336, 10.1016/j.ecoenv.2015.11.012
A. Rahman, H.J. Hango, L.S. Daniel, V. Uahengo, S.J. Jaime, S.V.H.S. Bhaskaruni, S.B. Jonnalagadda Chemical preparation of activated carbon from Acacia erioloba seed pods using H2SO4 as impregnating agent for water treatment: an environmentally benevolent approach J. Clean. Prod., 237 (2019), Article 117689, 10.1016/j.jclepro.2019.117689
M. Jayachandran, S. Kishore Babu, T. Maiyalagan, N. Rajadurai, T. Vijayakumar Activated carbon derived from bamboo-leaf with effect of various aqueous electrolytes as electrode material for supercapacitor applications Mater. Lett., 301 (2021), Article 130335, 10.1016/j.matlet.2021.130335
Z. Xie, W. Guan, F. Ji, Z. Song, Y. Zhao Production of biologically activated carbon from orange peel and landfill leachate subsequent treatment technology J. Chem. (2014) (2014), 10.1155/2014/491912
H. Duygu Ozsoy, J.Van Leeuwen Removal of color from fruit candy waste by activated carbon adsorption J. Food Eng., 101 (2010), pp. 106-112, 10.1016/j.jfoodeng.2010.06.018
Y.L.D.O. Salomón, J. Georgin, D.S.P.P. Franco, M.S. Netto, D.G.A.A. Piccilli, E.L. Foletto, L.F.S.S. Oliveira, G.L. Dotto, Y.L. de, O. Salomón, J. Georgin, D.S.P.P. Franco, M.S. Netto, D.G.A.A. Piccilli, E.L. Foletto, L.F.S.S. Oliveira, G.L. Dotto, Y.L.D.O. Salomón, J. Georgin, D.S.P.P. Franco, M.S. Netto, D.G.A.A. Piccilli, E.L. Foletto, L.F.S.S. Oliveira, G.L. Dotto High-performance removal of 2,4-dichlorophenoxyacetic acid herbicide in water using activated carbon derived from Queen palm fruit endocarp (Syagrus romanzoffiana) J. Environ. Chem. Eng., 9 (2021), Article 104911, 10.1016/j.jece.2020.104911
C.H. Giles, T.H. MacEwan, S.N. Nakhwa, D. Smith Studies in adsorption. Part XI.* A system J. Chem. Soc., 846 (1960), pp. 3973-3993
P.K. Malik, S.K. Saha Oxidation of direct dyes with hydrogen peroxide using ferrous ion as catalyst Sep. Purif. Technol., 31 (2003), pp. 241-250, 10.1016/S1383-5866(02)00200-9 ArticleDownload PDF
J. Ouyang, J. Chen, H. Huang, L. Zhou, X. Huang Solid-liquid equilibrium and dissolution thermodynamics of 4-methylumbelliferon in different solvents J. Mol. Liq., 306 (2020), Article 112797, 10.1016/j.molliq.2020.112797
W. Acree, J.S. Chickos Phase transition enthalpy measurements of organic and organometallic compounds and ionic liquids. Sublimation, vaporization, and fusion enthalpies from 1880 to 2015. part 2. C11-C192 J. Phys. Chem. Ref. Data, 46 (2017), Article 013104, 10.1063/1.4970519
J.S. Chickos, C.M. Braton, D.G. Hesse, J.F. Liebman Estimating entropies and enthalpies of fusion of organic compounds J. Org. Chem., 56 (1991), pp. 927-938, 10.1021/jo00003a007
A. Bonilla-Petriciolet, D.I. Mendoza-Castillo, H.E. Reynel-Avila Adsorption Processes for Water Treatment and Purification Springer International Publishing, Cham (2017), 10.1007/978-3-319-58136-1
F.C. Drumm, P. Grassi, J. Georgin, D. Tonato, D.S. Pfingsten Franco, J.R. Chaves Neto, M.A. Mazutti, S.L. Jahn, G.L. Dotto Potentiality of the Phoma sp. inactive fungal biomass, a waste from the bioherbicide production, for the treatment of colored effluents Chemosphere, 235 (2019), pp. 596-605, 10.1016/j.chemosphere.2019.06.169
L.M.M. Machado, S.F. Lütke, D. Perondi, M. Godinho, M.L.S. Oliveira, G.C. Collazzo, G.L. Dotto Treatment of effluents containing 2-chlorophenol by adsorption onto chemically and physically activated biochars J. Environ. Chem. Eng., 8 (2020), Article 104473, 10.1016/j.jece.2020.104473
J.C. Crittenden, W.J. Weber Predictive model for design of fixed-bed adsorbers: parameter estimation and model development J. Environ. Eng. Div., 104 (1978), pp. 185-197, 10.1061/JEEGAV.0000743
D. Yu, J. Bai, H. Liang, T. Ma, C. Li Fabrication of AgI-TiO2 loaded on carbon nanofibers and its excellent recyclable and renewable performance in visible-light catalysis J. Mol. Catal. A Chem., 420 (2016), pp. 1-10, 10.1016/j.molcata.2016.04.005
G. Chen, B.W. Dussert, I.H. Suffet Evaluation of granular activated carbons for removal of methylisoborneol to below odor threshold concentration in drinking water Water Res., 31 (1997), pp. 1155-1163, 10.1016/S0043-1354(96)00362-4
M. Suzuki Adsorption Engineering (firstst ed.), Elsevier (1990)
K. Hosoi, G. Soe, T. Kakuno, T. Horio Effects of ph indicators on various activities of chromatophores of Rhodospirillum rubrum J. Biochem., 78 (1975), pp. 1331-1346, 10.1093/oxfordjournals.jbchem.a131031
dc.relation.citationendpage.spa.fl_str_mv 11
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationissue.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 10
dc.rights.spa.fl_str_mv © 2021 Elsevier Ltd. All rights reserved.
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv © 2021 Elsevier Ltd. All rights reserved.
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.extent.spa.fl_str_mv 11 Páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Elsevier BV
dc.publisher.place.spa.fl_str_mv United Kingdom
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S2213343721019837
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstream/11323/9206/1/Residual%20peel%20of%20pitaya%20fruit%20%28Hylocereus%20undatus%29.pdf
https://repositorio.cuc.edu.co/bitstream/11323/9206/1/Residual%20peel%20of%20pitaya%20fruit%20%28Hylocereus%20undatus%29.pdf
https://repositorio.cuc.edu.co/bitstream/11323/9206/2/license.txt
https://repositorio.cuc.edu.co/bitstream/11323/9206/3/Residual%20peel%20of%20pitaya%20fruit%20%28Hylocereus%20undatus%29.pdf.txt
https://repositorio.cuc.edu.co/bitstream/11323/9206/4/Residual%20peel%20of%20pitaya%20fruit%20%28Hylocereus%20undatus%29.pdf.jpg
bitstream.checksum.fl_str_mv b27710d50ef0ec7f3d726cfdf3eceba5
b27710d50ef0ec7f3d726cfdf3eceba5
e30e9215131d99561d40d6b0abbe9bad
367cce45cfd1aae3aa4dea5cac855ee2
426f733d5978a7688e523af9f601c37f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de La Costa
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808400145966956544
spelling georgin, jordana3cb4434fbc1c630e529d2cddd15f71d4600DA BOIT MARTINELLO, KATIAed0b8787a1e1feee5bd78aea81c9fc57600Dison S.P., Franco617ef49ebc758ce5201754e858ead2a2600Netto, Matias S.bbafe7978c27efedfcbbfaf18ef632b6Piccilli, Daniel G.A.7ef1afbafe4b0172b98da9aeb6c9e13dYilmaz, Murata8375f0ecb862502ad183cc6183581862022-06-01T22:34:13Z20242022-06-01T22:34:13Z20222213-3437https://hdl.handle.net/11323/9206Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The pitaya peel (Hylocereus undatus) was carbonized in the presence of ZnCl2 to obtain a carbon-based adsorbent to remove the Metanil Yellow dye (MY) from colored waters. The characterization techniques confirmed that the material had morphological changes with the appearance of new irregularities and cavities. Besides, the alternative adsorbent was formed mainly by carbon and functional groups characteristic of lignin and cellulose. Isothermal and kinetic studies were carried out at the natural pH of the solution at a dosage of 0.4 g L−1. The Langmuir model demonstrated the best adjustment of the equilibrium isotherms of the system, reaching the maximum adsorption capacity of 144.07 mg g−1 at 298 K. The thermodynamic behavior indicated that it is a spontaneous and favorable process of an exothermic nature (ΔH0=−34.02 kJ mol−1), consistent with a mechanism involving electrostatic interactions. The MY concentration influenced the kinetic. The homogeneous surface diffusion model (HSDM) showed good statistical adjustment to the kinetic values, showing a slight increase in the diffusivity coefficient from 2.4 × 10−9 to 4.5 × 10−9 cm2 s−1 with the increased MY concentration. The material application in a mixture containing several dyes and salts in the circumstances close to the real ones showed removal of 82.5%. The adsorbent could be regenerated and used 12 times. Therefore, it can be concluded that the pitaya fruit residual biomass can be used as a precursor for preparing carbon-based adsorbents. The adsorbent, in turn, is a promising alternative in the treatment of MY dye and mixtures of organic molecules.11 Páginasapplication/pdfengElsevier BVUnited Kingdom© 2021 Elsevier Ltd. All rights reserved.Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfResidual peel of pitaya fruit (Hylocereus undatus) as a precursor to obtaining an efficient carbon-based adsorbent for the removal of metanil yellow dye from waterArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionhttps://www.sciencedirect.com/science/article/pii/S2213343721019837Journal of Environmental Chemical EngineeringT. Robinson, G. McMullan, R. Marchant, P. Nigam Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative Bioresour. Technol., 77 (2001), pp. 247-255, 10.1016/S0960-8524(00)00080-8K. Ravikumar, K. Pakshirajan, T. Swaminathan, K. Balu Optimization of batch process parameters using response surface methodology for dye removal by a novel adsorbent Chem. Eng. J., 105 (2005), pp. 131-138, 10.1016/j.cej.2004.10.008N. Riaz, F.K. Chong, B.K. Dutta, Z.B. Man, M.S. Khan, E. Nurlaela Photodegradation of Orange II under visible light using Cu–Ni/TiO2: effect of calcination temperature Chem. Eng. J., 185–186 (2012), pp. 108-119, 10.1016/j.cej.2012.01.052B. Sarkar, Y. Xi, M. Megharaj, R. Naidu Orange II adsorption on palygorskites modified with alkyl trimethylammonium and dialkyl dimethylammonium bromide — an isothermal and kinetic study Appl. Clay Sci., 51 (2011), pp. 370-374, 10.1016/j.clay.2010.11.032A. Mittal, V.K. Gupta, A. Malviya, J. Mittal Process development for the batch and bulk removal and recovery of a hazardous, water-soluble azo dye (Metanil Yellow) by adsorption over waste materials (Bottom Ash and De-Oiled Soya) J. Hazard. Mater., 151 (2008), pp. 821-832, 10.1016/j.jhazmat.2007.06.059E.J. Ruiz, C. Arias, E. Brillas, A. Hernández-Ramírez, J.M. Peralta-Hernández Mineralization of Acid Yellow 36azo dye by electro-Fenton and solar photoelectro-Fenton processes with a boron-doped diamond anode Chemosphere, 82 (2011), pp. 495-501, 10.1016/j.chemosphere.2010.11.013B. Heibati, S. Rodriguez-Couto, A. Amrane, M. Rafatullah, A. Hawari, M.A. Al-Ghouti Uptake of Reactive Black 5 by pumice and walnut activated carbon: chemistry and adsorption mechanisms J. Ind. Eng. Chem., 20 (2014), pp. 2939-2947, 10.1016/j.jiec.2013.10.063P.K. Malik Use of activated carbons prepared from sawdust and rice-husk for adsoprtion of acid dyes: a case study of acid yellow 36 Dye. Pigment., 56 (2003), pp. 239-249, 10.1016/S0143-7208(02)00159-6P.F. de Sales, Z.M. Magriotis, M.A.L.S. Rossi, R.F. Resende, C.A. Nunes Comparative analysis of tropaeolin adsorption onto raw and acid-treated kaolinite: optimization by response surface methodology J. Environ. Manag., 151 (2015), pp. 144-152, 10.1016/j.jenvman.2014.12.008D. Garg, S. Kumar, K. Sharma, C.B. Majumder Application of waste peanut shells to form activated carbon and its utilization for the removal of Acid Yellow 36 from wastewater Groundwater Sustain. Dev., 8 (2019), pp. 512-519, 10.1016/j.gsd.2019.01.010S. Karakuş, N. Taşaltın, C. Taşaltın, A. Kilislioğlu Comparative study on ultrasonic assisted adsorption of Basic Blue 3, Basic Yellow 28 and Acid Red 336 dyes onto hydromagnesite stromatolite: kinetic, isotherm and error analysis Surf. Interfaces, 20 (2020), Article 100528, 10.1016/j.surfin.2020.100528S.Y. Sawant, R.R. Pawar, S. Senthilkumar, R.S. Somani, M.H. Cho, H.C. Bajaj Pilot-scale produced super activated carbon with a nanoporous texture as an excellent adsorbent for the efficient removal of metanil yellow Powder Technol., 333 (2018), pp. 243-251, 10.1016/j.powtec.2018.04.024A. Thirunavukkarasu, K. Muthukumaran, R. Nithya Adsorption of acid yellow 36 onto green nanoceria and amine functionalized green nanoceria: comparative studies on kinetics, isotherm, thermodynamics, and diffusion analysis J. Taiwan Inst. Chem. Eng., 93 (2018), pp. 211-225, 10.1016/j.jtice.2018.07.006G.L. Dotto, G. McKay Current scenario and challenges in adsorption for water treatment J. Environ. Chem. Eng., 8 (2020), Article 103988, 10.1016/j.jece.2020.103988L.F. Cusioli, H.B. Quesada, A.L. de Brito Portela Castro, R.G. Gomes, R. Bergamasco Development of a new low-cost adsorbent functionalized with iron nanoparticles for removal of metformin from contaminated water Chemosphere, 247 (2020), Article 125852, 10.1016/j.chemosphere.2020.125852J. Qu, Y. Wang, X. Tian, Z. Jiang, F. Deng, Y. Tao, Q. Jiang, L. Wang, Y. Zhang KOH-activated porous biochar with high specific surface area for adsorptive removal of chromium (VI) and naphthalene from water: affecting factors, mechanisms and reusability exploration J. Hazard. Mater., 401 (2021), Article 123292, 10.1016/j.jhazmat.2020.123292R.S. Bueno, J.B. Ressutte, N.N.Y. Hata, F.C. Henrique-Bana, K.B. Guergoletto, A.G. de Oliveira, W.A. Spinosa Quality and shelf life assessment of a new beverage produced from water kefir grains and red pitaya Lwt, 140 (2021), Article 110770, 10.1016/j.lwt.2020.110770H.Y. Leong, C.W. Ooi, C.L. Law, A.L. Julkifle, G.T. Pan, P.L. Show Investigation of betacyanins stability from peel and flesh of red-purple pitaya with food additives supplementation and pH treatments Lwt, 98 (2018), pp. 546-558, 10.1016/j.lwt.2018.09.021Q. Wu, Y. Zhou, Z. Zhang, T. Li, Y. Jiang, H. Gao, Z. Yun Effect of blue light on primary metabolite and volatile compound profiling in the peel of red pitaya Postharvest Biol. Technol., 160 (2020), Article 111059, 10.1016/j.postharvbio.2019.111059D.S. Magalhães, J.D. Ramos, L.A.S. Pio, E.V. de, B. Vilas Boas, M. Pasqual, F.A. Rodrigues, J.C.M. Rufini, V.A. dos Santos Physical and physicochemical modifications of white-fleshed pitaya throughout its development Sci. Hortic., 243 (2019), pp. 537-543, 10.1016/j.scienta.2018.08.029Q. Hua, C. Chen, N. Tel Zur, H. Wang, J. Wu, J. Chen, Z. Zhang, J. Zhao, G. Hu, Y. Qin Metabolomic characterization of pitaya fruit from three red-skinned cultivars with different pulp colors Plant Physiol. Biochem., 126 (2018), pp. 117-125, 10.1016/j.plaphy.2018.02.027F. Fathordoobady, H. Mirhosseini, J. Selamat, M.Y.A. Manap Effect of solvent type and ratio on betacyanins and antioxidant activity of extracts from Hylocereus polyrhizus flesh and peel by supercritical fluid extraction and solvent extraction Food Chem., 202 (2016), pp. 70-80, 10.1016/j.foodchem.2016.01.121H. Luo, Y. Cai, Z. Peng, T. Liu, S. Yang Chemical composition and in vitroevaluation of the cytotoxic and antioxidant activities of supercritical carbon dioxide extracts of pitaya (dragon fruit) peel Chem. Cent. J., 8 (2014), p. 1, 10.1186/1752-153X-8-1C.J. Michelle, V.C.O. Joice, R.C.G.N. Maria Nutritional pharmacological and toxicological characteristics of pitaya (Hylocereus undatus): a review of the literature Afr. J. Pharm. Pharmacol., 11 (2017), pp. 300-304, 10.5897/ajpp2016.4582M.M. Nurmahani, A. Osman, A. Abdul Hamid, F. Mohamad Ghazali, M.S.Pak Dek Short communication antibacterial property of hylocereus polyrhizus and Hylocereus undatus peel extracts Int. Food Res. J., 19 (2012), pp. 77-84B. Lam, S. Déon, N. Morin-Crini, G. Crini, P. Fievet Polymer-enhanced ultrafiltration for heavy metal removal: Influence of chitosan and carboxymethyl cellulose on filtration performances J. Clean. Prod., 171 (2018), pp. 927-933, 10.1016/j.jclepro.2017.10.090T.A. Sial, M.N. Khan, Z. Lan, F. Kumbhar, Z. Ying, J. Zhang, D. Sun, X. Li Contrasting effects of banana peels waste and its biochar on greenhouse gas emissions and soil biochemical properties Process Saf. Environ. Prot., 122 (2019), pp. 366-377, 10.1016/j.psep.2018.10.030X. Hu, X. Zhang, H.H. Ngo, W. Guo, H. Wen, C. Li, Y. Zhang, C. Ma Comparison study on the ammonium adsorption of the biochars derived from different kinds of fruit peel Sci. Total Environ., 707 (2020), Article 135544, 10.1016/j.scitotenv.2019.135544Y. Feng, H. Sun, L. Han, L. Xue, Y. Chen, L. Yang, B. Xing Fabrication of hydrochar based on food waste (FWHTC) and its application in aqueous solution rare earth ions adsorptive removal: process, mechanisms and disposal methodology J. Clean. Prod., 212 (2019), pp. 1423-1433, 10.1016/j.jclepro.2018.12.094R. Mallampati, L. Xuanjun, A. Adin, S. Valiyaveettil Fruit peels as efficient renewable adsorbents for removal of dissolved heavy metals and dyes from water ACS Sustain. Chem. Eng., 3 (2015), pp. 1117-1124, 10.1021/acssuschemeng.5b00207M.A. Ahmad, M.A. Eusoff, K.A. Adegoke, O.S. Bello Sequestration of methylene blue dye from aqueous solution using microwave assisted dragon fruit peel as adsorbent Environ. Technol. Innov., 24 (2021), Article 101917, 10.1016/j.eti.2021.101917N. Priyantha, L. Lim, M.K. Dahri, L.B.L. Lim Dragon fruit skin as a potential low-cost biosorbent for the removal of manganese(II) ions J. Appl. Sci. Environ. Sanit., 8 (2013), pp. 179-18〈https://www.researchgate.net/publication/261760667〉D.S.P. Franco, J. Georgin, M.S. Netto, D. Allasia, M.L.S. Oliveira, E.L. Foletto, G.L. Dotto Highly effective adsorption of synthetic phenol effluent by a novel activated carbon prepared from fruit wastes of the Ceiba speciosa forest species J. Environ. Chem. Eng., 9 (2021), Article 105927, 10.1016/j.jece.2021.105927J. Georgin, Y.L. Yamil, D.S.P. Franco, M.S. Netto, D.G.A. Piccilli, D. Perondi, L.F.O. Silva, E.L. Foletto, G.L. Dotto, Y.L. de, O. Salomón, D.S.P. Franco, M.S. Netto, D.G.A. Piccilli, D. Perondi, L.F.O. Silva, E.L. Foletto, G.L. Dotto Development of highly porous activated carbon from Jacaranda mimosifolia seed pods for remarkable removal of aqueous-phase ketoprofen J. Environ. Chem. Eng., 9 (2021), Article 105676, 10.1016/j.jece.2021.105676J. Georgin, G.L. Dotto, M.A. Mazutti, E.L. Foletto Preparation of activated carbon from peanut shell by conventional pyrolysis and microwave irradiation-pyrolysis to remove organic dyes from aqueous solutions J. Environ. Chem. Eng., 4 (2016), pp. 266-275, 10.1016/j.jece.2015.11.018J. Georgin, D.S.P. Franco, M. Schadeck Netto, D. Allasia, E.L. Foletto, L.F.S. Oliveira, G.L. Dotto Transforming shrub waste into a high-efficiency adsorbent: application of Physalis peruvian chalice treated with strong acid to remove the 2,4-dichlorophenoxyacetic acid herbicide J. Environ. Chem. Eng., 9 (2021), Article 104574, 10.1016/j.jece.2020.104574H. Freundlich Über die Adsorption in Lösungen Z. Phys. Chem., 57U (1907), 10.1515/zpch-1907-5723M.M. Dubinin, V.A. Astakhov Development of the concepts of volume filling of micropores in the adsorption of gases and vapors by microporous adsorbents Bull. Acad. Sci. USSR Div. Chem. Sci., 20 (1971), pp. 3-7, 10.1007/BF00849307M. Temkin, V. Pyzhev Kinetics of the synthesis of ammonia on promoted iron catalysts J. Phys. Chem., 13 (1939), pp. 851-867I. Langmuir The adsorption of gases on plane surfaces of glass, mica and platinum J. Am. Chem. Soc., 40 (1918), pp. 1361-1403, 10.1021/ja02242a004E.C. Lima, A. Hosseini-Bandegharaei, J.C. Moreno-Piraján, I. Anastopoulos A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption J. Mol. Liq., 273 (2019), pp. 425-434, 10.1016/j.molliq.2018.10.048L. Largitte, R. Pasquier A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon Chem. Eng. Res. Des., 109 (2016), pp. 495-504, 10.1016/j.cherd.2016.02.006V.H. Vargas, R.R. Paveglio, P. de, S. Pauletto, N.P.G. Salau, L.G. Dotto Sisal fiber as an alternative and cost-effective adsorbent for the removal of methylene blue and reactive black 5 dyes from aqueous solutions Chem. Eng. Commun., 207 (2020), pp. 523-536, 10.1080/00986445.2019.1605362D.S.P. Franco, J. Vieillard, N.P.G. Salau, G.L. Dotto Interpretations on the mechanism of In(III) adsorption onto chitosan and chitin: a mass transfer model approach J. Mol. Liq., 304 (2020), Article 112758, 10.1016/j.molliq.2020.112758O. Üner, Ü. Geçgel, Y. Bayrak Preparation and characterization of mesoporous activated carbons from waste watermelon rind by using the chemical activation method with zinc chloride Arab. J. Chem., 12 (2019), pp. 3621-3627, 10.1016/j.arabjc.2015.12.004X. Zhou, Z. Jia, A. Feng, K. Wang, X. Liu, L. Chen, H. Cao, G. Wu Dependency of tunable electromagnetic wave absorption performance on morphology-controlled 3D porous carbon fabricated by biomass Compos. Commun., 21 (2020), Article 100404, 10.1016/j.coco.2020.100404Y.L.D.O. Salomón, J. Georgin, D.S.P. Franco, M.S. Netto, D.G.A. Piccilli, E.L. Foletto, L.F.S. Oliveira, G.L. Dotto High-performance removal of 2,4-dichlorophenoxyacetic acid herbicide in water using activated carbon derived from Queen palm fruit endocarp (Syagrus romanzoffiana) J. Environ. Chem. Eng., 9 (2021), Article 104911, 10.1016/j.jece.2020.104911H.M. Mozammel, O. Masahiro, S.C. Bhattacharya Activated charcoal from coconut shell using ZnCl2 activation Biomass. Bioenergy, 22 (2002), pp. 397-400, 10.1016/S0961-9534(02)00015-6A.L. Cazetta, A.M.M. Vargas, E.M. Nogami, M.H. Kunita, M.R. Guilherme, A.C. Martins, T.L. Silva, J.C.G. Moraes, V.C. Almeida NaOH-activated carbon of high surface area produced from coconut shell: kinetics and equilibrium studies from the methylene blue adsorption Chem. Eng. J., 174 (2011), pp. 117-125, 10.1016/j.cej.2011.08.058V.E. Efeovbokhan, E.E. Alagbe, B. Odika, R. Babalola, T.E. Oladimeji, O.G. Abatan, E.O. Yusuf Preparation and characterization of activated carbon from plantain peel and coconut shell using biological activators J. Phys. Conf. Ser., 1378 (2019), Article 032035, 10.1088/1742-6596/1378/3/032035X. Du, W. Zhao, S. Ma, M. Ma, T. Qi, Y. Wang, C. Hua Effect of ZnCl2 impregnation concentration on the microstructure and electrical performance of ramie-based activated carbon hollow fiber Ionics, 22 (2016), pp. 545-553, 10.1007/s11581-015-1571-3C.M. Kerkhoff, K. da Boit Martinello, D.S.P. Franco, M.S. Netto, J. Georgin, E.L. Foletto, D.G.A. Piccilli, L.F.O. Silva, G.L. Dotto Adsorption of ketoprofen and paracetamol and treatment of a synthetic mixture by novel porous carbon derived from Butia capitata endocarp J. Mol. Liq., 339 (2021), Article 117184, 10.1016/j.molliq.2021.117184K.S.W. Sing Reporting physisorption data for gas / solid systems with special reference to the determination of S Pure Appl. Chem., 54 (1982), pp. 2201-2218, 10.1515/iupac.57.0007H. Wang, Z. Li, S. Yahyaoui, H. Hanafy, M.K. Seliem, A. Bonilla-Petriciolet, G. Luiz Dotto, L. Sellaoui, Q. Li Effective adsorption of dyes on an activated carbon prepared from carboxymethyl cellulose: experiments, characterization and advanced modelling Chem. Eng. J. (2020), Article 128116, 10.1016/j.cej.2020.128116M. Paredes-Laverde, M. Salamanca, J.D. Diaz-Corrales, E. Flórez, J. Silva-Agredo, R.A. Torres-Palma Understanding the removal of an anionic dye in textile wastewaters by adsorption on ZnCl2activated carbons from rice and coffee husk wastes: a combined experimental and theoretical study J. Environ. Chem. Eng., 9 (2021), Article 105685, 10.1016/j.jece.2021.105685A.F.M.M. Streit, G.C. Collazzo, S.P. Druzian, R.S. Verdi, E.L. Foletto, L.F.S.S. Oliveira, G.L. Dotto, F.M. Streit, G.C. Collazzo, S.P. Druzian, R.S. Verdi, E.L. Foletto, L.F.S.S. Oliveira, G.L. Dotto Adsorption of ibuprofen, ketoprofen, and paracetamol onto activated carbon prepared from effluent treatment plant sludge of the beverage industry Chemosphere, 262 (2021), Article 128322, 10.1016/j.chemosphere.2020.128322B. Vishnupriya, G.R.E. Nandhini, G. Anbarasi Biosynthesis of zinc oxide nanoparticles using Hylocereus undatus fruit peel extract against clinical pathogens Mater. Today Proc. (2020), 10.1016/j.matpr.2020.05.474G.J.F. Cruz, M. Pirilä, L. Matějová, K. Ainassaari, J.L. Solis, R. Fajgar, O. Šolcová, R.L. Keiski Two unconventional precursors to produce ZnCl2-based activated carbon for water treatment applications Chem. Eng. Technol., 41 (2018), pp. 1649-1659, 10.1002/ceat.201800150M. Danish, T. Ahmad, R. Hashim, N. Said, M.N. Akhtar, J. Mohamad-Saleh, O. Sulaiman Comparison of Surface Properties of Wood Biomass Activated Carbons and Their Application Against Rhodamine B and Methylene Blue Dye Elsevier B.V. (2018), 10.1016/j.surfin.2018.02.001R. Xu, J. Cui, R. Tang, F. Li, B. Zhang Removal of 2,4,6-trichlorophenol by laccase immobilized on nano-copper incorporated electrospun fibrous membrane-high efficiency, stability and reusability Chem. Eng. J., 326 (2017), pp. 647-655, 10.1016/j.cej.2017.05.083Y.L. de, O. Salomón, J. Georgin, G.S. dos Reis, É.C. Lima, M.L.S.S. Oliveira, D.S.P.P. Franco, M.S. Netto, D. Allasia, G.L. Dotto, Y.L. Yamil, J. Georgin, G.S. dos Reis, É.C. Lima, M.L.S.S. Oliveira, D.S.P.P. Franco, M.S. Netto, D. Allasia, G.L. Dotto, Y.L. de, O. Salomón, J. Georgin, G.S. dos Reis, É.C. Lima, M.L.S.S. Oliveira, D.S.P.P. Franco, M.S. Netto, D. Allasia, G.L. Dotto Utilization of pacara earpod tree (Enterolobium contortisilquum) and ironwood (Caesalpinia leiostachya) seeds as low-cost biosorbents for removal of basic fuchsin Environ. Sci. Pollut. Res., 27 (2020), pp. 33307-33320, 10.1007/s11356-020-09471-zK.B. Fontana, E.S. Chaves, J.D.S.S. Sanchez, E.R.L.R.L.R. Watanabe, J.M.T.A.T.A. Pietrobelli, G.G. Lenzi Textile dye removal from aqueous solutions by malt bagasse: isotherm, kinetic and thermodynamic studies Ecotoxicol. Environ. Saf., 124 (2016), pp. 329-336, 10.1016/j.ecoenv.2015.11.012A. Rahman, H.J. Hango, L.S. Daniel, V. Uahengo, S.J. Jaime, S.V.H.S. Bhaskaruni, S.B. Jonnalagadda Chemical preparation of activated carbon from Acacia erioloba seed pods using H2SO4 as impregnating agent for water treatment: an environmentally benevolent approach J. Clean. Prod., 237 (2019), Article 117689, 10.1016/j.jclepro.2019.117689M. Jayachandran, S. Kishore Babu, T. Maiyalagan, N. Rajadurai, T. Vijayakumar Activated carbon derived from bamboo-leaf with effect of various aqueous electrolytes as electrode material for supercapacitor applications Mater. Lett., 301 (2021), Article 130335, 10.1016/j.matlet.2021.130335Z. Xie, W. Guan, F. Ji, Z. Song, Y. Zhao Production of biologically activated carbon from orange peel and landfill leachate subsequent treatment technology J. Chem. (2014) (2014), 10.1155/2014/491912H. Duygu Ozsoy, J.Van Leeuwen Removal of color from fruit candy waste by activated carbon adsorption J. Food Eng., 101 (2010), pp. 106-112, 10.1016/j.jfoodeng.2010.06.018Y.L.D.O. Salomón, J. Georgin, D.S.P.P. Franco, M.S. Netto, D.G.A.A. Piccilli, E.L. Foletto, L.F.S.S. Oliveira, G.L. Dotto, Y.L. de, O. Salomón, J. Georgin, D.S.P.P. Franco, M.S. Netto, D.G.A.A. Piccilli, E.L. Foletto, L.F.S.S. Oliveira, G.L. Dotto, Y.L.D.O. Salomón, J. Georgin, D.S.P.P. Franco, M.S. Netto, D.G.A.A. Piccilli, E.L. Foletto, L.F.S.S. Oliveira, G.L. Dotto High-performance removal of 2,4-dichlorophenoxyacetic acid herbicide in water using activated carbon derived from Queen palm fruit endocarp (Syagrus romanzoffiana) J. Environ. Chem. Eng., 9 (2021), Article 104911, 10.1016/j.jece.2020.104911C.H. Giles, T.H. MacEwan, S.N. Nakhwa, D. Smith Studies in adsorption. Part XI.* A system J. Chem. Soc., 846 (1960), pp. 3973-3993P.K. Malik, S.K. Saha Oxidation of direct dyes with hydrogen peroxide using ferrous ion as catalyst Sep. Purif. Technol., 31 (2003), pp. 241-250, 10.1016/S1383-5866(02)00200-9 ArticleDownload PDFJ. Ouyang, J. Chen, H. Huang, L. Zhou, X. Huang Solid-liquid equilibrium and dissolution thermodynamics of 4-methylumbelliferon in different solvents J. Mol. Liq., 306 (2020), Article 112797, 10.1016/j.molliq.2020.112797W. Acree, J.S. Chickos Phase transition enthalpy measurements of organic and organometallic compounds and ionic liquids. Sublimation, vaporization, and fusion enthalpies from 1880 to 2015. part 2. C11-C192 J. Phys. Chem. Ref. Data, 46 (2017), Article 013104, 10.1063/1.4970519J.S. Chickos, C.M. Braton, D.G. Hesse, J.F. Liebman Estimating entropies and enthalpies of fusion of organic compounds J. Org. Chem., 56 (1991), pp. 927-938, 10.1021/jo00003a007A. Bonilla-Petriciolet, D.I. Mendoza-Castillo, H.E. Reynel-Avila Adsorption Processes for Water Treatment and Purification Springer International Publishing, Cham (2017), 10.1007/978-3-319-58136-1F.C. Drumm, P. Grassi, J. Georgin, D. Tonato, D.S. Pfingsten Franco, J.R. Chaves Neto, M.A. Mazutti, S.L. Jahn, G.L. Dotto Potentiality of the Phoma sp. inactive fungal biomass, a waste from the bioherbicide production, for the treatment of colored effluents Chemosphere, 235 (2019), pp. 596-605, 10.1016/j.chemosphere.2019.06.169L.M.M. Machado, S.F. Lütke, D. Perondi, M. Godinho, M.L.S. Oliveira, G.C. Collazzo, G.L. Dotto Treatment of effluents containing 2-chlorophenol by adsorption onto chemically and physically activated biochars J. Environ. Chem. Eng., 8 (2020), Article 104473, 10.1016/j.jece.2020.104473J.C. Crittenden, W.J. Weber Predictive model for design of fixed-bed adsorbers: parameter estimation and model development J. Environ. Eng. Div., 104 (1978), pp. 185-197, 10.1061/JEEGAV.0000743D. Yu, J. Bai, H. Liang, T. Ma, C. Li Fabrication of AgI-TiO2 loaded on carbon nanofibers and its excellent recyclable and renewable performance in visible-light catalysis J. Mol. Catal. A Chem., 420 (2016), pp. 1-10, 10.1016/j.molcata.2016.04.005G. Chen, B.W. Dussert, I.H. Suffet Evaluation of granular activated carbons for removal of methylisoborneol to below odor threshold concentration in drinking water Water Res., 31 (1997), pp. 1155-1163, 10.1016/S0043-1354(96)00362-4M. Suzuki Adsorption Engineering (firstst ed.), Elsevier (1990)K. Hosoi, G. Soe, T. Kakuno, T. Horio Effects of ph indicators on various activities of chromatophores of Rhodospirillum rubrum J. Biochem., 78 (1975), pp. 1331-1346, 10.1093/oxfordjournals.jbchem.a131031111110Metanil yellowHylocereus undatusPeelDye adsorptionHSDM modelORIGINALResidual peel of pitaya fruit (Hylocereus undatus).pdfResidual peel of pitaya fruit (Hylocereus undatus).pdfapplication/pdf4534526https://repositorio.cuc.edu.co/bitstream/11323/9206/1/Residual%20peel%20of%20pitaya%20fruit%20%28Hylocereus%20undatus%29.pdfb27710d50ef0ec7f3d726cfdf3eceba5MD51open accessORIGINALResidual peel of pitaya fruit (Hylocereus undatus).pdfResidual peel of pitaya fruit (Hylocereus undatus).pdfapplication/pdf4534526https://repositorio.cuc.edu.co/bitstream/11323/9206/1/Residual%20peel%20of%20pitaya%20fruit%20%28Hylocereus%20undatus%29.pdfb27710d50ef0ec7f3d726cfdf3eceba5MD51open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstream/11323/9206/2/license.txte30e9215131d99561d40d6b0abbe9badMD52open accessTEXTResidual peel of pitaya fruit (Hylocereus undatus).pdf.txtResidual peel of pitaya fruit (Hylocereus undatus).pdf.txttext/plain69402https://repositorio.cuc.edu.co/bitstream/11323/9206/3/Residual%20peel%20of%20pitaya%20fruit%20%28Hylocereus%20undatus%29.pdf.txt367cce45cfd1aae3aa4dea5cac855ee2MD53open accessTHUMBNAILResidual peel of pitaya fruit (Hylocereus undatus).pdf.jpgResidual peel of pitaya fruit (Hylocereus undatus).pdf.jpgimage/jpeg14375https://repositorio.cuc.edu.co/bitstream/11323/9206/4/Residual%20peel%20of%20pitaya%20fruit%20%28Hylocereus%20undatus%29.pdf.jpg426f733d5978a7688e523af9f601c37fMD54open access11323/9206oai:repositorio.cuc.edu.co:11323/92062023-12-14 15:01:25.623An error occurred on the license name.|||https://creativecommons.org/licenses/by-nc-nd/4.0/open accessRepositorio Universidad de La Costabdigital@metabiblioteca.comQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==